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A 1. (i) Q(
√
6) is the splitting field of the polynomial X2− 6 and is hence normal over Q.

(ii) Q(
√
2,
√
3) is the splitting field of (X2 − 2)(X2 − 3) and hence it is normal.

(iii) Q(71/3) contains one, but not all, roots of the irreducible polynomial x3 − 71 (because
the other roots are not even real), so it is not normal over Q.

(iv) Q(71/3, e2πi/3) is the splitting field of X3 − 7 and hence it is normal.

(v) Q(
√
1 +

√
7) is not normal over Q. Here is why. If α =

√
1 +

√
7 then α2− 1 =

√
7, so

(α2 − 1)2 = 7 and α is hence a root of the polynomial X4 − 2X2 − 6 ∈ Q[X]. We can

spot the four complex roots of this polynomial: they are ±
√

1±
√
7 (just substitute

in to see that all of these are roots). Two of these numbers are real and two pure

imaginary; in particular, not all of them are in Q(
√

1 +
√
7), which is a subfield of the

reals. However, X4−2X2−6 is irreducible over Q (one can use the Eisenstein criterion,
or argue in an adhoc manner, or use the theory of biquadratic extensions soon to be

discussed), so this polynomial has some but not all roots in Q(
√
1 +

√
7) which

— by Remark 17 (ii) following Lemma 16 of the GALOIS THEORY notes — is hence
not normal over Q.2

(vi) Q(
√
2 +

√
2) is normal over Q, despite the formal similarity with part (v). If α =√

2 +
√
2 then (as in the previous question) we see (α2 − 2)2 = 2 and hence α is a root

of X4 − 4X2 + 2 ∈ Q[X]. This polynomial is irreducible by Eisenstein, but in this case

Q(
√
2 +

√
2) is actually its splitting field. For two of its roots are ±α and the other

two are ±
√

2−
√
2 and if β =

√
2−

√
2 then we see αβ =

√
2 = α2 − 2, and hence

β = (α2 − 2)/α ∈ Q(α)! So the extension is a splitting field and hence normal.

A 2. (a) First note that if α = 21/3 then L is the splitting field of X3 − 2 over Q; indeed the
splitting field is by definition Q(α, ωα, ω2α) (as these are the roots), and this field must be
Q(α, ω) because each of the generators of one field can be easily checked to be in the other.

1In other words we are using the following property of normal extensions: If K ⊂ L is normal, and
f ∈ K[X] an irreducible polynomial, then either f has no roots in L, or f splits completely in L.

2The very important statement made in Remark 17 (ii) is repeated in Theorem 41 (I) of Sec. 8 of the
GALOIS THEORY notes.
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We immediately deduce that K ⊂ L and F ⊂ L are normal because both are the splitting
field of X3− 2, seen as a polynomial in either K[X] or F [X]. (We can also deduce normality
of F ⊂ L from normality of K ⊂ L.) However K ⊂ F is not normal, because X3 − 2 is
irreducible over K and has one, but not all, roots in F .

(b) Let’s first compute some degrees. We know the min poly of
√
2 over Q has degree 2,

so [F : K] = 2. Also the min poly of 21/4 over Q must be X4 − 2 (because this poly is
irreducible by Eisenstein), and hence [L : K] = 4. By the tower law we deduce [L : F ] = 2
(and hence that X2 −

√
2 must be the min poly of 21/4 over F , but we don’t need this). We

could argue that K ⊂ F and F ⊂ L are normal because they both have degree 2, but we can
also see it directly: F is the splitting field of X2 − 2 over K and L is the splitting field of
X2 −

√
2 over F , so they’re both normal. However, X4 − 2 is irreducible over K and has one

root in L (in fact two roots in L) but not all its roots (as two are not real, whereas L ⊆ R
so K ⊂ L is not normal).

(c) If H is normal in G then for all g ∈ G g−1Hg = H, so trivially for all g ∈ K
g−1Hg = H, that is, H is normal in K.

Examples: H = {1} ⊆ K = ⟨(1 2)⟩ ⊆ S3 for the first, and H = ⟨σ⟩ ⊆ K = ⟨σ, ρ2⟩ ⊆ G =
D8 for the second, with D8 = ⟨ρ, σ⟩ the dihedral group generated by a rotation ρ of order 4
and a reflection σ of order 2.

A 3. Let’s start by adjoining one root of X4 − p, say, α, the positive real 4th root of p. We
get a field K = Q(α). By Eisenstein, X4 − p is irreducible over Q, so [K : Q] = 4. Is K a
splitting field? No, because it’s a subfield of the reals, and X4 − p has some non-real roots
(namely ±iα). However, K does contain two roots of X4 − p, namely ±α, so X4 − p must
factor as (X + α)(X − α)q(X), with q(X) ∈ K[X] of degree 2 and irreducible (as no roots
in K). If β = iα is a root of q(X) and F = K(β) then [F : K] = 2 so by the tower law
[F : Q] = 8. We can alternatively write F = K(i) as β = iα, so F = Q(i, α).

F is a splitting field over Q so it’s finite, normal and separable (separability isn’t an issue
as we’re in characteristic 0). So we know that the Galois group G of Q ⊂ F has size 8.
We also know that if τ : F → F is an isomorphism then τ(α) had better be a 4th root of
τ(p) = p, so it’s ±α or ±iα; there are at most 4 choices for τ(α). Similarly τ(i) = ±i so
there are at most 2 choices for τ(i). This gives at most 8 choices for τ ; however we know
that G has size 8, so all eight choices must work. It is not hard now to convince yourself that
G is isomorphic to D8 (think of a square with corners labelled α, iα,−α,−iα).

A 4. (a) The statement is obvious if b is a square in K so let us assume that it is not.
Suppose that there are x, y ∈ K such that

a = (x+ y
√
b)2 = (x2 + by2) + 2xy

√
b

Since 1,
√
b are linearly independent over K, we must have that either

(i) y = 0, in which case a = x2 is a square in K, or

(ii) x = 0, in which case a = y2b and then ab = (yb)2 is a square in K.

(b) Consider K = F2(t), a = 1 + t, b = t. Now a = (1 +
√
t)2 is a square in K(

√
b), but

neither a nor b is a square in K.
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(c) Suppose say that a+β is a square in L. This means that there are x, y ∈ K such that

a+ β = (x+ yβ)2 = (x2 + y2b) + 2xyβ

but then a− β = (x− yβ)2 is also a square in L, and

c = a2 − b = (a+ β)(a− β) = [(x+ yβ)(x− yβ)]2 = [x2 − y2b]2

is a square in L.

(d) The roots are ±
√

a±
√
b; so choose β, α, α′ ∈ L such that β2 = b, α2 = a + β,

α′ 2 = a− β. We work with the diagram

L

K(α)

::

K(α′)

dd

K(β)

cc ::

K

OO

First, [K(β) : K] = 2 since we are assuming that b is not a square in K.
Write K1 = K(β). I claim that [K(α) : K1] = 2. Indeed, by Part (b), if a + β were a

square in K1, then also a− β would be a square in K1 and then c = (a+ β)(a− β) = a2 − b
is a square in K, contradicting one of our assumptions.

Similarly, also [K(α′) : K1] = 2.
The conclusion of Part (d) follows from the tower law and the new claim: K1(α) ̸=

K1(α
′). Indeed suppose for a contradiction that α′ ∈ K1(α): this is saying that a − β is a

square in K1(
√
a+ β). From Part (a) with u = a− β and v = a+ β in K1, we conclude that

either:

(i) a− β is a square in K1, contradicting the claim proved that [K1(α
′) : K1] = 2, or:

(ii) c = (a− β)(a+ β) = a2 − b is a square in K1.

Since the first alternative led to a contradiction, it must be that c is a square in K1. We
apply Part (a) again with u = c, v = b in K. We have c a square in K(

√
b), that is, either

c or cb is a square in K, contradicting our assumptions. This final contradiction shows that
K1(α) ̸= K1(α

′) and finishes Part (c).
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