GALOIS THEORY Worksheet 6

©2022 Alessio Corti

Q 1. Establish (with proofs) whether the following extensions of \mathbb{Q} are normal or not:

- (i) $\mathbb{Q}(\sqrt{6});$
- (ii) $\mathbb{Q}(\sqrt{2},\sqrt{3});$
- (iii) $\mathbb{Q}(7^{1/3});$
- (iv) $\mathbb{Q}(7^{1/3}, e^{2\pi i/3});$
- (v) $\mathbb{Q}(\sqrt{1+\sqrt{7}});$
- (vi) $\mathbb{Q}(\sqrt{2+\sqrt{2}})$.

Q 2. Let $K \subset F \subset L$ be a tower of field extensions. It is immediate from the definition that: If $K \subset L$ is normal, then $F \subset L$ is also normal.

- (a) If $K = \mathbb{Q}$, $F = \mathbb{Q}(2^{1/3})$ and $L = \mathbb{Q}(2^{1/3}, \omega)$ with $\omega = e^{2\pi i/3}$, then show that $K \subset L$ is normal, but $K \subset F$ is not normal.
- (b) If $K = \mathbb{Q}$, $F = \mathbb{Q}(\sqrt{2})$ and $E = \mathbb{Q}(2^{1/4})$, show that $K \subset F$ and $F \subset L$ are normal, but $K \subset L$ is not normal.
- (c) Say $H \subseteq K \subseteq G$ are groups. Prove that if H is normal in G then H is normal in K. Give an example of groups with H is normal in G but K not normal in G. Now give an example with H normal in K, K normal in G, but H not normal in G. Now wonder whether this is all a coincidence or not.

Q 3. Let *p* be a prime number, and let $\mathbb{Q} \subset K$ be the splitting field of $X^4 - p$. What is $[K : \mathbb{Q}]$? What is the Galois group of $\mathbb{Q} \subset K$?

- **Q** 4 (†). In Parts (a) and (c), (d) of this question K is a field of characteristic $\neq 2$.
- (a) Suppose that $a, b \in K$ are such that a is a square in $K(\sqrt{b})$.¹ Prove that either a or ab is a square in K.
- (b) Show by example that the statement in Part (a) is, in general, false if K has characteristic = 2.
- (c) Let $a, b \in K$ and suppose that b is NOT a square in K; let $L = K(\beta)$ with $\beta^2 = b$. Prove that: If one of $a + \beta$, $a - \beta$ is a square in L, then so is the other, and deduce that $c = a^2 - b$ is a square in K.
- (d) Let $a, b \in K$ and set $c = a^2 b$; suppose that none of b, c, or bc is a square in K. If L is a splitting field of the polynomial:

$$(X^2 - a)^2 - b \in K[X],$$

prove that [L:K] = 8.

[*Hint*: use Part (a) and Part (b) repeatedly.]

¹In general if K is a field we say that $a \in K$ is a square iff the polynomial $X^2 - a \in K[X]$ splits into two linear factors, or, equivalently, there exists $\alpha \in K$ such that $\alpha^2 = a$.