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A 1. Long division (for example) of f(X) by X − α yields:

f(X) = (X − α)
(
X2 + αX + (−3 + α2)

)
∈ L[X]

The quadratic formula for g(X) needs the square root of

∆ = b2 − 4ac = α2 − 4(−3 + α2) = 12− 3α2

which is explicitly shown to be a square in the hint.
[Note: if char(K) = 3, then f(X) = X3 + 1 = (X + 1)(X2 −X + 1) is not irreducible.]

A 2. It is easy to see that (ii) implies (i) and here I focus on proving that (i) implies (ii).
The key thing to understand is this: Claim If char(K) ̸= 2 then every extension K ⊂ L

of degree [L : K] = 2 is of the form L = K(α) for some α ∈ L such that α2 ∈ K. I am going
to leave out the proof of the Claim (hint: quadratic formula) and I will use it to answer the
question.

So assume (i), then by the tower law [L : E] = 2 and [E : K] = 2 and by the Claim
L = E(α) for some α ∈ L with α2 ∈ E. Also E = K(β) where β2 ∈ K. Hence we can write
α2 = u+ vβ with u, v ∈ K, so

(α2 − u)2 = v2β2 ∈ K

hence α is a root of the polynomial

f(X) = (X2 − u)2 − v2β2 = X4 − 2uX2 + (u2 − v2β2) ∈ K[X]

which is of the required form. If f(X) ∈ K[X] is irreducible then we are done.
So what if f(X) is not irreducible? This is really awkward ! In that case by the tower law

[K(α) : K] = 2 and the minimal polynomial of α over K is a quadratic polynomial

X2 + cX + d ∈ K[X]

and necessarily c = 0, otherwise α = −α2−d
c

∈ E, a contradiction. Hence in fact α2 ∈ K and
we have extensions:

L = K(α, β)

E = K(β)
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F = K(α)
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where β2 = b ∈ K and α2 = a ∈ K BUT also, clearly, α ̸∈ K(β) and β ̸∈ K(α).

Remark there is a third field, G = K(αβ), distinct from E, F , and also of degree
[G : K] = 2. Note also that (αβ)2 = ab ∈ K. (I leave all this to you to sort out.)

I now want to work with the element α+ β ∈ L: I claim that it has degree 4 over K, and
then L = K(α + β) and, since

(α + β)2 = a+ b+ 2αβ ∈ G, (1)

the argument above shows that the minimal polynomial of α + β has the required form.
Suppose for a contradiction that α + β satisfies a quadratic polynomial

X2 + AX +B ∈ K[X]

If A = 0 then we have that (α + β)2 = −B ∈ K, and this implies (by Equation 1) that

αβ ∈ K, a contradiction. If A ̸= 0 then α + β = −(α+β)2−B
A

∈ G (Equation 1 again) and the
polynomial

g(X) = (X − α)(X − β) = X2 − (α + β)X + αβ

is in G[X]. This polynomial is irreducible, otherwise its roots α, β already belong to G, so
L = G and we get a contradiction in too many ways (for instance [L : K] = [G : K] = 2).
But then g(X) equals X2 − a, the minimal polynomial of α over K[X], and this then leads
to a contradiction in too many ways (for instance it implies that α = −β).

A 3. (i) a > 1 so a has a prime divisor p; now use Eisenstein. Or use uniqueness of
factorization to prove

√
a ̸∈ Q.

Next, if
√
b ∈ Q(

√
a) then write

√
b = x + y

√
a; square, and use the fact that

√
a is

irrational to deduce that 2xy = 0. Hence either y = 0 (contradiction, as
√
b ̸∈ Q) or x = 0

(contradiction, as we can write ab = cd2 with c squarefree, and a ̸= b so c ̸= 1, and again√
c ̸∈ Q).

(ii) F = Q(
√
a,
√
b) and the preceding part, plus the tower law, shows that [F : Q] = 4.

Now F is a splitting field in characteristic zero, so it’s finite, normal and separable. By the
fundamental theorem, the Galois group G of Q ⊂ F must be a finite group of order 4, so it’s
either C4 or C2 × C2. There are lots of ways of seeing that it is actually C2 × C2. Here are
two that spring to mind: firstly, C4 only has one subgroup of order 2, whereas F has at least
two subfields of degree 2 over Q, namely Q(

√
a) and Q(

√
b), so by the correspondence in the

fundamental theorem, C4 is ruled out. And another way: if we set K = Q(
√
a) then F/K

is normal and separable and [F : K] = 2, so K ⊂ F is cyclic of order 2 by the fundamental
theorem, and the Galois group permutes the roots of X2 − b. We deduce that there must
be an element of this Galois group, and thus a field automorphism ga of F , that sends +

√
b

to −
√
b and fixes

√
a (as it fixes K). Similarly there’s an automorphism gb of F that sends

+
√
a to −

√
a and fixes

√
b. This gives us two elements of order 2 in G, which must then be

C2 × C2. Of course their product, gagb, sends
√
a to −

√
a and

√
b to −

√
b, so it fixes

√
ab

and is the third non-trivial element of G.
The subgroups of C2 × C2 are: the subgroup of order 1 (corresponding to F ), the group

itself, of order 4 (corresponding to Q) (both of these because the Galois correspondence is
order-reversing, so i.e. sends the biggest things to the smallest things and vice-versa), and
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then there are three subgroups of order 2, corresponding to Q(
√
a), Q(

√
b) and Q(

√
ab). One

way to see this for sure is, for example, that ga fixes
√
a, so the subfield corresponding to

⟨ga⟩ definitely contains
√
a, but has degree 2 over Q by the tower law and so must be Q(

√
a).

Arguing like this will show everything rigorously.
Finally, all of the subfields are normal over Q, because all subgroups of the Galois group

are normal (as it’s abelian).

(iii) Every element of G sends
√
a +

√
b to something else! (for example ga sends it to√

a−
√
b). So the subgroup of G corresponding to Q(

√
a+

√
b) must be the identity, which

corresponds to F , and so F = Q(
√
a+

√
b).

(iv) If
√
r ∈ Q(

√
p,
√
q) then Q(

√
r) must be one of the quadratic subfields of Q(

√
p,
√
q),

and hence it must be either Q(
√
p), Q(

√
q) or Q(

√
pq) by part (ii). But by part (i)

√
r is not

in any of these fields!

(v) [F : Q(
√
p,
√
q)] must be 2 (as it isn’t 1) and now use the tower law. To determine the

Galois group G, note first that any element of the G will be determined by what it does to√
p,

√
q and

√
r, and of course for all n ∈ Q

√
n must be sent to ±

√
n, so there are at most

eight possibilities for G, corresponding to the 8 = 23 choices we have for the signs. However
we know the size of G is eight, so all eight possibilities must occur and the group must be
C2 × C2 × C2.

Let me stress here, for want of a better place, that you cannot just say “clearly
√
p,

√
q

and
√
r are “independent” so we can move them around as we please” – one really has to

come up with some sort of an argument to prove that there really is a field automorphism of
F sending, for example,

√
p to −√

p,
√
q to +

√
q and

√
r to −

√
r. You can build it explicitly

from explicit elements you can write down in the Galois group using degree 4 subfields, or you
can get it via the counting argument I just explained, but you can’t just say “it’s obvious”
because Galois theory is offering you precisely the framework to make the arguments rigorous
and I don’t think it is obvious without this framework.

(vi) Think of the Galois group as a 3-dimensional vector space over the field with two
elements. There are seven 1-dimensional subspaces (each cyclic of order 2 and generated
by the seven non-trivial elements), and there are also seven 2-dimensional subspaces, by
arguing for example on the dual vector space – or by arguing that any subgroup of order 4
of C2 × C2 × C2 is the kernel of a group homomorphism to C2 and such a homomorphism is
determined by where the three generators go; there are eight choices, one of which gives the
trivial homomorphism and the other seven of which give order 4 subgroups.

Hence other than F and Q there are 14 fields; seven have degree 2 and seven have degree 4.
The degree 2 ones are Q(

√
paqbrc) as a, b, c each run through 0 and 1, but not all zero. The

degree 4 ones are Q(
√
paqbrc,

√
pdqerf ) as (a, b, c), (d, e, f) run through bases of the seven

2-dimensional subspaces of the Galois group considered as a vector space of dimension 3 over
the field with 2 elements.

(vii) We know all seven non-trivial elements of the Galois group, and none of them fix√
p +

√
q +

√
r (because if you think of it as a real number, they all send it to something

strictly smaller), so the subgroup corresponding to Q(
√
p +

√
q +

√
r) is trivial and we’re

home.

(viii) Induction and the argument in (v) gives the degree; considering possibilities of signs
gives that the Galois group is what you think it is, acting how you think it acts, and the last
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part again follows by observing that Q(
√
p1 +

√
p2 + · · · + √

pn) corresponds to the trivial
subgroup.

A 4. (i) We knowXp−1 = (X−1)(1+X+X2+· · ·+Xp−1), and f(X) = 1+X+X2+· · ·+Xp−1

is irreducible over Q (by Eisenstein after a coordinate change). Hence if ζ = e2π i/p then f(X)
must be the min poly of ζ. Note that the roots of p(X) are just the roots of Xp−1 other than
X = 1, so they’re ζj for 1 ≤ j ≤ p− 1. Moreover if F = Q(ζ) then [F : Q] = deg(f) = p− 1,
and K contains ζj for all j, so Xp − 1 splits completely in K. Hence K is the splitting field
of Xp − 1 and it has degree p− 1.

Now Q ⊂ F is finite, normal and separable, so the fundamental theorem applies, so we
know that the Galois group G will have size p − 1. If τ ∈ G then, because F = Q(ζ), τ
is determined by τ(ζ), which is a root of τ(f) = f , so is ζj for some 1 ≤ j ≤ p − 1. It’s
perhaps not immediately clear that, given j, some field automorphism τ of F sending ζ to
ζj will exist – but it has to exist because we know there are p − 1 field automorphisms. So
the elements of the Galois group can be called τj for 1 ≤ j ≤ p− 1. The remaining question
is what this group is. We can figure out the group law thus: τi ◦ τj – where does this send
ζ? Well τj(ζ) = ζj, and τi(ζ) = ζ i so τi(ζ

j) = ζ ij as τi is a field homomorphism. Note finally
that ζ ij only depends on ij mod p, as ζp = 1. So if we identify G with {1, 2, . . . , p− 1} then
the group law is just “multiplication mod p” , and we see G = (Z/pZ)×.

(I write = because our isomorphism — which seemed to depend on a choice of ζ, our
pth root of unity — is in fact independent of that choice, so G is canonically isomorphic to
(Z/pZ)×. The notation in mathematics for a canonical isomorphism is “=”, so we can write
G = (Z/pZ)× in this situation.) This concludes part (i).

For Part (ii), you need to know that, in fact, (Z/pZ)× ∼= Cp−1 is always a cyclic group1

and hence it has a unique subgroup of index 2: the fixed field of that subgroup is the field
K that you are looking for.

Part (iii) is really easy.

For Part (iv): first ,when p = 3, K = F and hence K = Q(
√
−3).

When p = 5, I claim thatK = Q(
√
5). Indeed from part (i)G = (Z/5Z)× = {1, 2,−2,−1}.

It is clear that H = {1,−1} ⊂ G has index 2 and that K = H⋆ in the notation of the Galois

correspondence. Writing as in Part (i) ζ = e
2π i
5 , it is clear that

α = ζ +
1

ζ
∈ H⋆

and it is reasonable to guess K = Q(α). It is easy to finish from here:

α2 + α− 1 = 1 + ζ + ζ2 + ζ3 + ζ4 = 0

hence α = −1+
√
5

2
and from this we conclude that K = Q(

√
5).

Part (v). For p general, writing as above ζ = e
2πi
p , and denoting by H ≤ (Z/pZ)× the

unique subgroup of index 2, we want to evaluate something like∑
h∈H

h(ζ)

1This is a non-completely trivial fact. In general, every finite subgroup of the multiplicative group of a
field is cyclic. I don’t normally like to prove this result — sometimes I give it as a worksheet question — but
I encourage you to look it up.
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because this thing being the average over all of H is manifestly H-invariant. The next
observation is that H is the image of the “squaring homomorphism”

(Z/pZ)× ∋ k 7→ k2 ∈ (Z/pZ)×

so we are led to evaluating:

α =

p−1
2∑

k=0

e
2πik2

p

You can find this thing in number theory books under the name of “quadratic Gauss sum”
and the upshot is

K =

{
Q(

√
−p) if p ≡ 3 mod 4

Q(
√
p) if p ≡ 1 mod 4

(The exact evaluation of the Gauss sum is a bit tricky, but you may be able to evaluate it
up to sign, and this is enough to determine K. This, however, is a number theory question,
not a Galois theory question.)

A 5. (a) Well z3 = ω3α3 = 1 × 2 = 2 so z is a root of X3 − 2 = 0, which is irreducible
over Q because it has no root in Q, so X3 − 2 is the min poly of z, and by what we did in
class this means [Q(z) : Q] = 3. Although we don’t need it, we can note that in fact Q(z) is
isomorphic to, but not equal to, Q(α), as an abstract field.

(b) We know ω3 = 1 but ω ̸= 1 so ω is a root of (X3 − 1)/(X − 1) = X2 +X + 1. This
polynomial is irreducible as it has no rational (because no real) roots, so [Q(ω) : Q] = 2.

Note also while we’re here that solving the quadratic gives ω = −1+i
√
3

2
(plus sign because

the imaginary part of ω is positive; the other root is ω2).

(c) We have α ∈ R. Furthermore ω is another cube root of 1 so it must be ω2. Hence
z = ωα = ω2α = ωz. In particular if z ∈ Q(z) then ω = z/z ∈ Q(z). This means
Q(ω) ⊆ Q(z), and by the first two parts and the tower law we deduce [Q(z) : Q(ω)] = 3

2
,

which is nonsense because the dimension of a (finite-dimensional) vector space is an integer.

(d) If x ∈ Q(z) then z = −z + 2x ∈ Q(z), contradiction. So x is not in. If i ∈ Q(z) then
Q(i) ⊆ Q(z) and this contradicts the tower law like in part(c). Finally because the imaginary
part of ω is

√
3/2 we see y = α

√
3/2, so if y ∈ Q(ω) then y3 = 3α3/8

√
3 = 3/4

√
3 ∈ Q(z),

implying
√
3 ∈ Q(z) which again contradicts the tower law.

A 6. You really have to do it yourself if you want to understand what is going on. Let me
tell you what is going on. Let ψ : Z[y1, . . . , yn] → R = Z[x1, . . . , xn]Sn be the homomorphism
defined in (c); that is, ψ(yi) is the i

th elementary symmetric polynomial σi(x1, . . . , xn).

(a, b) The largest monomial in σi is x1 · · · xi; therefore

ψ(yc11 · · · ycnn ) = xc1+···+cn
1 xc2+···+cn

2 · · · xcnn + l.o.t.

where“l.o.t.” stands for (strictly) lower order terms. To prove the surjectivity of ψ, let
f = f(x1, . . . , xn) ∈ R be a symmetric polynomial; f has a highest monomial xk11 · · · xknn .
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Because f is symmetric, k1 ≥ k2 ≥ · · · ≥ kn. Writing ki−ki+1 = ci, we have that ψ(y
c1
1 · · · ycnn )

and f have the same highest monomial; therefore for some nonzero constant λ

f = ψ(λyc11 · · · ycnn ) + l.o.t.

where the lower order term is also a symmetric polynomial and we may assume by induction
that it is in the image of ψ. Thus f also is in the image of ψ.

(c) To prove that ψ is injective we apply the same method to show that Ker(ψ) = (0).
The hint suggests to work with a particular ordering on the monomials in Z[y1, . . . , yn] that
is defined there. The important property, which I leave to you to verify is: If yc11 · · · ycnn >

y
c′1
1 · · · yc

′
n

n , then the leading monomial of ψ(yc11 · · · ycnn ) (measured with the good old ordering

of monomials in x1, . . . , xn) is strictly larger than the leading monomial of ψ(y
c′1
1 · · · yc

′
n

n ).
Suppose now that a polynomial f(y1, . . . , yn) is in the kernel of ψ. Assume that f ̸= 0, then
f has a monomial of highest order and we can write (for some nonzero constant λ):

f = λyc11 · · · ycnn + l.o.t.

Then by what we just said

ψ(f) = λxc1+···+cn
1 xc2+···+cn

2 · · ·xcnn + l.o.t.

and this, if you think about it, means that ψ(f) ̸= 0. We have shown that f ̸= 0 implies
ψ(f) ̸= 0.
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