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Q 1. Let K be a field with char(K) ̸= 3 and such that f(X) = X3 − 3X + 1 ∈ K[X] is
irreducible. Let L = K(α) where α is a root of f(X). Show that f splits completely over L.

[Hint : Factor f over L[X] as (X − α)g(X). Now solve for g(X) = 0 in L observing that
12− 3α2 = (−4 + α + 2α2)2.]

Q 2 (†). Suppose that char(K) ̸= 2, and let K ⊂ L be a field extension of degree 4. Prove
that the following two conditions are equivalent:

(i) There exists a (nontrivial) intermediate field K ⊂ E ⊂ L;

(ii) L = K(α) for some α ∈ L having minimal polynomial over K of the form:

f = X4 + aX2 + b ∈ K[X] .

Q 3. (i) Say a, b > 1 are distinct squarefree integers. Prove that X2 − a ∈ Q[X] is
irreducible, so Q(

√
a) has degree 2 over Q. Now prove that

√
b ̸∈ Q(

√
a).

(ii) Let F be the splitting field of (X2 − a)(X2 − b) over Q. What is the Galois group of
the extension Q ⊂ F? Use the Fundamental Theorem of Galois theory to find all the
fields K with Q ⊆ K ⊆ F . Which ones are normal over Q?

(iii) Prove that F = Q(
√
a+

√
b).

[Hint : figure out which subgroup of the Galois group this field corresponds to.]

(iv) Let p, q and r be distinct primes. Prove that
√
r ̸∈ Q(

√
p,
√
q).

[Hint : use one of the previous parts.]

(v) Conclude that if F = Q(
√
p,
√
q,
√
r) then [F : Q] = 8. What is the Galois group of the

extension Q ⊂ F?

(vi) Use the Fundamental Theorem of Galois theory to write down all the intermediate
subfields between Q and F . If you can’t then just write down the subfields E of F with
[E : Q] = 2.

(vii) Show that (notation as in the previous part) F = Q(
√
p+

√
q +

√
r).

(viii) Prove that if p1, p2,. . . ,pn are distinct primes, then Q(
√
p1,

√
p2, . . . ,

√
pn) has degree

2n over Q, and equals Q(
√
p1 +

√
p2 + · · ·+√

pn).
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Q 4. Let p be an odd prime number, and let F be the splitting field of Xp − 1 ∈ Q[X].

(i) What is [F : Q]? What is the Galois group of Q ⊂ F?

(ii) Prove that there is a unique subfield K of F with [K : Q] = 2.

[Hint : Part (i), plus the fact that (Z/pZ)× is cyclic].

(iii) Show that all such extensions are of the form K = Q(
√
n) where n ∈ Z and |n| is

squarefree.1

(iv) Figure out n when p = 3. Figure out n when p = 5. [Hint : what is cos(2πi/5)?].

(v) What do you think the answer is in general?

(This is a number-theoretic question rather than a field-theoretic one so don’t get frus-
trated if you see a good-looking statement but you can’t prove it: there are tricks but
they’re tough to spot even for me.)

Q 5. In this question we’ll find an explicit complex number z such that z ̸∈ Q(z) (by z I
mean the complex conjugate of z.)

(a) Set ω = e
2π i
3 , so ω3 = 1, and say α = 21/3 ∈ R the real cube root of 2. Set z = ωα.

What is [Q(z) : Q]?

[Hint : minimal polynomial.]

(b) What is [Q(ω) : Q]?

(c) Let’s assume temporarily that z ∈ Q(z). Show that this implies ω ∈ Q(z). Why does
this contradict the tower law? Deduce z ̸∈ Q(z).

(d) Let’s write z = x+ iy. Prove that none of x, i or y are in Q(z).

The next question is optional. In it I ask you to prove Theorem 24 of Sec. 6.1 of the
GALOIS theory notes.

Q 6. The lexicographic order of monomials of Z[X1, . . . , Xn] is defined as follows:

Xk1
1 X

k2
2 · · ·Xkn

n > X l1
1 X

l2
2 · · ·X ln

n if k1 = l1, k2 = l2, . . . ki = li, and ki+1 > li+1

This is clearly a total ordering on the set of monomials. For a polynomial f ∈ Z[X1, . . . , Xn]
the order ord f of f is the largest monomial that appears in f .

(a) Show that for every symmetric polynomial f ∈ Z[X1, . . . , Xn] there is a polynomial
g ∈ Z[X1, . . . , Xn] such that ord f = ord g(σ1, . . . , σn) (where σ1, . . . , σn ∈ Z[X1, . . . , Xn]
are the elementary symmetric polynomials). [Hint. If f is symmetric then ord f =
Xk1

1 X
k2
2 · · ·Xkn

n with k1 ≥ k2 ≥ · · · .]

(b) Use Part (a) to conclude that for all symmetric f ∈ Z[X1, . . . , Xn] there is g ∈ Z[X1, . . . , Xn]
such that f = g(σ1, . . . , σn).

1A natural number is squarefree if it is the product of distinct primes.
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(c) (†) Now show that the ring homomorphism

ψ : Z[Y1, . . . , Yn] → Z[X1, . . . , Xn]
Sn defined such that for all i: ψ(Yi) = σi

is an isomorphism. (You have shown in Part (b) that ψ is surjective; now you need to show
that it is injective.) [Hint. Consider the ordering on monomials where Y k1

1 Y k2
2 · · ·Y kn

n >
Y l1
1 Y

l2
2 · · ·Y ln

n if for all j < i kj + · · · kn = lj + · · ·+ ln and ki + · · · kn > li + · · ·+ ln. Now
let I = Kerψ. If g ∈ I, then, by examining what happens to ψ(g), show that the largest
— according to the ordering just defined — monomial that appears in g is also in I, and
hence conclude that I = (0).]
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