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A 1. I did not mean for you to actually do ALL of this question, but to show you what is
possible. In fact the statements are very tedious to prove and not super-useful, which is why
they are typically omitted from lecture courses.

(a) To sow that the action is transitive is to show that given two K-embeddings x, y : F →
L, there exists a K-embedding g : L → L — that is to say, an element g of the Galois group
— such that y = gx. This is done in the next question, Part (a) below. The fact just

proven generalizes the statement: Let K be a field, f(X) ∈ K[X] an irreducible polynomial,
and K ⊂ L the splitting field of f(X). Then G = EmbK(L,L) acts transitively on the roots
of f(X). To derive this from the abstract statement about fields, just note that roots of
f(X) are in one-to-one correspondence with K-embeddings

x : F → L

where F = K[X]/f(X).

The last statement is a tautology: we have an injection i : F → L by means of which we
consider F as a subset of L, i.e. the elements of F are elements of L. For g ∈ G to say that
gi = i is exactly to say that g|F is the identity on F , in other words g ∈ F †.

(b) Suppose thatK ⊂ F is normal. Let g ∈ G, h ∈ H and consider g−1hg. Since g : L → L
is a K-embedding, it follows that g|F : F → L is also a K-embedding, and then, because
K ⊂ F is normal, we have g(F ) ⊂ F (this is exactly our definition of normal extension of
fields). So for all a ∈ F , g(a) ∈ F and hence h(g(a)) = g(a) and hence g−1hg (a) = a, that
is g−1hg ∈ F † = H or, in other words, H is a normal subgroup of G.

Suppose now that H ≤ G is a normal subgroup. For clarity let me name x : F → L the
given embedding. For all g ∈ G, we want to show that gx(F ) ⊂ x(F ).1

In general, if a group G acts on a set X, then for all g ∈ G and x ∈ X, Ggx = gGxg
−1.

What we want now follows from Part (a):

x† = H = Gx = gGxg
−1 = Ggx = (gx)†

therefore F and gF are the same field, because they have the same dagger H (Galois corre-
spondence).

1Let’s be careful about this. By definition K ⊂ F is normal if and only if for all K ⊂ Ω, and for all
x, y ∈ EmbK(F,Ω), x(F ) ⊂ y(F ). Prove that K ⊂ F is normal if and only if for some given normal
extension K ⊂ Ω such that EmbK(F,Ω) ̸= ∅, we have: for all x, y ∈ EmbK(F,Ω), x(F ) ⊂ y(F ).
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Finally, ifK ⊂ F is normal, restriction gives a group homomorphism ρ : G → EmbK(F, F ).
The kernel is clearly H; and ρ is surjective by Part (a).

(c) This is a small step from (b). For any K ⊂ F ⊂ L for clarity denote by x : F → L
the given inclusion. Claim: For all g ∈ G, g(F ) ⊂ F if and only if g ∈ NG(H).

Indeed, suppose that g(F ) ⊂ F . Then in fact g(F ) = F (an injective linear map between
finite dimensional vector spaces of the same dimension is an isomorphism) and hence (gx)† =
x†, which implies as above

gHg−1 = gGxg
−1 = Ggx = (gx)† = x† = Gx = H

and hence g ∈ NG(H). Conversely and similarly, if gHg−1 = H, then (gx)† = x†, hence
gx(F ) and x(F ) are the same subfields of L, that is g(F ) = F . This shows the claim.

From the claim it follows that restriction is a group homomorphism ρ : NG(H) → EmbK(F, F );
the kernel is obviously H and the image is everything: if u ∈ EmbK(F, F ) then by Part (a)
there is g ∈ G such that gx = xu, in other words g|F = u: by what we said earlier g ∈ NG(H)
and by what we just said ρ(g) = u.

(d) This part is a minor variation on Part (c). Here we start from two K-embeddings
x1 : F1 → L, x2 : F2 → L and set H1 = x†

1, H2 = x†
2. Claim: For all g ∈ G, gx1(F1) ⊂ x2(F2)

if and only if g ∈ N(H1, H2). Indeed, by the Galois correspondence, gx1(F ) ⊂ x2(F ) if and
only if (gx1)

† ⊃ x†
2 if and only if gH1g

−1 ⊃ H2.
From the claim we construct a restriction map

ρ : N(H1, H2) → EmbK(x1, x2)

which is surjective by Part (a). Now for all g, g′ ∈ N(H1, H2), ρ(g) = ρ(g′) just means that
gx1 = g′x1 or in other words g−1g′ ∈ H1.

(e) This is really pretty easy. I show the last bit: suppose that g1, g2 ∈ N(H1, H2) and
that Tg1 = Tg2 . This means that for all h ∈ H2, g

−1
1 hg1 = g−1

2 hg2 or, equivalently

g2g
−1
1 h = hg2g

−1
1 , that is z = g2g

−1
1 ∈ C(H2)

(f) This is not hard but it is boring. The composition we are talking about is inherited
from the composition of Part (e). You need to check that the composition of Part (e) is
compatible with various equivalence relations.

(g) This is all an elaborate way to rephrase Part (d).

A 2. (a) By assumption K ⊂ L (there is only one such inclusion so I don’t need to call
it anything) is normal, hence it is the splitting field of a polynomial f(X) ∈ K[X]; so now
xi : F → L is also a splitting field of f(X), and the first half of Part (a) (existence of y)
follows from uniqueness of splitting fields over F .

(The fact that y is a field automorphism follows from a familiar argument: it is injective
because every field homomorphism is, and it is surjective by the rank-nullity theorem, because
it is an injective K-linear endomorphism of a finite dimensional K-vector space.)

(b) Define a set-theoretic function

y⋆ : Embx1(E,L) → Embx2(E,L)
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as follows:
y⋆(x̃) = y ◦ x̃

Indeed, suppose that a ∈ F , then

y⋆(x̃)(a) = y
(
x̃(a)

)
= y

(
x1(a)

)
= x2(a)

therefore, as claimed, y⋆(x̃) ∈ Embx2(E,L).
Finally y⋆ is a bijective correspondence because it has an inverse given by (y−1)⋆.

A 3. This is asking a tiny bit more than Question 5 on Worksheet 2. Go back to that
question and see if you understand it better now.

A 4. (a) Fix an inclusion L ⊂ Ω and let j : L → Ω be a K-embedding. By property (ii) in
the definition of normal closure, as σ varies in EmbK(L,L) the σ(F ) generate L; it follows
that the jσ(F ) generate j(L); but by property (i) all jσ(F ) are contained in L, hence the
field that they generate, namely j(L), is also contained in L; that is j(L) ⊂ L and this shows
that K ⊂ L is a normal extension.

(b) By Axiom 4 we can construct a diagram:

L1

j1

  
F

i1
>>

i2   

E

L2

j2

>>

where j1i1 = j2i2. All we need to show is that j1(L1) = j2(L2). In fact all we need to show
is that j1(L1) ⊂ j2(L2), as the other inclusion follows from the same argument.

By property (ii) (for F ⊂ L1), L1 is generated by the union of the σ(F ) over σ ∈
EmbK(F,L1); hence j1(L1) is generated by the union of the j1σ(F ); by property (i) (for
F ⊂ L2 ⊂ E) these j1σ(F ) are all contained in j2(L2), hence the field that they generate
j1(L1) is also contained in j2(L2).

(c) I just explain the idea, which is very simple. There are several cases to consider,
corresponding to the several cases in the discussion of biquadratic extensions in the GALOIS

THEORY notes. Here I just consider the case where the minimal polynomial of
√

a+
√
b

over K is a degree 4 polynomial, necessarily of the form

f(X) = X4 − 2aX2 + c ∈ K[X]

OK so why don’t you prove the following more general statement: If K ⊂ F = K(α) is a
field extension, and f(X) ∈ K[X] is the polynomial of α, then the normal closure of K ⊂ F
is the splitting field of f(X). (This statement should not be hard to show. You must go back
to the two defining properties of a splitting field.)

(d) Use the more general statement that you proved in (c).
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A 5. (a) It’s the field of fractions of k[T p]. Or, check explicitly that if S = T p then this is
just the field of fractions of k[S]. Or check that it’s a subset containing 0 and 1 and closed
under +−×/.

(b) In fact any subfield of L containing k and T must contain f(T ) for any polynomial
f ∈ k[T ] and hence it must contain f(T )/g(T ) if g is a non-zero polynomial. Hence L = k(T )
in the sense that it’s the smallest subfield of L containing k and T , so L = k(T ) ⊆ K(T ) ⊆ L
and all inclusions are equalities.

(c) T is a root of the polynomial Xp − T p ∈ K[X].

(d) If q(X) = Xp−T p factored in K[X] into two factors f and g of degrees a and b, with
a + b = p and 0 < a, b < p, then by rescaling we can assume both factors are monic. Now
consider the factorization q(X) = (X − T )p in L[X]. This is the factorization of q(X) into
primes in L[X], and there’s only one prime involved, namely X−T . Because q = fg in L[X],
we must have f(X) = (X−T )a and g(X) = (X−T )b – anything else would contradict unique
factorization. But this means the constant term of f(X) is ±T a and because 0 < a < p we
know a isn’t a multiple of p and hence ±T a ̸∈ K and so f(X) ̸∈ K[X], a contradiction.

(e) q(X) is irreducible in K[X] and T is a root, so it’s the min poly. It’s not separable
because it is irreducible over K but has repeated roots in L (namely T , p times).

(f) T ∈ L is not separable over K because its min poly isn’t. Hence K ⊂ L is not
separable, because L contains an element which is not separable over K.

A 6. (a) If F1 = K(α1, . . . , αn) then for K ⊆ F ⊆ L we have that F contains F1 iff F
contains all the αi. So if K ⊆ F ⊆ L then F contains E iff F contains F1 and F2, iff F
contains all the αi and F2; hence F2(α1, . . . , αn) is the smallest subfield of L containing F1

and F2.

(b) If F1 is the splitting field of p(X) ∈ K[X] and F2 is the splitting field of q(X) ∈ K[X]
(these polynomials exist by normality) then I claim E is the splitting field of p(X)q(X);
indeed if the αi are the roots of p and βj are the roots of q then by the first part E is the
field generated by the αi and the βj. Now E is finite and normal; moreover each of the
αi and the βj are separable over K (as each is contained in either F1 or F2) and hence
each time we adjoin one we get a separable extension; finally a separable extension of a
separable extension is separable (by comparing degrees and separable degrees).

(c) If g ∈ G then g(F1) = F1 because K ⊂ F1 is normal, and hence the restriction of g to F1

is in G1. Similar for K ⊂ F2. So we get a map G → G1 ×G2. This is easily checked to
be a group homomorphism. It’s injective because anything in the kernel fixes F1 and F2

pointwise, so fixes F1F2 pointwise; but F1F2 = E.

It’s not always surjective though – for example if F1 = F2 then it hardly ever is. More
generally if F1 ∩ F2 ̸= K then there will be problems. However if F1 ∩ F2 = K then the
map is a bijection.
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