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A 1. (a) The two polynomials have degree 3 and have no roots in F2 (just plug x = 0, 1)
hence they are irreducible.

If σ : K → L then σ(α) is a root of f(X) in L; and f(X) has three roots in L:

β + 1; β2 + 1; β2 + β

indeed, for example, we can check directly that:

(β + 1)3 = β3 + β2 + β + 1 = (β2 + 1) + β2 + β + 1 = β = (β + 1) + 1

that is, β + 1 is a root of f(x). The other roots of f are Fr2(β + 1) = β2 + 1 and
Fr2(β

2 +1) = β4 +1 = β(β2 +1)+ 1 = β2 +1+ β +1 = β2 + β. (But one can also check
directly.)

A basic result about fields states that a morphism from K to L is the same as a root of
f(X) in L and there are 3 of these. As f and g are irreducible we know that K and L
have degree 3 over F2 and we have shown that any two finite fields of the same degree
over the base field are isomorphic. Since both fields have degree 3 over the base field
F2, all morphisms from K to L are isomorphisms hence there are 3 of these. (This gives
another reason why K and L are isomorphic.)

(b) h(X) ∈ F2[X] is irreducible because: it has no roots (plug X = 0 and X = 1) in F2 AND
it is not divisible by X2 +X +1, the only irreducible degree two polynomial in F2[X] —
as can be checked by performing long division in F2[X].

Let L ⊂ E be the splitting field of h(X) as a polynomial in L[X]. The extension F2 ⊂ E
is normal and separable because ALL finite extensions of finite fields are. Clearly E
contains the splitting field F2 ⊂ F of h(X) ∈ F2[X]:
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We know that h(X) ∈ F2[X] is irreducible; hence if γ ∈ F is a root of h, then [F2(γ) :
F2] = 4. We know that every finite extension of a finite field is normal and separable,
therefore F2 ⊂ F is normal and hence (by a known characterisation of normal extensions)
h(X) splits completely in F2(γ)[X] — because it is irreducible over F2 and has a root
in F2(γ) — hence actually F = F2(γ) and then, as indicated in the diagram, [F : F2] =
[F2(γ) : F2] = 4.

The tower law implies that 3|[E : F2] and 4|[E : F2] hence 12|[E : F2]. But clearly also
E = L(γ) and then [E : L] is the degree of the minimal polynomial of γ over L, which is
a factor of h, hence [E : F2] = [E : L][L : F2] ≤ 12. So in fact [E : F2] = 12; [E : L] = 4,
h ∈ L[X] is the minimal polynomial of γ and it is therefore irreducible.

A 2. (This is a pure algebra question.) The (n− 1)-cycle c must fix an element of [n]1 which
we may well assume to be 1, and then after re-labelling the elements of [n] we may assume
that c = (23 . . . n). Let t be the transposition; then:

Either t involves 1, and then by further relabelling elements we may assume c = (23 · · ·n),
t = (12), and it is easy to conclude from here;

Or t = (ab) where 1 < a < b: this is what we assume from now on.

Because G is transitive, it must contain an element σ such that σ(a) = 1, but then σtσ−1 =
(1σ(b)) and we are back in the previous case.

A 3. We look at the polynomial modulo small primes: Modulo p = 2 we get:

f(X) = X6 − 12X4 + 15X3 − 6X2 + 15X + 12 ≡ X(X5 +X2 + 1) mod 2

where the second polynomial r(X) = X5+X2+1 is irreducible because if it weren’t it would
split an irreducible degree two polynomial, but the only such polynomial is X2+X+1 which
does not divide into r(X) (direct inspection). By Corollary 57, the Galois group G contains
a 5-cycle.

Eisenstein at p = 3 shows that f(X) is irreducible in Q[x] and in turn this implies that
G is transitive.

Next:
f(X) ≡ (X + 1)(X + 2)(X + 3)(X + 4)(X2 + 3) mod 5

thus by the theorem in the footnote G contains a transposition.

By the previous question G = S6.

A 4. (a) Let us first consider the polynomial in F2[X]. Clearly X = 1 is a root of f(X) and
a small calculation shows

X4 +X2 +X + 1 = (X + 1)(X3 +X2 + 1) in F2[X]

and then X3 +X + 1 ∈ F2[X] is irreducible because it has no roots in F2 (just plug in
X = 0 and X = 1).

1Notation: [n] = {1, 2, . . . , n} is the set with n elements.
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Next, we work in F3[X]. A quick inspection shows that f(X) has no roots in F3: just
plug X = 0, 1,−1. To show that the polynomial f(X) ∈ F3[X] is irreducible, we show
that it is not divisible by any of the three irreducible degree 2 polynomial in F3[X]: these
are:

X2 + 1, X2 +X − 1, X2 −X − 1

Performing three long divisions in F3[X] we see:

X4 +X2 +X + 1 = (X2 + 1)(X2) +X + 1

X4 +X2 +X + 1 = (X2 +X − 1)(X2 −X) + 1

X4 +X2 +X + 1 = (X2 −X − 1)(X2 +X)−X + 1

these calculations show that f is irreducible in F3[X].

(b) By Corollary 57 the Galois group G of the splitting field Q ⊂ K contains a 3-cycle and
a 4-cycle. If a subgroup G of S4 contains a 3-cycle and a 4-cycle then G = S4. (See the
question below.) Therefore, G = S4.

A 5. (a) First, working modulo 2,

f(X) ≡ X4 + 3X + 1 ∈ F2[X]

is irreducible. Indeed, by inspection, it does not have a root in F2, and it is not divisible by
the only irreducible degree 2 monic polynomial X2 + X + 1 ∈ F2[X]. In fact long division
gives

X4 +X + 1 = (X2 +X + 1)(X2 +X) + 1

Next, it is easy to factor f(X) mod 5:2

f(X) ≡ (X − 1)(X3 +X2 +X − 1) ∈ F5[X]

where the degree 3 factor is irreducible because, by inspection, it has no root in F5.

(b) Suppose that G ⊂ S4 contains a 4-cycle and a 3-cycle. Let the 4-cycle be s = (abcd).
Note that we can write s = (dabc), etc. Thus, we may assume that the 3-cycle t fixes the last
letter d in the 4-cycle. Now either t = (abc) or t = (acb), but then t2 = (abc). The conclusion
is that we may assume s = (1234), t = (123). You take it from here.

(c) By Part (a) and the theorem in the footnote, the Galois group contains a 4-cycle and
a 3-cycle hence, by Part (b) it must be all of S4.

A 6. With all the hints and the examples, this should not be too hard. You do it (or else
ignore this question).

2Working mod 3 is not going to lead to useful information: it is clear by inspection that f(X) has no root
in F3 and then either f(X) is irreducible (no useful conclusion) or it splits into two quadratic polynomials
(again no useful conclusion).
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