
MATH60013 Mathematics of Business and Economics Spring 2023

Solution 1

1. (Demand functions) Students 1, 2 and 3 are interviewed about their co↵ee
consumption. More specifically, they report their reservation prices for the quan-
tity of cups of co↵ee they would be willing to purchase. The reservation price
is the highest price per quantity such that they are willing to buy that specific
quantity.

Student 1:

Quantity 1 2 3
Price in 3.00 2.00 1.00

Student 2:

Quantity 1 2 3
Price in 4.00 1.50 0.50

Student 3:

Quantity 1 2 3
Price in 1 0.00 0.00

a) Calculate the respective individual demand functions Di, i 2 {1, 2, 3} (as
functions in the price) and the inverse demand functions Pi, i 2 {1, 2, 3}
(as functions in the quantity demanded). If you properly consider the func-
tions as maps Qi : A ! B and Pi : C ! E, what sets A,B,C,E are most
appropriate?

Solution: The inverse demand function associates each quantity with the
corresponding reservation price. We are working under the assumption that
prices, although being reported discretely in pounds and pennies, are con-
tinuous quantities. Therefore, we consider the inverse demand functions as
maps >0 ! R�0. Then we obtain

P1(1) = 3, P1(2) = 2, P1(3) = 1, P1(n) = 0 8n � 4;

P2(1) = 4, P2(2) = 1.5, P2(3) = 0.5, P2(n) = 0 8n � 4;

P3(1) = 1, P3(n) = 0 8n � 2.

One might also wonder whether to include a quantity of 0 into the consid-
erations. However, the corresponding reservation price then could not be
uniquely determined so one deliberately does not specify this value.
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On the other hand, demand functions can be regarded as maps R>0 ! �0.
With this perception, the demand functions take the form of step functions:

D1(p) = [3,0)(p) + [2,0)(p) + [1,0)(p) p > 0;

D2(p) = [4,0)(p) + [1.5,0)(p) + [0.5,0)(p) p > 0;

D3(p) = [1,0)(p) p > 0.

One might again wonder what to do with the price level 0. But again, the
quantity of demand for price 0 is not uniquely specified (or otherwise one
could consider it to be infinity).

b) Calculate the aggregate demand function D and the corresponding inverse
P of the aggregate demand function.

Solution: To calculate the aggregate demand function, we just need to add
the individual demand functions. That means

D(p) = D1(p) +D2(p) +D3(p)

= [4,0)(p) + [3,0)(p) + [2,0)(p) + [1.5,0)(p) + 2 [1,0)(p) + [0.5,0)(p).

In stark contrast to the aggregate demand function, the inverse of the ag-
gregate demand function cannot be computed as the sum of the inverses of
the individual demand functions. Instead, we really have to compute the
(generalised) inverse of the aggregate demand function.1 That is

P (1) = 4, P (2) = 3, P (3) = 2, P (4) = 1.5,

P (5) = P (6) = 1, P (7) = 0.5, P (n) = 0 8n � 8.

c) If the price for one cup of co↵ee is 0.75, how many cups will be sold in
total?

Solution: We calculate D(0.75) = 6. Indeed, at a price of 0.75, Student
1 will buy 3 cups, Student 2 will demand 2 cups and Student 3 will demand
1 cup.

2. (Price elasticity of demand and supply)

a) Student A claims that since a linear demand function has constant slope,
it also exhibits constant price elasticity. Is Student A correct? Justify your
answer.

1
That is, P (q) = max{p � 0 |D(p) � q}.
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Solution: Student A is actually correct, but the only situation where this
can happen is when we have perfect inelasticity. Let’s assume some demand
function D is linear. That means,

D(p) = a� bp, a � 0, b � 0, 0  p  a/b.

If we then calculate the price elasticity of demand, we obtain

✏D(p) = D0(p)p/D(p) =
�bp

a� bp
.

This expression is constant in p if and only if a = 0 or b = 0. If a = 0, the
only value b can take is also b = 0. That means, in any case the demand
function will be completely inelastic.

b) In case you agree with Student A, are there other possible demand functions
that exhibit a constant price elasticity? If you disagree with Student A, are
there alternatives to linear demand functions that exhibit a constant price
elasticity?

Solution: Assume that ✏D(p) = �c for c � 0 for any p. Then the demand
function satisfies the following di↵erential equation

D0(p) = �cD(p)/p.

Any non-negative solution to that equation is of the form

D(p) = a exp(�c log(p)) = a p�c, a � 0.

So there are in fact more possible demand functions with constant elasticity.

c) Now, Student B claims that since a linear supply function has constant
slope, it also exhibits constant price elasticity. Is Student B correct? Justify
your answer.

Solution: Student B is correct and in this case, the resulting supply func-
tion will also be interesting. Similarly to above, the supply function takes
the form

S(p) = a+ bp, a 2 R, b � 0, p � max{0,�a/b}.

Then,

✏S(p) =
bp

a+ bp
.

Again, this is constant in p if and only if a = 0 or b = 0. However, the case
of a = 0 (with arbitrary non-negative slope b) is definitely a more flexible
and interesting case.
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d) In case you agree with Student B, are there other possible supply functions
that exhibit a constant price elasticity? If you disagree with Student B, are
there alternatives to linear supply functions that exhibit a constant price
elasticity?

Solution: Due to the law of supply, the price elasticity of supply is always
non-negative. If we assume that ✏S(p) = c � 0 for all p, then we obtain the
di↵erential equation

S 0(p) = cS(p)/p

with the solutions

S(p) = a exp(c log(p)) = a pc, a � 0.

3. (Quasi-Concavity) We have seen in the lecture that one of the assumptions of
a production function is quasi-concavity. If D ✓ Rn is a convex subset of Rn, we
say that a function f : D ! R is quasi-concave if

f((1� �)y + �x) � min{f(x), f(y)} 8x, y 2 D, 8� 2 [0, 1]. (1)

a) Show that for an interval I ✓ R and f : I ! R is quasi-concave if and only
if

(i) f is monotonically increasing; or

(ii) f is monotonically decreasing; or

(iii) f is monotonically increasing and then monotonically decreasing.

Solution: If f satisfies (i) or (ii), it is obviously quasi-concave. Now, if
f satisfies (iii), there is some global maximum z 2 I. If x  y  z (1)
follows as in (i), if z  x  y, (1) follows as in (ii). If x  z  y, then for
all w 2 [x, z] f(w) � f(x) and for all v 2 [z, y] f(v) � f(y) such that (1)
follows.

Now assume that f satisfies not (i) and not (ii) and not (iii). Then there
exist there points x  z  y in D such that f(x) > f(z) and f(y) > f(z).
This contradicts (1).

b) Let D ✓ Rn be convex. Show that if a function f : D ! R is concave, it
is also quasi-concave. Show that the reverse implication does not hold by
giving a counterexample.

Solution: Let f be concave. That means for any x, y 2 D and for any
� 2 [0, 1]

f((1� �)y + �x) � (1� �)f(y) + �f(x)

� (1� �)min{f(x), f(y)}+ �min{f(x), f(y)}
= min{f(x), f(y)}.
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Using a) it is not too di�cult to come up with a counterexample. For
example, let D = R and f(x) = �|x|1/2.

c) Let D ✓ Rn be convex and f : D ! R a continuously di↵erentiable function.
Show that the following assertions are equivalent:

(i) f is quasi-concave.

(ii) For all y 2 R the set f�1([y,1)) is convex.

(iii) For all x, y 2 D: If f(y) � f(x), then rf(x)>(y � x) � 0.

Remark: Can you give similar (equivalent) conditions for concavity?

Proof: (i) =) (ii): Let x, z 2 D, y 2 R, and x, z 2 f�1([y,1)). Then
f(x) � y and f(z) � y. So min{f(x), f(z)} � y. Using the quasi-concavity
of f we obtain for � 2 [0, 1]

f((1� �)x+ �z) � min{f(x), f(z)} � y.

By the definition of the pre-image, (1� �)x+ �z 2 f�1([y,1)).

(ii) =) (iii): Let x, y 2 D with f(y) � f(x). Then, y, x 2 f�1([f(x),1))
and therefore also (1 � �)y + �x 2 f�1([f(x),1)) for � 2 [0, 1]. That
means that the function F : [0, 1] ! R, F (�) = f((1 � �)y + �x) � f(x)
is non-negative and F (1) = 0. By a continuity argument, we can see that
F 0(1)  0.2 We obtain

F 0(�) = rf((1� �)y + �x)>(x� y).

In summary, F 0(1) = rf(x)>(x � y)  0, which is equivalent to what we
want to show.

(iii) =) (i): Let x, y 2 D and w.l.o.g. f(y) � f(x). Assume that (i) fails to
hold. Then there is some �0 2 (0, 1) such that F (�0) := f((1��0)y+�0x) <
f(x). But that means that there is some �0 2 [�0, 1] such that F (�0) < f(y)
and F 0(�0) > 0. However,

F 0(�0) = rf(x0)>(x� y),

where x0 = (1� �0)y + �0x. We can see that x0 � y = �0(x� y). Hence,

rf(x0)>(x0 � y) > 0,

but F (�0) = f(x0) < f(y). This contradicts (iii).

2
This argument works as follows: Since f is continuously di↵erentiable and F is just a concati-

nation of continuously di↵erentiable functions, also F is continuously di↵erentiable. Now, assume

that F 0
(1) > 0. Then, due to the continuity of F 0

, there is some � > 0 such that F 0
(1 � ✏) > 0

for all ✏ 2 [0, �]. But that means that F is strictly increasing on [1 � �, 1]. So F (�) < F (1) = 0.

However, this is a contradiction such that we can derive that F 0
(1)  0.
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d) We say a function g : D ! R is quasi-convex if f = �g is quasi-concave.
State the equivalence in c) directly in terms of g.

Solution:

(i)

g((1� �)y + �x)  max{g(x), g(y)} 8x, y 2 D, 8� 2 [0, 1]. (2)

(ii) For all y 2 R the set g�1((�1, y]) is convex.

(iii) For all x, y 2 D: If g(y)  g(x), then rg(x)>(y � x)  0.

e) Prove that the following production functions are increasing and quasi-
concave.

Leontief production function f(x1, x2) = min(ax1, bx2);

linear production function f(x1, x2) = ax1 + bx2;

Cobb-Douglas production function f(x1, x2) = Axa
1x

b
2,

where A, a, b, x1, x2 � 0.

Solution:

The fact that the three production functions are increasing (or better – non
decreasing) is a straight forward calculation.

For the quasi-concavity, let (x1, x2), (x0
1, x

0
2) 2 R2

�0 and � 2 [0, 1]. Then

min
�
a(1� �)x1 + a�x0

1, b(1� �)x2 + b�x0
2

�

�min
�
amin(x1, x

0
1), bmin(x2, x

0
2)
�

=min
�
min(ax1, bx2),min(ax0

1, bx
0
2)
�
.

a(1� �)x1 + �x0
1 + b(1� �)x2 + b�x0

2 � min(ax1 + bx2, ax
0
1 + bx0

2) .

To establish the quasi-concavity of a Cobb-Douglas production function
is a bit more tricky. First of all, observe that the case A = 0 is trivial
and the case min(a, b) = 0 is easy, since then the Cobb-Douglas is then
an increasing function of one variable only. So let A, a, b > 0.
We will use point (ii) in c). Let y � 0 Since we have already established
that a Cobb-Douglas function is increasing, we obtain that

f�1([y,1)) = f�1({y})+Rn
�0 = {(x1, x2)+(z1, z2) | f(x1, x2) = y and z1, z2 � 0} .
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That means it is su�cient to show that the graph describing the contour
line / isoquant f�1({y}) belongs to a convex function. Let gy : R�0 !
R�0 such that

gy(x1) = x2 () f(x1, x2) = y .

This yields that gy(x1) = Cx�a/b
1 where C = y1/bA�1/b � 0. The second

derivative is given by

g00y(x1) = C
a

b

⇣a
b
� 1

⌘
xa/b�2
1 � 0 .

This shows that gy is a convex function which proves the claim.

Remark: Of course, one can also use one of the above equivalent conditions
for quasi-concavity. However, you should pay attention with the Leontief
production function since it is not di↵erentiable.
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