
MATH60013 Mathematics of Business and Economics Spring 2023

Solution 2

1. Decide if the following statements are true or false. Explain and justify your
answers.

a) Every monotone and quasi-concave production function exhibits increasing,
decreasing or constant returns to scale.

Answer: False. There are production functions that do not satisfy any of
the three regimes. An example could be f : R�0 ! R

f(x) =

(p
x, x 2 [0, 1]

x2, x > 1

b) The quasi-concavity of a production function implies that if we mix certain
bundles of inputs we will always be able to produce not less than with any
of the single bundles.

Answer: False. In formulae, the assertion means that for any two bundles
x, x0 and for any x00 = (1� �)x+ �x0, � 2 [0, 1], we have that

f(x00) � max{f(x), f(x0)}.

However, quasi-concavity only claims that

f(x00) � min{f(x), f(x0)}.

So by mixing two input bundles we won’t be worse o↵ than by producing
with the bundle yielding the lowest output. Indeed, the identity f(x) = x
on R�0 is quasi-concave, but does not satisfy the claim.

2. Consider a production function f : R2
�0 ! R>0

f(x1, x2) =
2

1 + 1
x1x2

.

a) Show that f is a homothetic function.

Solution: Let g : R�0 ! R>0, g(z) =
2

1+z�1 and h : R2
�0 ! R�0, h(x1, x2) =

x1x2. Then it is obvious that g is (strictly) increasing, h is positively homo-
geneous (of degree 2) and f = g � h.
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b) Show that f is non-decreasing and quasi-concave.

Solution: On problem sheet 1 exercise 3 we saw that h is non-decreasing
and quasi-concave. So if 0  (x1, x2)  (x0

1, x
0
2), then h(x1, x2)  h(x0

1, x
0
2).

Since g is strictly increasing. This translates into g(h(x1, x2))  g(h(x0
1, x

0
2)).

Concerning the quasi-concavity, let x, x0 2 R2
�0 and � 2 [0, 1]. Define x00 =

(1� �)x+ �x0. Then

h(x00) � min(h(x), h(x0)) .

Since g is strictly increasing, this means that

g(h(x00)) � min(g(h(x)), g(h(x0))) .

c) Calculate the elasticity of scale of f . For which (x1, x2) 2 R2
�0 exhibits f

locally increasing, decreasing or constant returns to scale.

Solution: Let (x1, x2) 2 R2
�0. Applying the chain rule, we obtain the

partial derivatives

@1f(x1, x2) =
2

⇣
1 + 1

x1x2

⌘2

x2
1x2

, @2f(x1, x2) =
2

⇣
1 + 1

x1x2

⌘2

x1x2
2

.

Hence, the elasticity of scale of f at (x1, x2) is given by

e(x1, x2) =
hrf(x1, x2), (x1, x2)i

f(x1, x2)

=
@1f(x1, x2)x1 + @2f(x1, x2)x2

f(x1, x2)

=
2

1 + x1x2
.

This means

e(x1, x2)

8
><

>:

< 1, if x1x2 > 1,

= 1, if x1x2 = 1,

> 1, if x1x2 < 1.

Hence, f exhibits locally decreasing returns to scale on {(x1, x2) 2 R2
�0 | x1x2 >

1}, locally constant returns to scale on {(x1, x2) 2 R2
�0 | x1x2 = 1}, and lo-

cally increasing returns to scale on {(x1, x2) 2 R2
�0 | x1x2 < 1}.

d) Calculate the MRTS of f and show that it is positively homogeneous of
degree 0.
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Solution: Let (x1, x2) 2 R2
�0, x1 > 0. Then the MRTS of f at (x1, x2) is

given by

MRTS(x1, x2) = �@1f(x1, x2)

@2f(x1, x2)
= �x2

x1
.

One can directly verify that for any t > 0 MRTS(tx1, tx2) = MRTS(x1, x2).

e) Show that any di↵erentiable homothetic production function has an MRTS
which is homogeneous of degree 0.

Solution: Let f = g � h : R2
�0 ! R be continuously di↵erentiable and

homothetic function. To avoid cumbersome technicalities we also assume
that h : R2

�0 ! R, and g : R ! R are continuously di↵erentiable. Recall
that g is increasing and that h is positively homogeneous of some degree
k 2 R.
We first prove that the partial derivatives @ih, i 2 {1, 2}, are positively
homogeneous of degree k � 1. Indeed, for any x 2 R2

�0 and any t > 0 we
have

h(tx) = tkh(x) .

Taking the derivative with respect to xi on both sides yields

t@ih(tx) = tk@ih(x) .

Now we calculate the MRTS of f at some x 2 R2
�0 such that @2f(x) 6= 0.

Applying the chain rule, we obtain

MRTS(x1, x2) = �@1f(x1, x2)

@2f(x1, x2)

= �g0(h(x1, x2))@1h(x1, x2)

g0(h(x1, x2))@2h(x1, x2)

= �@1h(x1, x2)

@2h(x1, x2)
.

Then, for t > 0

MRTS(tx1, tx2) = �@1h(tx1, tx2)

@2h(tx1, tx2)

= �tk�1@1h(x1, x2)

tk�1@2h(x1, x2)

= MRTS(x1, x2) .
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3. Let f : Rn
�0 ! Rm

�0 be a non-decreasing and quasi-concave production function.
Show that the following statements are true.

a) The factor demand function x⇤ : Rm
�0⇥Rn

�0 ! Rn
�0 is positively homogeneous

of degree 0.

Solution: The factor demand function maximises the profit function ⇡(x, p, w)
in x. Now, consider a rescaling of both input and output prices by a constant
t > 0. Then

⇡(x, tp, tw) = tp>f(x)� tw>x = t⇡(x, p, w).

That means the profit function itself is homogeneous of degree 1 and it
makes no di↵erence whether to maximise ⇡(x, p, w) or t⇡(x, p, w).

Observe that a rescaling of the p and w amounts to changing the currency in
which prices are reported. So it makes sense that changing the currency in
which prices are reported does not a↵ect the real-term demand of products.

b) The profit function ⇡⇤ : Rm
�0⇥Rn

�0 ! R is positively homogeneous of degree
1.

Solution: The profit function at prices (p, w) 2 Rm
�0 ⇥ Rn

�0 is defined as

⇡⇤(p, w) = max
x2Rn

�0

⇡(x, p, w) .

With the considerations from above we can deduce for any t > 0

⇡⇤(tp, tw) = max
x2Rn

�0

⇡(x, tp, tw)

= max
x2Rn

�0

t⇡(x, p, w)

= t max
x2Rn

�0

⇡(x, p, w)

= t⇡⇤(p, w) .

Again, we can interpret a rescaling of p and w with t > 0 as simultaneously
changing the currencies in which all prices are reported. Since profit is also
reported in a monetary unit, also this number should change accordingly.

c) The profit function ⇡⇤ is non-decreasing in p 2 Rm
�0 and non-increasing in

w 2 Rn
�0.

Solution: Let (p, w), (p0, w0) 2 Rm
�0 ⇥ Rn

�0 and p  p0, w � w0. Then, since
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f � 0

⇡⇤(p, w) = pf
�
x⇤(p, w)

�> � wx⇤(p, w)>

 p0f
�
x⇤(p, w)

�> � wx⇤(p, w)>

 p0f
�
x⇤(p0, w)

�> � wx⇤(p0, w)>

= ⇡⇤(p0, w) .

Similarly,

⇡⇤(p, w) = pf
�
x⇤(p, w)

�> � wx⇤(p, w)>

 pf
�
x⇤(p, w)

�> � w0x⇤(p, w)>

 pf
�
x⇤(p, w0)

�> � w0x⇤(p, w0)>

= ⇡⇤(p, w0) .

d) The profit function ⇡⇤ is convex.

Solution: Let (p, w), (p0, w0) 2 Rm
�0 ⇥ Rn

�0, � 2 [0, 1]. Define (p00, w00) =
(1� �)(p, w) + �(p0, w0). Then

⇡⇤(p00, w00) = p00f
�
x⇤(p00, w00)

�> � w00x⇤(p00, w00)>

= (1� �)
h
pf

�
x⇤(p00, w00)

�> � wx⇤(p00, w00)>
i

+ �
h
p0f

�
x⇤(p00, w00)

�> � w0x⇤(p00, w00)>
i

 (1� �)
h
pf

�
x⇤(p, w)

�> � wx⇤(p, w)>
i

+ �
h
p0f

�
x⇤(p0, w0)

�> � w0x⇤(p0, w0)>
i

= (1� �)⇡⇤(p, w) + �⇡⇤(p0, w0) .
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4. (Envelope Theorem) The Envelope Theorem asserts the following. Let ' : D !
R, D ✓ R2, be some continuously di↵erentiable function with partial derivatives
@1', @2'. Define the function � : R ! R

�(a) = max
x2R

'(x, a).

Assume that � is well defined and di↵erentiable. Let x⇤ : R ! R be the function
given by

x⇤(a) = argmaxx2R '(x, a),

where we assume that the argmax is unique and x⇤ is di↵erentiable and takes
only values in the interior of D. Then

�0(a) = @2'(x
⇤(a), a).

a) Prove the Envelope Theorem.

Proof: We can write �(a) = '(x⇤(a), a). Under the regularity assumptions
from above, we can just straightforwardly calculate the derivative of �.

�0(a) = @1'(x
⇤(a), a)

@x⇤(a)

@a
+ @2'(x

⇤(a), a).

Now, since x⇤(a) maximises the function x 7! '(x, a) and x⇤(a) is in the
interior of D, it needs to be a critical point of that function. That means its
derivative @1' needs to vanish at x⇤(a). This already yields the claim.

b) Give an argument how one can use the Envelope Theorem to derive Hotelling’s
Lemma.

Solution: This is actually a straight forward application. The role of '(x, a)
is played by ⇡(x, p, w). Then we only need to verify a higher dimensional
version of the Envelope Theorem and we are done.
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