MATH60013 Mathematics of Business and Economics Spring 2023

Solution 2

1. Decide if the following statements are true or false. Explain and justify your
answers.

a) Every monotone and quasi-concave production function exhibits increasing,
decreasing or constant returns to scale.

Answer: False. There are production functions that do not satisfy any of
the three regimes. An example could be f: R>p — R
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b) The quasi-concavity of a production function implies that if we mix certain
bundles of inputs we will always be able to produce not less than with any
of the single bundles.

Answer: False. In formulae, the assertion means that for any two bundles
z,2" and for any 2’ = (1 — Nz + A\z/, A € [0, 1], we have that

f(@") > max{f(z), f(z')}.

However, quasi-concavity only claims that

f(@") > min{ f(z), f(z')}.

So by mixing two input bundles we won’t be worse off than by producing
with the bundle yielding the lowest output. Indeed, the identity f(z) = x
on R>g is quasi-concave, but does not satisfy the claim.

2. Consider a production function f: RQZO — Ry

f(x1,79) = ————

%
a) Show that f is a homothetic function. (1;/,"&

/
Solution: Let g: R — Ryg, g(z) = 1+ —2—and h: R, — R2% h(zy, 1) =
x1x9. Then it is obvious that g is (strictly) increasing, h is positively homo-
geneous (of degree 2) and f = go h.
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b)

d)

Show that f is non-decreasing and quasi-concave.

Solution: On problem sheet 1 exercise 3 we saw that h is non- decreasing
and quasi-concave. So if 0 < (z1,25) < (2, 25), then h(xl,xz) < h xl,xQ
Since g is strictly increasing. This translates into g(h(z1,x2)) < g(h(x), z}))

Concerning the quasi-concavity, let z, 2" € R%; and X € [0, 1]. Deﬁne "
(1 =Xz + Az’. Then

h(z") = min(h(z), h(z')).
Since g is strictly increasing, this means that
g(h(z") > min(g(h(z)), g(h(z')) . D ¥ q-C
O
Calculate the elasticity of scale of f. For which (21, ;) € R%, exhibits f

locally increasing, decreasing or constant returns to scale.

Solution: Let (x1,25) € Réo. Applying the chain rule, we obtain the
partial derivatives
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Hence, the elasticity of scale of f at (z1,x9) is given by

(V (@1, 22), (1, 22))
f(z1,22)

O f(x1, w2) 71 + 0o f (21, T2) 29

B [z, 22)

e(xy, o) =

2
1+ z129
This means
<1, ifxxe>1,
e(xy,x9) ¢ =1, if xyx9 =1,
> 1, if xyxe < 1.

Hence, f exhibits locally decreasing returns to scale on {(z1, z2) € R2, | 2129 >

1}, locally constant returns to scale on {(z1,z5) € R%, | 2125 = 1}, and lo-
cally increasing returns to scale on {(z1,25) € ]R220 | 2129 < 1}.

Calculate the MRTS of f and show that it is positively homogeneous of
degree 0.
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Solution: Let (z1,z2) € R%,, z; > 0. Then the MRTS of f at (z1,z2) is
given by -
O f(r, )

32]”(1'17952) T1 '

One can directly verify that for any ¢ > 0 MRTS(txy, txe) = MRTS(x1, x2).

MRTS(z1, z5) =

Show that any differentiable homothetic production function has an MRTS
which is homogeneous of degree 0.

Solution: Let f = go h: RZZO — R be continuously differentiable and
homothetic function. To avoid cumbersome technicalities we also assume
that h: R, — R, and g: R — R are continuously differentiable. Recall

that ¢ is increasing and that h is positively homogeneous of some degree
ke R.

We first prove that the partial derivatives O;h, i € {1,2}, are positively
homogeneous of degree £k — 1. Indeed, for any x € Réo and any t > 0 we
have

h(tz) = t*h(z) .
Taking the derivative with respect to x; on both sides yields
YPLAY

Now we calculate the MRTS of f at some z € R%, such that d,f(x) # 0.
Applying the chain rule, we obtain

O f(r1, 72)

MRTS(21, 22) = Oof(x1, 1)
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Then, for ¢t >0

O h(txy, txs)
 Ooh(try, txy)
t&’{@lh(ml, Tg)
T BA0,h(x1, 79)
= MRTS(z1,x2) .

MRTS(tLUl, tZL'Q) =




3. Let f: RYy — RY, be a non-decreasing and quasi-concave production function.
Show that the following statements are true.

a) The factor demand function z*: RZ; xR%, — R% is positively homogeneous
of degree 0.

Solution: The factor demand function maximises the profit function 7(z, p, w)
in z. Now, consider a rescaling of both input and output prices by a constant
t > 0. Then

(@, tp, tw) = tp" f(z) — tw' & = tr(z, p,w). D T oM o 3%& 4
That means the profit function itself is homogeneous of degree 1 and it

makes no difference whether to maximise 7 (z, p, w) or tm(z, p, w). -:)l*( tP, tw) =

Observe that a rescaling of the p and w amounts to changing the currency in’l"(P, ‘Lf\
which prices are reported. So it makes sense that changing the currency in
which prices are reported does not affect the real-term demand of products.

b) The profit function 7*: RZ; x R%; — R is positively homogeneous of degree
1.

Solution: The profit function at prices (p, w) € RZ; x R%; is defined as

With the considerations from above we can deduce for any ¢ > 0

™ (tp, tw) = max w(x, tp, tw)
= 2R =

= glgﬂg,; tm(z, p, w)

= t;&%ﬁ m(x, p,w)

=tr"(p,w) .
Again, we can interpret a rescaling of p and w with ¢t > 0 as simultaneously

changing the currencies in which all prices are reported. Since profit is also
reported in a monetary unit, also this number should change accordingly.

c) The profit function 7* is non-decreasing in p € RZ; and non-increasing in
w E Rgo.

Solution: Let (p,w), (p,w’) € RZ; x R%; and p < p', w > w'. Then, since



m(p,w) = pf (z*(p,w)) " — wz*(p,w)"
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d) The profit function 7* is convex.

Solution: Let (p,w), (p',w') € RZ; x R%;, A € [0,1]. Define (p”,

(1=X)(p,w) + A(p/,w’). Then
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4. (Envelope Theorem) The Envelope Theorem asserts the following. Let ¢: D —
R, D C R2, be some continuously differentiable function with partial derivatives
01, Oap. Define the function ®: R — R

®(a) = maxy(z, a).

Assume that ® is well defined and differentiable. Let z*: R — R be the function
given by

" (a) = arg max, g ¢(x, a),
where we assume that the argmax is unique and z* is differentiable and takes
only values in the interior of D. Then

®'(a) = Oap(a"(a), a).

a) Prove the Envelope Theorem.

Proof: We can write ®(a) = ¢(2*(a),a). Under the regularity assumptions
from above, we can just straightforwardly calm@te the derivative of ®.

—

¥(a) = M + 0p(a*(a), ).

Now, since z*(a) maximises the function x — ¢(z,a) and z*(a) is in the
interior of D, it needs to be a critical point of that function. That means its
derivative 0y¢ needs to vanish at z*(a). This already yields the claim. [

b) Give an argument how one can use the Envelope Theorem to derive Hotelling’s
Lemma.

Solution: This is actually a straight forward application. The role of p(z, a)
is played by 7(x,p,w). Then we only need to verify a higher dimensional
version of the Envelope Theorem and we are done.



