
MATH60013 Mathematics of Business and Economics Spring 2023

Solution 4

1. Consider the lexicographic order � on R2. That means for any x = (x1, x2) 2 R2

and y = (y1, y2) 2 R2 it holds that x � y if and only if

(x1 < y1) or (x1 = y1 and x2  y2).

a) Check which properties of preferences defined in the lecture (completeness,
transitivity, continuity, strong monotonicity, local nonsatiation, strict con-
vexity) the lexicographic order satisfies.

Solution: All properties but continuity are satisfied.

Completeness: Let x = (x1, x2), y = (y1, y2) 2 R2. If x1 < y1 then x � y.
If y1 < x1 then y � x. Consider the case x1 = y1. If x2  y2 then x � y.
If y2  x2 then y � x.
Remark: It is interesting to observe that x ⇠ y if and only if x = y.

Transitivity: Let x = (x1, x2), y = (y1, y2), z = (z1, z2) 2 R2. Assume that
x � y and y � z. We need to show that x � z. We have to consider
4 cases: (i) If x1 < y1 and y1 < z1, then x1 < z1. (ii) If x1 = y1 and
y1 < z1, then x1 < z1. (iii) If x1 < y1 and y1 = z1 then x1 < z1. (iv)
If x1 = y1 = z1, then we necessarily have that x2  y2 and y2  z2. So
x2  z2.

Continuity: To see that the continuity property is not satisfied, observe
that

(�1/n, 1) � (0, 0) 8n 2 N.
However, (�1/n, 1) converges to (0, 1) and (0, 0) � (0, 1). Thus, the set
{x 2 R2 : x � (0, 0)} is not closed.

Strong monotonicity: Let x = (x1, x2), y = (y1, y2) 2 R2. If x < y, then
x1 < y1 such that x � y.

Local nonsatiation: This is implied by the strong monotonicity. Indeed,
for any x 2 R2 and any " > 0 there is some y such that x < y and
kx� yk < ".

Strict convexity: Let x = (x1, x2), y = (y1, y2), z = (z1, z2) 2 R2. Suppose
that x � z and y � z. Let a = (1� �)x + �y for some � 2 [0, 1]. Then
we have to show that a � z. If � 2 {0, 1}, the claim is true. So let
� 2 (0, 1). Again we have to consider 4 cases: (i) If x1 > z1 and y1 > z1
then a1 > z1. (ii) If x1 = z1 and y1 > z1 then a1 > z1. (iii) If x1 > z1
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and y1 = z1 then a1 > z > 1. (iv) If x1 = y1 = z1, then x2 > z2 and
y2 > z2. This implies that a2 > z2. So in all 4 cases we get that a � z.

b) Show that if there is a utility function u : R2 ! R representing �, u is an
injection.

Solution: If u : R2 ! R represents � that means u(x)  u(y) if and only
if x � y for all x, y 2 R2. Therefore, u(x) = u(y) if and only if x ⇠ y.
However, one can easily see that x ⇠ y if and only if x = y.

2. Let X ✓ Rn

�0 be a convex and closed set. Let u : X ! R be a continuous, strictly
monotone, strictly quasi-concave utility function.

a) Show that for any k such that there is some x 2 X with u(x) = k the
expenditure function e(·, k) : Rn

�0 ! [0,1) is concave (so it is concave in
the prices).

Solution: Let k be fixed and consider the prices p, p0 2 Rn

�0. Let x⇤
H

be
the corresponding Hicksian demand. Then we have for p00 = (1� �)p+ �p0,
� 2 [0, 1]:

e(p00, k) = p00x⇤
H
(p00, k)> = (1� �)px⇤

H
(p00, k)> + �p0x⇤

H
(p00, k)>

� (1� �)px⇤
H
(p, k) + �p0x⇤

H
(p0, k)

= (1� �)e(p, k) + �e(p0, k).

b) Let n = 2, u(x1, x2) = xa

1x
b

2 with a, b > 0. Calculate the indirect utility
function v, expenditure function e, Marshallian demand x⇤ and Hicksian
demand x⇤

H
.

Solution:

Assume that the prices p = (p1, p2) are strictly positive. Let m � 0 be the
budget.

Marshallian demand: We can use Walras’ law and already assume that
the budget line is binding.
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x⇤(p,m) = argmax
p1x1+p2x2=m

u(x1, x2)

= argmax
x2=

m

p2
� p1

p2
x1

u(x1, x2)

= argmax
x1�0

u

✓
x1,

m

p2
� p1

p2
x1

◆

= argmax
x1�0

(x1)
a

✓
m

p2
� p1

p2
x1

◆b

.

We know that the Marshallian demand exists (and is unique). That means
we only need to check for first order conditions and can leave out second
order conditions.

FOC:

0 = axa�1
1

✓
m

p2
� p1

p2
x1

◆b

+ xa

1b

✓
m

p2
� p1

p2
x1

◆b�1 ✓
�p1
p2

◆

() 0 = xa�1
1

✓
m

p2
� p1

p2
x1

◆b�1

| {z }
6=0

⇢
a

✓
m

p2
� p1

p2
x1

◆
� p1

p2
bx1

�

() 0 = a

✓
m

p2
� p1

p2
x1

◆
� p1

p2
bx1

() x1 =
ma

p1(a+ b)
.

Using the budget constraint (or a symmetry argument), we obtain

x⇤(p,m) =

✓
ma

p1(a+ b)
,

mb

p2(a+ b)

◆
.

Indirect utility:

v(p,m) = u(x⇤(p,m)) =

✓
ma

p1(a+ b)

◆a ✓ mb

p2(a+ b)

◆b

.

Hicksian demand: Let k � 0 be some level of utility. Then

x⇤
H
(p, k) = argmin

x2u�1([k,1))
p1x1 + p2x2.

Some graphical illustration will show how it works, see figure 1.
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Figure 1: Several lines (green) with slope �p1/p2 and di↵erent intersections
(total costs). The region in blue is u�1([k,1)) for some k > 0.

Since the situation for k = 0 is not interesting (x⇤
H
(p, 0) = (0, 0)) we assume

that k > 0. The pre-image u�1([k,1)) is depicted in this picture. So we
have to choose some bundle x 2 u�1([k,1)) to attain at least utility k.
Recall that – due to the quasi-concavity of u – u�1([k,1)) is a convex set.
Moreover, let’s consider ‘iso-expenditure lines’. That is, all possible bundles
of inputs such that the expenditure to purchase them is the same at prices
(p1, p2). If expenditure is e � 0 that means all such bundles satisfy:

e = p1x2 + p2x2.

Those lines can also be represented as graphs of functions of the form:

x2(x1) =
e

p2
� p1

p2
x1.

That means they have slope �p1/p2 and intersection e/p2. Now we have to
determine the minimal e such that the corresponding iso-expenditure line
has a non-empty intersection with u�1([k,1)).

Indeed, one can see that this expenditure is given by the iso-expenditure
line that is tangential to u�1({k}). If it intersected u�1([k,1)), then – due
to the convexity of u�1([k,1)) – a part of the iso-expenditure line would
be in the interior of u�1([k,1)). But that means one could reduce the
expenditure and still obtain a utility of k.

The derivative of the iso-utility set u�1({k}) is given in terms of the marginal
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rate of substitution:

MRS(x1, x2) = �
@u(x)
@x1

@u(x)
@x2

.

So the Hicksian demand x⇤
H

needs to satisfy:

u(x⇤
H
) = k and �

@u(x⇤
H
)

@x1

@u(x⇤
H
)

@x2

= �p1
p2
.

We have that:

�
@u(x)
@x1

@u(x)
@x2

=
a

b

x2

x1
= �p1

p2

If and only if x2 =
p1

p2

b

a
x1. Plugging that into the utility function yields:

u

✓
x1,

p1
p2

b

a
x1

◆
= xa

1

✓
p1
p2

b

a
x1

◆b

= xa+b

1

✓
p1
p2

b

a

◆b

= k

if and only if:

x1 =

0

B@
k

⇣
p1

p2

b

a

⌘b

1

CA

1/(a+b)

.

So – using x2 =
p1

p2

b

a
x1 or symmetry considerations –

x⇤
H,1(p, k) = k1/(a+b)

✓
ap2
bp1

◆b/(a+b)

x⇤
H,2(p, k) = k1/(a+b)

✓
bp1
ap2

◆a/(a+b)

Expenditure function: This is – at least in principle – an easy task now.

e(p, k) =p1x
⇤
H,1(p, k) + p2x

⇤
H,2(p, k)

= k1/(a+b)
�
(a/b)b/(a+b)pb/(a+b)

2 pa/(a+b)
1 + (a/b)�a/(a+b)pb/(a+b)

2 pa/(a+b)
1 }

= k1/(a+b){(a/b)b/(a+b) + (a/b)�a/(a+b)}pb/(a+b)
2 pa/(a+b)

1

= ✓(k) pb/(a+b)
2 pa/(a+b)

1 .

c) Verify that the expenditure function you obtain in (b), as a function in the
prices (so for fixed utility level) is nondecreasing, homogeneous of degree 1
and concave.

Solution: Let k > 0 be fixed. Then

@

@p1
e(p, k) = ✓(k)

a

a+ b
pb/(a+b)
2 p�b/(a+b)

1 > 0.

@

@p2
e(p, k) = ✓(k)

b

a+ b
p�a/(a+b)
2 pa/(a+b)

1 > 0.
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So the expenditure function is even increasing.

For the homogeneity, let t > 0. Then:

e(tp, k) = ✓(k)(tp2)
b/(a+b)(tp1)

a/(a+b) = t(b+a)/(a+b)e(p, k) = t e(p, k) .

This shows that e(·, k) is positively homogeneous of degree 1.

We will dispense with the concavity. In principle, one can compute the
Hessian checks that it is negative definite.

d) Now suppose you have an alternative representation of the ordinal utility
which is induced by u given by ulog : X ! R, ulog(x1, x2) = log(u(x1, x2)).
Compute the associated quantities: indirect utility function vlog, expendi-
ture function elog, Marshallian demand x⇤

log and Hicksian demand x⇤
log,H .

Solution: First recall that u and ulog represent the same preference relation.
We could indeed do the same sort of calculations for ulog(x1, x2) = a log(x1)+
b log(x2). And you can realise that these calculations are in fact easier
than the previous ones due to the more appealing form (so it would have
been worth doing the calculations in terms of ulog at first and then do the
argumentation for u). So we will confine ourselves to some arguments.

For the Marshallian demand, we obtain:

x⇤
log(p,m) = argmax

p1x1+p2x2=m

log(u(x1, x2)) = argmax
p1x1+p2x2=m

u(x1, x2) = x⇤(p,m).

For the indirect utility, we obtain

vlog(p,m) = ulog(x
⇤
log(p,m))

= log(u(x⇤(p,m)))

= log(v(p,m))

= a log(ma)� a log(p1(a+ b)) + b log(mb)� b log(p2(a+ b)).

For the Hicksian demand, we obtain:

x⇤
log,H(p, k) = argmin

x2u�1
log([k,1))

p1x1 + p2x2

= argmin
x2(log �u)�1([k,1))

p1x1 + p2x2

= argmin
x2u�1(log�1([k,1))

p1x1 + p2x2

= argmin
x2u�1([exp(k),1))

p1x1 + p2x2

= x⇤
H
(p, exp(k))

Finally, the expenditure function is:

elog(p, k) = p1x
⇤
H,1(p, exp(k)) + p2x

⇤
H,2(p, exp(k)).
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3. Let X ✓ Rn

�0 be a convex and closed set. Let u : X ! R be a continuous, strictly
monotone, strictly quasi-concave utility function.

a) Let v : Rn

�0 ⇥ R�0 ! R be the indirect utility function.

• Prove that for any p > 0 the function v(p, ·) : R�0 ! R is strictly in-
creasing.

• Prove that for any m � 0 the function v(·,m) : Rn

�0 ! R quasi-convex.
Recall that a function f is quasi-convex if �f is quasi-concave; see ques-
tion 3 on Problem Sheet 1.

Solution: For the first assertion, let p > 0. Recall that for a budget m � 0
the indirect utility is given as:

v(p,m) = max
x2Bp,m

u(x)

where Bp,m = {x 2 X : px>  m} is the budget set. Now suppose that
0  m < m0. Since prices are strictly positive, one can easily see that

Bp,m ( Bp,m0 .

We have seen in the lecture that under the given conditions Walras’ Law
holds. That is, the utility maximising consumption bundle (given in terms
of Marshallian demand) is necessarily on the budget line. Equivalently, one
can say that a consumer needs to spend all their budget in order to maximise
their utility. Hence

v(p,m0) = max
x2B

p,m0
u(x) = u

�
x⇤(p,m0)

�
> u(x) 8x 2 Bp,m .

Therefore:
u
�
x⇤(p,m0)

�
> u

�
x⇤(p,m)

�
= v(p,m)

Now let m � 0. Let p, p0 � 0, set t 2 [0, 1] and define the price-vector
p00 = tp+(1�t)p0. Let k 2 R and assume that v(p,m)  k and v(p0,m)  k.
We define the three budget sets

B := Bp,m = {x 2 X : px>  m},
B0 := Bp0,m = {x 2 X : p0x>  m},
B00 := Bp00,m = {x 2 X : p00x>  m}.

The central step is to show that:

B00 ✓ B [ B0 .
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To show this inclusion, suppose that x /2 B [B0. That means px> > m and
p0x> > m. Therefore also:

p00x> = tpx> + (1� t)p0x> > tm+ (1� t)m = m.

Using this inclusion, we obtain:

v(p00,m) = max
x2B00

u(x)

 max
x2B[B0

u(x)

 max{max
x2B

u(x),max
x2B0

u(x)}

 max{v(p,m), v(p0,m)}
 k .

This is what we wanted to show.

b) Assume that the prices for the goods are strictly positive, p > 0, and income
is positive, m > 0. Is it possible that all goods are inferior? Prove your
claim.

Solution: Since the standard assumptions hold (in particular the local
nonsatiation of the underlying preferences) Walras’ Law holds. That is,
in order to maximise utility, one needs to spends the entire budget. That
means that the Marshallian demand x⇤(p,m) lies on the budget line. In
formulae, this means that:

m = px⇤(p,m)> =
nX

i=1

pix
⇤(p,m).

If we take the derivative with respect to m on both sides, we obtain

1 =
nX

i=1

pi
@x⇤

i
(p,m)

@m
.

Since prices pi are strictly positive, there must be at least one i 2 {1, . . . , n}
such that

@x
⇤
i
(p,m)

@m
> 0. That means that this good is a normal good and not

an inferior good.
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