Problem Sheet 4

We will discuss the solutions of this problem sheet in the problem class on Friday, 3 March 2023.

1. Consider the lexicographic order \leq on \mathbb{R}^2 . That means for any $\underline{x} = (x_1, x_2) \in \mathbb{R}^2$ and $y = (y_1, y_2) \in \mathbb{R}^2$ it holds that $\underline{x} \leq y$ if and only if:

 $(x_1 < y_1)$ or $(x_1 = y_1 \text{ and } x_2 \le y_2).$

- a) Check which properties of preferences defined in the lecture (completeness, transitivity, continuity, strong monotonicity, local nonsatiation, strict convexity) the lexicographic order satisfies.
- b) Show that if there is a utility function $u \colon \mathbb{R}^2 \to \mathbb{R}$ representing \preceq, u is an injection.
- **2.** Let $X \subseteq \mathbb{R}^n_{\geq 0}$ be a convex and closed set. Let $u: X \to \mathbb{R}$ be a continuous, strictly monotone, strictly quasi-concave utility function.
 - a) Show that for any k such that there is some $x \in X$ with $u(\underline{x}) = k$ the expenditure function $e(\cdot, k) \colon \mathbb{R}^n_{\geq 0} \to [0, \infty)$ is concave (so it is concave in the prices).
 - **b)** Let n = 2, $u(x_1, x_2) = x_1^a x_2^b$ with a, b > 0. Calculate the indirect utility function v, expenditure function e, Marshallian demand x^* and Hicksian demand x_H^* .
 - c) Verify that the expenditure function you obtain in (b), as a function in the prices (so for fixed utility level) is nondecreasing, homogeneous of degree 1 and concave.
 - d) Now suppose you have an alternative representation of the ordinal utility which is induced by u given by $u_{\log} \colon X \to \mathbb{R}$, $u_{\log}(x_1, x_2) = \log(u(x_1, x_2))$. Compute the associated quantities: indirect utility function v_{\log} , expenditure function e_{\log} , Marshallian demand x_{\log}^* and Hicksian demand $x_{\log,H}^*$.

- **3.** Let $X \subseteq \mathbb{R}^n_{\geq 0}$ be a convex and closed set. Let $u: X \to \mathbb{R}$ be a continuous, strictly monotone, strictly quasi-concave utility function.
 - **a)** Let $v : \mathbb{R}^n_{\geq 0} \times \mathbb{R}_{\geq 0} \to \mathbb{R}$ be the indirect utility function.
 - Prove that for any $\underline{p} > 0$ the function $v(\underline{p}, \cdot) \colon \mathbb{R}_{\geq 0} \to \mathbb{R}$ is strictly increasing.
 - Prove that for any $m \ge 0$ the function $v(\cdot, m) \colon \mathbb{R}^n_{\ge 0} \to \mathbb{R}$ quasi-convex. Recall that a function f is quasi-convex if -f is quasi-concave; see question 3 on Problem Sheet 1.
 - **b)** Assume that the prices for the goods are strictly positive, $\underline{p} > 0$, and income is positive, m > 0. Is it possible that all goods are inferior? Prove your claim.