This document contains 1 questions.

1. [default,M2]

In the framework of the N-period binomial model with constant parameters $S_0 = 8, u = 2, d = 1/2, r = 0$, let $S = (S_n)_{n=0}^N$ be the stock price process, M_n its historical minimum up to time n (i.e. $M_n := \min_{i=0,\dots,n} S_i$). Consider the down-and-in rebate option with the lower barrier $L = 6$ which expires at time N and pays 1 if S_n is less than L for any $n = 0, \ldots, N$; in other words, this derivative has a payoff $1 - Y_N$ at maturity N, where $Y_n := 1_{\{M_n \geq 6\}}$ (i.e. $Y_n = 1$ if $M_n \geq 6$, and $Y_n = 0$ otherwise). We denote with V_n the arbitrage-free price at time $n = 0, \ldots, N$ of this option.

Below, whenever we say that a process is Markov, we mean with respect to the risk-neutral measure Q and with the usual filtration $\mathcal{F}_n = \sigma(X_1, \ldots, X_n)$, $n = 0, \ldots, N$ generated by the coin tosses $X_n(\omega) = \omega_n$ on the probability space $\Omega = \{H, T\}^N$. Answer the following questions and justify carefully with either proofs or counterexamples.

(a) Draw the binary tree representing S. Can you draw it as a recombinant tree?

```
A. No B. Yes
```
- (b) Are $(X_n)_{n\leq N}$ independent under \mathbb{Q} ? A. No B. Yes
- (c) Are $(X_n)_{n\leq N}$ identically distributed under \mathbb{Q} ? A. No B. Yes
- (d) Compute $\mathbb{Q}(\{\omega\})$ for every $\omega \in \{H, T\}^N$, then choose the correct statement A. $\mathbb{Q}(\{\omega\})$ is constant in $\omega \in \{H, T\}^N$
	- B. $\mathbb{Q}(\{\omega\})$ is not constant, but depends only on the number of heads in $\omega \in \{H, T\}^N$
	- C. None of the above
- (e) Is S Markov?
	- A. No B. Yes
- (f) Is M a Markov? **A. No** B. Yes
- (g) Is Y a Markov? **A. No** B. Yes
- (h) Is (S, M) a Markov process? A. No **B. Yes**
- (i) Is (S, Y) a Markov process? A. No **B. Yes**
- (i) Is (S, Y, M) a Markov process? A. No **B. Yes**
- (k) Which of the above processes $W = (W_n)_n$ are Markov and are such that, for every $n = 0, \ldots, N, V_n$ admits the representation $V_n = v_n(W_n)$, for some Borel $v_n : \mathbb{R} \to \mathbb{R}$? A. S B. M C. Y D. (S, M) E. (S, Y) F. (S, Y, M)
- (l) Among several the choices of W which you selected in the previous question, which one would be best (i.e. lead to the shortest computations) to use to compute price explicitly
	- A. S B. M C. Y D. (S, M) E. (S, Y) F. (S, Y, M)

Solution:

- (a) S has constant $U = 2, D = 1/2$ and so it is permutation invariant, i.e. it is represented by a recombining tree
- (b) The corresponding risk neutral probabilities are

$$
\tilde{P}_n = \frac{1+r-D}{U-D} = \frac{1+0-1/2}{2-1/2} = \frac{1}{3}, \quad \tilde{Q}_n = 1 - \tilde{P}_n = \frac{2}{3}.
$$

Thus, in this particular case \tilde{P}_n is actually deterministic (i.e. constant in ω), which shows that the coin tosses are independent under Q, since

$$
\tilde{P}_n(\omega_1,\ldots,\omega_n):=\mathbb{Q}(X_{n+1}=H|(X_1,\ldots,X_n)=(\omega_1,\ldots,\omega_n)).
$$
\n(1)

(c) Since

$$
\mathbb{Q}(X_{n+1} = H | X(n) = \omega(n)) = \tilde{P}_n(\omega(n)) = \frac{1}{3}
$$

is deterministic, if equals $\mathbb{Q}(X_{n+1} = H)$. Thus $\mathbb{Q}(X_{n+1} = H) = 1/3$ does not depend on n, so the coin tosses are identically distributed

- (d) Since the coin tosses are IID and $\mathbb{Q}(X_{n+1} = H) = 1/3$, we have $\mathbb{Q}((X(n)) = (\omega(n))) = \frac{1}{3^{H_n}}(\frac{2}{3})$ $\frac{2}{3})^{n-H_n},$ where $H_n = H_n(\omega(n))$ is the number of Heads.
- (e) As usual, to show that S is Q-Markov, we try to write S_{n+1} as a function of S_n (which is \mathcal{F}_n measurable, since it only depends on the first n coin tosses, i.e. it is a function of (X_1, \ldots, X_n) , and a rv B_n which is independent (under Q) from \mathcal{F}_n , and then apply the independence lemma to get that $\mathbb{E}^{\mathbb{Q}}[f(S_{n+1})|\mathcal{F}_n]$ equals $g(S_n)$ for some g. As we often do, we take $B_n := S_{n+1}/S_n$. Since X_{n+1} is independent of \mathcal{F}_n , the identity $S_{n+1}/S_n = h(X_{n+1})$ (where h is the function $h(H) = U, h(T) = D$) shows that $B_n = S_{n+1}/S_n$ is independent on \mathcal{F}_n . Thus, it follows from the independence lemma that

$$
\mathbb{E}^{\mathbb{Q}}[f(S_{n+1})|\mathcal{F}_n] = \mathbb{E}^{\mathbb{Q}}[f(S_n h(X_{n+1}))|\mathcal{F}_n] = g(S_n),\tag{2}
$$

where q is the function

$$
g(s) := \mathbb{E}^{\mathbb{Q}}[f (sh(X_{n+1}))] = \mathbb{Q}(X_{n+1} = H)f(su) + \mathbb{Q}(X_{n+1} = T)f(sd) = \frac{1}{3}f(su) + \frac{2}{3}f(sd).
$$

Remark: Notice that we don't actually need to compute g explicitly to conclude that S is Markov. However, for applications (for example to pricing) one should compute g as explicitly as possible, so you might as well do that here.

(f) M is not Markov. Indeed after drawing its tree we immediately see the problem: $M_2(HH) = 8 =$ $M_2(HT)$ yet $M_3(HTT) = 4$ is different from $M_3(HHH) = M_3(HHT) = M_3(HTH) = 8$, so

$$
\mathbb{E}_2^{\mathbb{Q}} f(M_3)(HH) = \tilde{p}f(8) + (1 - \tilde{p})f(8), \quad \text{does not equal}
$$

$$
\mathbb{E}_2^{\mathbb{Q}} f(M_3)(HT) = \tilde{p}f(8) + (1 - \tilde{p})f(4)
$$

whenever $f(8) \neq f(4)$, where $\tilde{p} = \mathbb{Q}(H) = 1/3$.

(g) Y is not Markov. Indeed after drawing its tree we immediately see the problem: $Y_2(HH) = 1 =$ $Y_2(HT)$ yet $Y_3(HTT) = 0$ is different from $Y_3(HHH) = Y_3(HHT) = Y_3(HTH) = 1$, so

$$
\mathbb{E}_2^{\mathbb{Q}} f(Y_3)(HT) = \tilde{p}f(1) + (1 - \tilde{p})f(1), \quad \text{does not equal}
$$

$$
\mathbb{E}_2^{\mathbb{Q}} f(Y_3)(TT) = \tilde{p}f(1) + (1 - \tilde{p})f(0)
$$

whenever $f(1) \neq f(0)$, where $\tilde{p} = \mathbb{Q}(H) = 1/3$.

(h) (S, M) is Markov, as it is easily guessed after drawing its tree. To prove it, define

$$
C_{n+1} := \frac{S_{n+1}}{S_n} = \begin{cases} u, & \text{if } X_{n+1} = H \\ d, & \text{if } X_{n+1} = T \end{cases}
$$

so that $M_{n+1} = M_n \wedge (S_n C_{n+1})$. Then by the independence lemma

$$
\mathbb{E}_n^{\mathbb{Q}}[f(S_{n+1}, M_{n+1})] = \mathbb{E}_n^{\mathbb{Q}}[f(S_n C_{n+1}, M_n \wedge (S_n C_{n+1}))] = g(S_n, M_n),
$$

where

$$
g(s,m) := \mathbb{E}^{\mathbb{Q}}[f(sC_{n+1}, m \wedge (sC_{n+1}))].
$$

(i) (S, Y) is Markov, as it is easily guessed after drawing its tree. To prove it, define Define $h(x) :=$ $1_{\{x\geq 6\}}$, $x \in \mathbb{R}$, notice that $h(x \wedge y) = h(x)h(y)$, so that $Y_n = h(M_n)$ and so

$$
Y_{n+1} = h(M_{n+1}) = h(M_n \wedge (S_n C_{n+1})) = Y_n h(S_n C_{n+1}).
$$

Then by the independence lemma

$$
\mathbb{E}_n^{\mathbb{Q}}[f(S_{n+1}, Y_{n+1})] = \mathbb{E}_n^{\mathbb{Q}}[f(S_n C_{n+1}, Y_n h(S_n C_{n+1}))] = z(S_n, Y_n),
$$

where

$$
z(s,y) := \mathbb{E}^{\mathbb{Q}}[f(sC_{n+1}, yh(sC_{n+1}))].
$$

(j) (S, Y, M) is Markov. Indeed by the independence lemma

$$
\mathbb{E}_n^{\mathbb{Q}}[f(S_{n+1}, Y_{n+1}, M_{n+1})] = \mathbb{E}_n^{\mathbb{Q}}[f(S_n C_{n+1}, Y_n h(S_n C_{n+1}), M_n \wedge (S_n C_{n+1}))] = v(S_n, Y_n, M_n),
$$

where

$$
v(s, y, m) := \mathbb{E}^{\mathbb{Q}}[f(sC_{n+1}, yh(sC_{n+1}), m \wedge (sC_{n+1}))].
$$

Alternatively, one could more simply write

$$
\mathbb{E}_n^{\mathbb{Q}}[f(S_{n+1}, Y_{n+1}, M_{n+1})] = \mathbb{E}_n^{\mathbb{Q}}[f(S_n C_{n+1}, h(M_n \wedge S_n C_{n+1}), M_n \wedge (S_n C_{n+1}))] = w(S_n, M_n),
$$

where

$$
w(s, m) := \mathbb{E}^{\mathbb{Q}}[f(sC_{n+1}, h(m \wedge sC_{n+1}), m \wedge (sC_{n+1}))].
$$

(k) One could choose X to be (S, M) , or (S, Y) , or (S, Y, M) ; for each such process, one could also write explicitly v_N and an explicit formula to express v_n in terms of v_{n+1} for $n = 0, \ldots, N-1$ (instead of just proving the existence of v_n), which is necessary to compute prices (though you were not required to do this to answer the question).

Let us do that for the process (S, Y) , and then for (S, M) . The risk neutral pricing formula gives

$$
V_n = \mathbb{E}_n^{\mathbb{Q}}\left[\frac{V_{n+1}}{1+r}\right]
$$

Since

$$
v_n(S_n, Y_n) = V_n = \mathbb{E}_n^{\mathbb{Q}} \left[\frac{V_{n+1}}{1+r} \right] = \frac{1}{1+r} \mathbb{E}_n^{\mathbb{Q}} \left[v_{n+1}(S_{n+1}, Y_{n+1}) \right] = z(S_n, Y_n),
$$

where

$$
z(s,y) := \mathbb{E}^{\mathbb{Q}}[f(sC_{n+1}, yh(sC_{n+1}))], \qquad h(x) := 1_{\{x \ge 6\}},
$$

we get that

$$
v_n(s,y) = \frac{1}{3}v_{n+1}(su, y1_{\{su \ge 6\}}) + \frac{2}{3}v_{n+1}(sd, y1_{\{sd \ge 6\}}), \quad 0 \le n \le N-1,
$$

and of course $v_N(s, y) = 1 - y$. As for (S, M) : write

$$
v_n(S_n, M_n) = V_n = \mathbb{E}_n^{\mathbb{Q}}\left[\frac{V_{n+1}}{1+r}\right] = \frac{1}{1+r} \mathbb{E}_n^{\mathbb{Q}}[v_{n+1}(S_{n+1}, M_{n+1})] = g(S_n, M_n),
$$

where

$$
g(s,m) := \frac{1}{1+r} \mathbb{E}^{\mathbb{Q}}[v_{n+1}(sC_{n+1}, m \wedge (sC_{n+1}))],
$$

we get that

$$
v_n(s,m) = \frac{1}{3}v_{n+1}(su, m \wedge (su)) + \frac{2}{3}v_{n+1}(sd, m \wedge (sd)), \quad 0 \le n \le N-1,
$$

and of course $v_N(s, m) = 1 - 1_{\{m \geq 6\}} = 1_{\{m < 6\}}$.

(l) One should choose (S, Y) , because it takes fewer values than (S, M) and than (S, Y, M)