This document contains 1 questions.

1. [default,M2]

In the framework of the N-period binomial model with constant parameters $S_0 = 8, u = 2, d = 1/2, r = 0$, let $S = (S_n)_{n=0}^N$ be the stock price process, M_n its historical minimum up to time n (i.e. $M_n := \min_{i=0,...,n} S_i$). Consider the down-and-in rebate option with the lower barrier L = 6 which expires at time N and pays 1 if S_n is less than L for any n = 0, ..., N; in other words, this derivative has a payoff $1 - Y_N$ at maturity N, where $Y_n := 1_{\{M_n \ge 6\}}$ (i.e. $Y_n = 1$ if $M_n \ge 6$, and $Y_n = 0$ otherwise). We denote with V_n the arbitrage-free price at time n = 0, ..., N of this option.

Below, whenever we say that a process is Markov, we mean with respect to the risk-neutral measure \mathbb{Q} and with the usual filtration $\mathcal{F}_n = \sigma(X_1, \ldots, X_n), n = 0, \ldots, N$ generated by the coin tosses $X_n(\omega) = \omega_n$ on the probability space $\Omega = \{H, T\}^N$. Answer the following questions and justify carefully with either proofs or counterexamples.

- (a) Draw the binary tree representing S. Can you draw it as a recombinant tree? A. No B. Yes
- (b) Are $(X_n)_{n \leq N}$ independent under \mathbb{Q} ? A. No B. Yes
- (c) Are $(X_n)_{n \leq N}$ identically distributed under \mathbb{Q} ? A. No B. Yes
- (d) Compute $\mathbb{Q}(\{\omega\})$ for every $\omega \in \{H, T\}^N$, then choose the correct statement
 - A. $\mathbb{Q}(\{\omega\})$ is constant in $\omega \in \{H, T\}^N$
 - B. $\mathbb{Q}(\{\omega\})$ is not constant, but depends only on the number of heads in $\omega \in \{H, T\}^N$
 - C. None of the above
- (e) Is S Markov?

A. No B. Yes

- (f) Is M a Markov? A. No B. Yes
- (g) Is Y a Markov? A. No B. Yes
- (h) Is (S, M) a Markov process? A. No B. Yes
- (i) Is (S, Y) a Markov process? A. No B. Yes
- (j) Is (S, Y, M) a Markov process? A. No B. Yes
- (k) Which of the above processes $W = (W_n)_n$ are Markov and are such that, for every n = 0, ..., N, V_n admits the representation $V_n = v_n(W_n)$, for some Borel $v_n : \mathbb{R} \to \mathbb{R}$? A. S B. M C. Y D. (S, M) E. (S, Y) F. (S, Y, M)
- (1) Among several the choices of W which you selected in the previous question, which one would be best (i.e. lead to the shortest computations) to use to compute price explicitly
 - A. S B. M C. Y D. (S, M) E. (S, Y) F. (S, Y, M)