This document contains 3 questions.

1. [default,Q8]

Consider the one-period binomial model where the bank account has interest rate r = 0, and the stock takes values $S_0 := 4$, and S_1 can take the values 5 and 3.

(a) Is this model free of arbitrage?

A. No B. Yes

(b) What should be the price P_0 for a put option on S with strike K = 4?

A. 0 B. 1/2 C. 1 D. None of the above

Suppose that such a put option was sold at a price 1. To realise an arbitrage, how many shares $h \in \mathbb{R}$ should I buy/sell if

(c) I *sell* one option?

A. No arbitrage is possible B. h = 0 C. h = -1 D. $h \in [-1, 0]$ E. None of the above

(d) I *buy* one option?

A. No arbitrage is possible B. h = 0 C. h = -1 D. $h \in [-1, 0]$ E. None of the above

2. [default,O9]

Consider a trinomial market model. This is the model consisting of one bond with risk-free interest rate r > -1, and one stock with price $S_0 > 0$ at time 0, and whose price at time 1 it takes the three values d, m, u with probability respectively q, 1 - (p + q), p; we assume that 0 < d < m < u and $p, q \in (0, 1)$. For some values of parameters (in the range described above) this model free of arbitrage, and for some it is not; on which of the parameters p, q, d, m, u, r does this depend on?

A. all of them B. d, m, u, r C. d, u, r D. p, q, d, u, r E. None of the above

3. [default,O3c]

Define the random variables

ω	ω_1	ω_2	ω_3
$S_1(\omega)$	2	4	10
$Y_1(\omega)$	4	2	-4

Consider a one-period trinomial model (B, S) with interest rate r = 1 (so $B_0 = 1, B_1 = 1 + r$), and a stock whose price is given by $S_0 = 2$ at time 0 and by S_1 at time 1. Here $\Omega = \{x_1, x_2, x_3\}$ is the underlying probability space, on which is defined a probability \mathbb{P} such that $\mathbb{P}(\{\omega\}) > 0$ for every $\omega \in \Omega$).

- (a) Is this model free of arbitrage?
 - A. No B. Yes
- (b) Consider the derivative with payoff Y_1 at time 1. Is Y_1 replicable (in the model (B, S))? A. No B. Yes
- (c) Is the model (B, S) complete, i.e., can any option be replicated in this model? A. No B. Yes
- (d) What is the smallest price p at which an infinitely risk-averse agent would be willing to sell Y_1 ? A. 1 B. 2 C. There exists no such p D. Not enough info to answer E. None of the above