This document contains 1 questions.

1. [default,O3a]

On the probability space $\Omega = \{\omega_1, \omega_2, \omega_3\}$, on which is defined probability \mathbb{P} such that $\mathbb{P}(\{\omega\}) > 0$ for every $\omega \in \Omega$, define random variables

ω	ω_1	ω_2	ω_3
$S_1(\omega)$	1	6	12
$X_1(\omega)$	22	30	44
$Y_1(\omega)$	22	32	44

Consider the one-period trinomial model of the market (B, S) made of a bond B with initial price 1 and interest rate r = 1, a one stock whose initial price is $S_0 = 3$, and whose final price S_1 is as in the above table. Consider also the derivatives with payoffs X_1, Y_1 . Denote with u(X) := u(X; B, S) (resp. d(X) := d(X; B, S)) the smallest (resp. largest) value at which an infinitely risk-averse agent, investing in the market (B, S), is willing to sell (resp. buy) X. So far, all prices were stated in a fixed currency, say \pounds . When solving this exercise, compute all values not in terms of \pounds but in terms of units of bond. In other words, given a process of prices $W = (W_0, W_1)$, consider instead the discounted process

$$\overline{W}_t := W_t/B_t$$
, i.e. $\overline{W}_0 = W_0$, $\overline{W}_1 = W_1/(1+r)$

(so e.g. taking W = B this means $\overline{B}_0 = \overline{B}_1 = 1$, taking W = S this means $\overline{S}_0 = S_0, \overline{S}_1 = S_1/(1+r)$). Recall that a model is called *complete* if any derivative can be replicated in such model.

In item (g), we consider the enlarged market (B, S, Y), where we are assuming that Y_1 is being sold at price $Y_0 := 16$ at time 0. From item (h) (included) onwards, we consider the enlarged market (B, S, X), where we are assuming that X_1 is being sold at price $X_0 := 31/2$ at time 0.

- (a) Is the model (B, S) free of arbitrage? A. No B. Yes
- (b) Is the model (B, S) complete? A. No B. Yes
- (c) Is X_1 replicable in the model (B, S)? A. No B. Yes
- (d) Is Y_1 replicable in the model (B, S)? A. No B. Yes
- (e) What are d(X; B, S), u(X; B, S)? A. 15,15 B. 16,16 C. 15,16 D. $\frac{31}{2}, \frac{31}{2}$ E. None of the above
- (f) What are d(Y; B, S), u(Y; B, S)? A. 15,15 B. 16,16 C. 15,16 D. $\frac{31}{2}, \frac{31}{2}$ E. None of the above
- (g) Is the model (B, S, Y) complete? A. No B. Yes
- (h) Is the model (B, S, X) arbitrage-free? A. No B. Yes

(i) Is the model (B, S, X) complete? A. No B. Yes

.....