This document contains 2 questions.

1. [default,O3g]

Consider the probability space $\Omega = \{\omega_1, \omega_2, \omega_3\}$, with a probability \mathbb{P} such that $\mathbb{P}(\{\omega\}) > 0$ for every $\omega \in \Omega$. For $t \in \mathbb{R}$, define the random variables

ω	ω_1	ω_2	ω_3
$S_1(\omega)$	2	3	5
$X_1(\omega)$	1	3	t

Consider the one-period trinomial model of the market (B, S) made of a bond B with initial price 1 (all prices in a fixed currency, say £), and interest rate r = 0, a stock whose initial price is $S_0 = 4$, and whose final price is S_1 . We also consider a derivative X with payoff X_1 . Answer the following questions and justify carefully with either proofs or counterexamples.

- (a) Is the market (B, S) free of arbitrage?
 - A. No B. Yes
- (b) Find all the values of t (if any) for which X_1 replicable (in the market (B, S)). A. 8 B. 5 C. None of the above

Assume from now on that X has initial cost $X_0 = 4$.

(c) Find all the values of t (if any) for which the market (B, S, X) is free of arbitrage. A. 5 B. $\frac{11}{2}$ C. $(5, \frac{11}{2})$ D. $[5, \frac{11}{2}]$ E. None of the above

Assume from now on that t = 5.

- (d) Can EMM be used to determine whether the market (B, S, X) is complete? A. No B. Yes
- (e) Find explicitly an arbitrage strategy in the market (B, S, X).
- 2. [default,O16b]

Consider a one-period arbitrage-free model (B, S) of market composed of a bank account B with interest rate r, and one underlying S. To find the price of a money-back call option, complete the following steps.

- (a) Write down a formula for the function f s.t. $f(S_1, m)$ is the payoff of the derivative which, at maturity T = 1, provides its buyer with both a call option with strike K on the underlying S, and the amount $m \in \mathbb{R}$ if the call with strike K is in the money (i.e. if $S_T \ge K$).
- (b) From now on let (B, S) be given by the binomial model with

$$r = 0$$
, $S_0 = 12$, $S_1(H) = 20$, $S_1(T) = 4$, $K = 12$.

Compute the initial value $X_0(m)$ of the derivative with payoff $X_1(m) := f(S_1, m)$.

(c) In the above binomial model (B, S), compute the price M_0 of the money-back call option, which at maturity T = 1 gives its buyer a call option on S with strike K = 12, plus it repays the initial cost M_0 if the call with strike K finished in the money.

What is the value of M_0 ?

A. 10 B. 8 C. 4 D. None of the above