(Total: 0 marks)

This document contains 2 questions.

Question 1

[default,M11]

Consider a quanto call option, which has payoff $X_T = (E_0 S_T - k)^+$ at maturity T, where S is the value of a foreign asset in the foreign currency, the strike price k is set in the domestic currency, and E_0 is the exchange rate between currencies at time 0 (so that $E_0 S_0$ is the value at time 0 of the foreign asset in the domestic currency).

You are a British investor and have to compute the price (in £) X_0 at time 0 of a quanto call option with strike £8, whose underlying, a stock traded in Germany, is modelled as having the following values in \in at maturity N = 2

Suppose the domestic (i.e. for £) interest rate is the constant $r = \frac{1}{4} = 25\%$, the foreign (i.e. for e) interest rate is the constant q = 1 = 100%, and the exchange rate E between £ and e (defined as the cost of one e in £) is modelled as

Figure 1: Tree of E.

Consider the market composed of the domestic and foreign bank accounts, and the foreign asset.

- (a) Are there values of S_0, S_1 for which there is no arbitrage ? A. No B. Yes
- (b) To what interval of values does the unique arbitrage-free price X_0 of X at time 0 belong to? A. $(-\infty, 0]$ B. (0, 3) C. [3, 4) D. [4, 6) E. None of the above

Question 2

[default,M20]

Model a risky asset S with a 2-period binomial model with constant up factor 2 and down factor 1/2 and initial value $S_0 = 4$, and a bank account with constant interest rate r = 1/4.

- 1. What is the price at time 0 of the American put option on S with strike price K = 5? A. $\frac{2}{5}$ B. $\frac{34}{25}$ C. $\frac{24}{25}$ D. None of the above
- 2. Let τ^* be the smallest optimal exercise time. Which of the following statements about τ^* are correct? A. $\tau^*(HH) = 2$ B. $\tau^*(HT) = 2$ C. $\tau^*(TH) = 1$ D. $\tau^*(TT) = 2$

(Total: 0 marks)