This document contains 2 questions.

1. [default,Q18]

Let X, Y be IID rvs with Bernoulli distribution of parameter $p \in (0, 1)$, i.e.

$$P(X = 1) = p$$
, $P(X = 0) = 1 - p$, and define $Z := 1_{\{X+Y=0\}}$.

Compute E[X|Z] and E[Y|Z] for arbitrary $p \in (0, 1)$, then answer:

(a) If p = 1/3, which values does E[X|Z] take?

A. 0, 1/3 B. 0, 3/8 C. 0, 3/5 D. None of the above

(b) Are E[X|Z] and E[Y|Z] independent?

Hint: A rv which is independent by itself must be constant.

- A. Yes, always (for any $p \in (0, 1)$)
- B. It depends on the value of $p \in (0, 1)$
- C. Never (for no $p \in (0, 1)$)

2. [default,P14]

Let $c \neq 0$ be a constant, $(X_i)_{i \in \mathbb{N}}$ be IID rvs with the same law as the rv X, and for $n \in \mathbb{N} \setminus \{0\}$ set

$$S_0 := 0, \quad S_n := \sum_{i=1}^n X_i, \quad Q_0 := 0, \quad Q_n := \sum_{i=1}^n X_i^2, \quad \mathcal{F}_0 := \{\emptyset, \Omega\}, \quad \mathcal{F}_n := \sigma(X_1, \dots, X_n)$$

Calculate the values of the constants a, b, d, y, z such that the following processes A, B, C, D, Z are martingales:

- (a) $A_n := S_n an$ for $n \in \mathbb{N}$, assuming $\mathbb{E}|X| < \infty$. A. $a = \frac{1}{2}\mathbb{E}[X]$ B. $a = \mathbb{E}[X]$ C. $a = 2\mathbb{E}[X]$ D. a = 0 E. None of the above
- (b) $B_n := Q_n bn$ for $n \in \mathbb{N}$, assuming $\mathbb{E}X^2 < \infty$. A. $b = \frac{1}{2}\mathbb{E}[X^2]$ B. $b = \mathbb{E}[X^2]$ C. $b = 2\mathbb{E}[X^2]$ D. b = 0 E. None of the above
- (c) $C_n := \exp(cS_n nd)$ for $n \in \mathbb{N}$, assuming $|X| \le c < \infty$. A. $d = \mathbb{E}[\exp(cX)]$ B. $d = \log(\mathbb{E}[\exp(cX)])$ C. $d = \log(\mathbb{E}[cX])$ D. $d = \mathbb{E}[\log(cX)]$ E. d = 0
- (d) $D_n := Y_n yn$ for $n \in \mathbb{N}$, where $Y_n := |S_{n \wedge \tau}|$ for $\tau := \inf\{n \ge 1 : S_n = 0\}$, assuming $P(X = \pm 1) = 1/2$. *Hint: Show that* $\{\tau \le n\}$ *is* \mathcal{F}_n -measurable, write $1 = 1_{\{\tau \le n\}} + 1_{\{\tau > n\}}$ and give explicit expressions for Y_{n+1} as a function of (Y_n, X_{n+1}) on $\{\tau \le n\}$, and on $\{\tau > n\}$. A. y = 4 B. y = 1 C. $y = \frac{1}{4}$ D. y = 0 E. None of the above
- (e) Z defined by: $Z_0 := 1, Z_{n+1} := zZ_n/2^{X_{n+1}}$ for $n \in \mathbb{N}$, assuming $\mathbb{P}(X = k) = 1/2^k$ for $k \in \mathbb{N} \setminus \{0\}$. A. z = 3 B. z = 1 C. $z = \frac{1}{3}$ D. None of the above