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This document contains 1 questions.

1. [default,P12]

(a) Prove that a random variable which is independent by itself must be a.s. constant.

(b) Consider a probability space (Ω,A,P) and a sigma-algebra G ⊆ A. Given A ∈ F , define B := {E[1A|G] =
0} (meaning B := {ω : E[1A|G](ω) = 0}). Show that P(A ∩B) = 0.

(c) Consider rv X, Y, Z s.t. (X,Z) has the same law as (Y, Z); in particular X and Y have the same law µ.

Show that for any (Borel, bounded) function f

i. E[f(X)|Z] = E[f(Y )|Z] P a.s.

ii. Define h1, h2 via
h1(X) := E[f(Z)|X], h2(Y ) := E[f(Z)|Y ].

Show that h1 = h2 µ a.s. (here h1, h2 are looked at as random variables defined on the space Ω := R
endowed with the probability µ).

(d) Show that if T1, . . . , Tn are IID and integrable (meaning E[|Ti|] < ∞) and T := T1 + . . . + Tn then
(T1, T ), . . . , (Tn, T ) have the same law. Conclude that E[T1|T ] = T/n by using the results of item (c).
Then, compute E[T |T1].
Hint: consider Z := T2 + . . .+ Tn.

Solution:

(a) If W was independent of itself, i.e.

E[f(W )g(W )] = E[f(W )]E[g(W )], ∀f, g,

then in particular E[W ]2 = E[W 2], and so E[(W − E[W ])2] = E[W 2] − E[W ]2 equals 0. Thus
(W − E[W ])2 is a positive random variable with 0 expectation, so it is 0 a.s., i.e. W = E[W ] a.s., so
W is a.s. constant.

(b) Since E[X] = E[E[X|G]] for any rv X, and since B ∈ G, we have

E[1A1B] = E[E[1A1B|G]] = E[E[1A|G]1B] (1)

Since by definition E[1A|G] = 0 on B, we have that E[1A|G]1B = 0, and so by (1) and since 1A∩B =
1A1B we have P(A ∩B) = E[1A1B] = 0

(c) i. By definition of conditional expectation for any fn g

E[g(Z)E[f(X)|Z]] = E[g(Z)f(X)], E[g(Z)E[f(Y )|Z]] = E[g(Z)f(Y )].

Moreover, since (X,Z) has the same law as (Y, Z),

E[g(Z)f(X)] = E[g(Z)f(Y )],
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and to we get that W := E[f(X)|Z] − E[f(Y )|Z] satisfies E[g(Z)W ] = 0 for all g. Since W
is σ(Z)-measurable, there exists a fn h s.t. W = h(Z); but then choosing g = h we get that
E[h(Z)2] = E[g(Z)W ] = 0, and so W = h(Z) = 0 a.s., i.e. E[f(X)|Z] = E[f(Y )|Z] a.s. (to be
precise, one should observe that if f is bounded, then W is bounded, and so h can also chosen
to be bounded).

ii. Working like in the previous item we get that

E[g(X)E[f(Z)|X]] = E[g(Y )E[f(Z)|Y ]];

we cannot simply conclude like before, since g(X) 6= g(Y ). Instead, just notice that

E[g(X)E[f(Z)|X]] = E[g(X)h1(X)] =

∫
R
g(x)h1(x)µ(dx)

and analogously for E[g(X)E[f(Z)|X]], and so∫
R
gh1dµ =

∫
R
gh2dµ.

We can now conclude like before: taking g = h1 − h2 shows that
∫

(h1 − h2)
2dµ = 0 and so

h1 = h2 µ a.s..

(d) By symmetry it is intuitively clear that (T1, T ), . . . , (Tn, T ) have the same law, i.e. (T1, T ) ∼ (Ti, T )
for all i; let us now prove it formally. For convenience of notation we only consider the case i = 2,
though the proof is essentially identical for any i. Since Z := T2 + . . . + Tn is independent of T1
(as it is a function of T2, . . . , Tn), the independence lemma tells us that, given an arbitrary (Borel,
bounded) function h,

Eh (T1, T ) = Eh (T1, T1 + Z) = E
(
E (h (T1, T1 + Z) |T1)

)
= E (g1 (T1))

where g1 is the function

g1(t) := Eh (t, t+ Z) = Eh (t, t+ T2 + T3 + . . .+ Tn) .

The same calculation gives

Eh (T2, T ) = E (g2 (T2)) , where g2(t) := Eh (t, t+ T1 + T3 + . . .+ Tn) .

Since the (Ti)i are IID, (T2, T3, . . . , Tn) has the same law as (T1, T3, . . . , Tn), and so g := g1 = g2.
Since (Ti)i are identically distributed, E (g (T1)) = E (g (T2)), and so (T1, T ) ∼ (T2, T ) follows from

Eh (T1, T ) = E (g (T1)) = E (g (T2)) = Eh (T2, T ) .

From the previous exercise it follows that E[T1|T ] = . . . = E[Tn|T ] a.s.. Therefore

nE[T1|T ] = E[T1|T ] + . . .+ E[Tn|T ] = E[T1 + . . .+ Tn|T ] = E[T |T ] = T

and so E[T1|T ] = T/n. Finally, since Z and T1 are independent and Z + T1 = T we get

E[T |T1] = E[Z + T1|T1] = E[Z|T1] + E[T1|T1] = E[Z] + T1 = (n− 1)E[T1] + T1.
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