
Pietro Siorpaes Hw, week 11, due 24-03-23 - Solution Sheet Option Pricing

This document contains 2 questions.

1. [default,M1]

Consider a binomial market model (Bn, Sn)n≤N where the bank account B has interest rate r = 0 and the
price of the underlying S starts at S0 = 80, and its value increases by 10 in case of Heads and decreases by
10 in case of Tails, i.e.

Sn+1(ω) :=

{
Sn(ω1, . . . , ωn) + 10, if ωn+1 = H

Sn(ω1, . . . , ωn)− 10, if ωn+1 = T
, n ∈ 0, . . . , N − 1.

Denote with Q the unique risk-neutral measure and with Xn the coin tosses, given as usual by Xn(ω) = ωn.

(a) Draw the binary tree representing S. Can you draw it as a recombinant tree?

A. No B. Yes

(b) Are (Xn)n≤N independent under Q?

A. No B. Yes

(c) Is S Markov under Q?

A. No B. Yes

(d) Are (Xn)n≤N identically distributed under Q?

A. No B. Yes

(e) Compute Q({ω}) for every ω ∈ {H,T}N , then choose the correct statement

A. Q({ω}) it not constant in N , nor in ω ∈ {H,T}N

B. Q({ω}) it not constant in N , but is constant in ω ∈ {H,T}N

C. Q({ω}) = 1/2N for all N ≥ 1, ω ∈ {H,T}N

D. None of the above

(f) Consider the following methods to compute the price C0 of a call option on S with strike K = 80 and
maturity N .

1. Compute Q, then use it to compute C0 = EQ[CN ], where CN := (SN − 80)+

2. Compute CN , then use Cn = EQ[Cn+1|Fn] to compute (Cn)N−1n=0 by backward induction

Which of the following statement (about computing C0 numerically using a computer for big N , say
N > 100) is correct?

A. Both methods allow to compute C0 even for big N

B. Only the first method allows to compute C0 even for big N

C. Only the second method allows to compute C0 even for big N

D. Neither method allows to compute C0 for big N

(g) Which of the following statement about computing C0 by hand when N = 5 and using one of two
methods above is correct?

A. Both methods allow to compute C0 reasonably fast

B. Only the first method allows to compute C0 reasonably fast
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C. Only the second method allows to compute C0 reasonably fast

D. Neither method allows to compute C0 reasonably fast

(h) Compute C0 by hand when N = 5, then choose the correct statement

A. C0 ∈ (6, 8) B. C0 ∈ [8, 10] C. C0 ∈ (10, 12) D. None of the above

Solution:

(a) Sn(ω(n)) = 80 + 10Hn(ω(n))− 10Tn(ω(n)), where Hn(ω) := Hn(ω(n)) :=
∑n

k=1 1{H}(Xk) equals the
numbers of Heads in the first n coin tosses, and Tn(ω) =

∑n
k=1 1{T}(Xk) = n−Hn(ω(n)) the number

of tails (while this is clear, you can prove it by induction if you care). Thus S is permutation-invariant,
since it depends only on the numbers of Heads in the first n coin tosses, not on the order with which
they came out. So, S can be represented by a recombinant tree. This can also be guesses drawing
the binary tree of (Sn)n≤N up to time N = 3, which is

S0 = 80

S1(H) = 90

S2(HH) = 100
S3(HHH) = 110

S3(HHT ) = 90

S2(HT ) = 80
S3(HTH) = 90

S3(HTT ) = 70

S1(T ) = 70

S2(TH) = 80
S3(THH) = 90

S3(THT ) = 70

S2(TT ) = 60
S3(TTH) = 70

S3(TTT ) = 50

which can be represented by a recombining tree as follows

80

90
100

110

90

80

70
60

70

50
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(b) Writing Sn := Sn(ω1, . . . , ωn) we see that the up and down factors Un, Dn are

Sn+1

Sn

(ω1, . . . , ωn, ωn+1) =

{
Un if ωn+1 = H

Dn if ωn+1 = T
=


Sn + 10

Sn

if ωn+1 = H

Sn − 10

Sn

if ωn+1 = T

. (1)

As usual, U,D are adapted, i.e. Un, Dn can depend on (ω1, . . . , ωn) but not on ωi for i ≥ n+ 1 (since
they are functions of Sn(ω1, . . . , ωn)). The corresponding risk neutral probabilities are

P̃n =
1 + r −Dn

Un −Dn

=
1− Sn−10

Sn

Sn+10
Sn
− Sn−10

Sn

=
1

2
, Q̃n = 1− P̃n =

1

2
.

Thus, in this particular case P̃n is actually deterministic (i.e. constant in ω), which shows that the
coin tosses are independent under Q, since

P̃n(ω1, . . . , ωn) := Q(Xn+1 = H|(X1, . . . , Xn) = (ω1, . . . , ωn)). (2)

(c) As usual, to show that S is Q-Markov, we try to write Sn+1 as a function of Sn (which is Fn-
measurable, since it only depends on the first n coin tosses, i.e. it is a function of (X1, . . . , Xn)), and
a rv Bn which is independent (under Q) from Fn, and then apply the independence lemma to get that
EQ[f(Sn+1)|Fn] equals g(Sn) for some g. While in general we do this by taking Bn := Sn+1/Sn, here
instead we take Bn := Sn+1−Sn, and thus we write Sn+1 = Sn+Bn. Indeed, since Xn+1 is independent
of Fn, the identity Sn+1 − Sn = h(Xn+1) (where h is the function h(H) = 10, h(T ) = −10) shows
that Bn = Sn+1 − Sn is independent on Fn. Thus, it follows from the independence lemma that

EQ[f(Sn+1)|Fn] = EQ[f (Sn + h(Xn+1)) |Fn] = g(Sn), (3)

where g is the function g(s) := EQ[f (s+ h(Xn+1))].

Remark: Notice that we don’t actually need to compute g explicitly to conclude that S is Markov.
However, for applications (for example to pricing) one should compute g as explicitly as possible. In
this exercise

g(s) = (f (s+ 10) + f (s− 10)) /2. (4)

(d) Since the coin tosses are independent we get that Q(Xn+1 = H) = Q(Xn = H|X(n) = ω(n)) = P̃n.
Since the P̃n are also constant in n, it follows that the (Xn)n are identically distributed

(e) Since under Q the (Xn)n are IID, it is easy to compute Q({ω(n)}) = pHn(ω(n))(1−p)n−Hn(ω(n)), where
p = P̃n. Since p = 1/2 = 1− p, this expression simplifies further to Q(ω(n)) = 1/2n for all ω(n): any
sequence (ω1, . . . , ωn) of heads and tails has the same probability 1

2n
under Q!
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(f) Using the first method means evaluating EQ[(SN − k)+]. To do this, one needs to generate a rv
with the distribution which SN has under Q; let us try to identify it. If Bn := Sn − Sn−1 then
Yn := 1

2
(Bn

10
+ 1) are Bernoulli IIDs. Thus An :=

∑n
k=1 Yk has binomial distribution with parameters

n and p := Q(Y1 = 1) = 1
2
, and Sn − S0 = 20An − 10n. Since S0 = 80 = K we have that

CN = (SN − k)+ = (20AN − 10N)+ = 10(2AN − N)+. Since one can use a computer to quickly
generate a binomial distribution,

C0 = 10EQ[(2AN −N)+], AN ∼ B

(
N,

1

2

)
. (5)

can quickly be calculated on a computer. Besides, for big N one can approximate the binomial
distribution with a Gaussian rv (by the central limit theorem), making the approximate calculation
very fast.

The Markov method has a computational cost which increases with N2 (as discussed in the lecture
notes), and so a computer can use it to calculate C0 even for big N .

(g) 1st solution: While we could just use the formula eq. (5), let us instead do the calculations more
‘by hand’, which is probably clearer, and is closer to what one normally has to deal with (since often
the law of SN cannot be easily expressed using a well known distribution). We can compute

C0 = EQ[(S5 − 80)+] =
∑

s∈Im(S5)

(s− 80)+Q({ω : S5(ω) = s}), (6)

where s belongs to the set Im(S5) of values which S5 can take. A moment’s though (or just a drawing
of the binomial tree of S) shows that Im(S5) = {130, 110, 90, 70, 50, 30}. Since each ω ∈ {S5 = s}
has Q-probability 1/25, the quantity of interest Q({ω : S5(ω) = s}) equals 1/25 multiplied times
#{S5 = s} (the number of elements of {S5 = s}); let us compute it. In fact, to compute (6) we only
need to do this for the s for which (s− 80)+ 6= 0, since the other terms do not contribute to the sum
in (6). There are exactly 3 such values of s (i.e. three ways for the call to ‘expire in the money’, i.e.
to have a non-zero value at expiry): these are 130, 110, 90. Clearly S5(ω) = 130 only if all five coin
tosses are heads, so #{S5 = 130} = 1. S5(ω) = 110 iff exactly one of the five coin tosses is a tail;
there are 5 sequences that have 4 heads and one tail (indeed these are:

THHHH,HTHHH,HHTHH,HHHTH,HHHHT ),

and so #{S5(ω) = 110} = 5. Finally, S5(ω) = 90 iff exactly two of the five coin tosses come
out tail, so #{S5(ω) = 90} equals to the number of ways of choosing 2 tails in a sequence of 5

tosses. Recall that the number of ways to choose k tails out of n coin tosses is

(
n
k

)
= n!

k!(n−k)! ; so

#{S5(ω) = 90} =

(
5
2

)
= 5!

2!3!
= 10. In summary,

Q({S5 = 130}) = 1/25,Q({S5 = 110}) = 5/25,Q({S5 = 90}) = 10/25 ,
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and since 25 = 32 the time-zero price of the call is

C0 =
1

32
(130− 80) +

5

32
(110− 80) +

10

32
(90− 80) =

300

32
= 9.375

2nd solution: Alternatively, we can use the fact that S is Markov under Q and CN = fN(SN)
for fN(s) := (s − K)+ to compute by backward induction the pricing functions (fn)n≤N s.t. Cn =
EQ[Cn+1|Fn] = fn(Sn).

In this exercise one can get nice explicit formulas for the (fn)n, since from eqs. (3) and (4) we get

fn(s) = (fn+1 (s+ 10) + fn+1 (s− 10)) /2. (7)

from which, using f5(s) := (s− 80)+, one can compute explicitly by backward induction:

f4(s) = 1
2

(
(s− 70)+ + (s− 90)+

)
f3(s) = 1

22

(
(s− 60)+ + 2(s− 80)+ + (s− 100)+

)
f2(s) = 1

23

(
(s− 50)+ + 3(s− 70)+ + 3(s− 90)+ + (s− 110)+

)
f1(s) = 1

24

(
(s− 40)+ + 4(s− 60)+ + 6(s− 80)+ + 4(s− 100)+ + (s− 120)+

)
f0(s) = 1

25

(
(s− 30)+ + 5(s− 50)+ + 10(s− 70)+ + 10(s− 90)+ + 5(s− 110)+ + (s− 130)+

)
In fact, looking at the above formulas for fn is becomes immediately clear that, if fN(s) := (s−K)+

is the payoff function of a call with strike K and expiry N ∈ N, then for i = 0, . . . , N we find the
call price at time N − i is fN−i(SN−i), where

fN−i =
1

2i

i∑
k=0

(
i
k

)(
s−K − 10i+ 20k

)+
.

That this is the correct formula for fN−i is a fact that, once correctly guessed, could be proved by
induction, simply verifying that this formula satisfies eq. (7) and fN(s) := (s−K)+.

However, this is not normal: in most exercises the formulas for (fn)n would be terribly ugly and have
a very different form for different values of n. Thus, normally one does not compute a formula for
fn(s) for every s, n. Rather, one computes the possible values {skn}k of Sn, and then uses eq. (7) and
the formula for fN (in our case f5(s) := (s−80)+) to compute numerically fn(skn) for all k. Let us do
this explicitly. Since f5(s) := (s− 80)+ and S5 takes values {30, 50, 70, 90, 110, 130}, we can compute

S5 30 50 70 90 110 130
f5(S5) 0 0 0 10 30 50

.

Since S4 takes values {40, 60, 80, 100, 120}, eq. (7) with n = 4 and the above table for f5 gives us

S4 40 60 80 100 120
f4(S4) 0 0 1

2
(10) 1

2
(30 + 10) 1

2
(50 + 30)

i.e.
S4 40 60 80 100 120

f4(S4) 0 0 5 20 40
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We can now compute f3 using the fact that S3 takes values {50, 70, 90, 110}, eq. (7) with n = 3 and
the above table for f4 to get

S3 50 70 90 110
f3(S3) 0 1

2
(5 + 0) 1

2
(20 + 5) 1

2
(40 + 20)

i.e.
S3 50 70 90 110

f3(S3) 0 5
2

25
2

30

We can now compute f2 using the fact that S2 takes values {60, 80, 100}, eq. (7) with n = 2 and the
above table for f3 to get

S2 60 80 100
f2(S2)

1
2

(
5
2

+ 0
)

1
2

(
25
2

+ 5
2

)
1
2

(
30 + 25

2

) i.e.
S2 60 80 100

f2(S2)
5
4

15
2

85
4

We can now compute f1 using the fact that S1 takes values {70, 90}, eq. (7) with n = 1 and the
above table for f2 to get

S1 70 90
f1(S1)

1
2

(
15
2

+ 5
4

)
1
2

(
85
4

+ 15
2

) i.e.
S1 70 90

f1(S1)
35
8

115
8

We can now finally compute f0 using the fact that S0 = 80, eq. (7) with n = 0 and the above table
for f1 to get

C0 = f0(S0) =
1

2

(
35

8
+

115

8

)
=

150

16
.

(h) As we computed in the previous item C0 = 150
16

= 9.375

2. [default,M15]

Consider a market (Bn, Sn)n=0,1,...,T described by a multi-period binomial model with constant parameters
0 < d < 1 + r < u, and as usual let Fk = σ(X1, . . . , Xk), 0 ≤ k ≤ T be the filtration generated by the coin
tosses (Xi)i. Consider a forward-start call option, which entitles its holder to receive at time T0 ∈ N, T0 < T a
call option (on the stock S) with maturity T and strike KST0 (where K > 0). Answer the following questions,
and (other than in item (a)) justify carefully with proofs.

(a) Write down a formula, involving the expectation with respect to the risk-neutral measure Q, for

V0 := the price at time 0 of the forward-start call option.

(b) Show that, if {Xi}i∈I are independent random vectors and {fi}i∈I are Borel functions then {fi(Xi)}i∈I
are independent random vectors

(c) Prove that the random variables

Rk+1 :=
Sk+1

Sk

, k = 0, 1, . . . , T − 1,

are IID under the EMM Q.
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(d) Prove that ST

ST0
is independent of ST0 under Q.

(e) Compute the expectation of ST0 under Q.

(f) Show that V0 = c(T − T0, Kx), where c(t, x) is the price at time 0 of a call option with expiry t and
S0 = x.

Solution:

1. The risk neutral pricing formula gives that the price of the forward-start is

V0 =
1

(1 + r)T
EQ ((ST −KST0)

+
)
.

2. To show that the random variables Yi := fi(Xi), i ∈ I are independent, notice that for every Borel
bounded functions {gi}i we get that gi(Yi) = (gi ◦ fi)(Xi), and since the {Xi}i∈I are independent we
get, for every finite set J ⊆ I,

EQ[Πi∈J(gi ◦ fi)(Xi)] = Πi∈JEQ[(gi ◦ fi)(Xi)]

i.e.
EQ[Πi∈jgi(Yi)] = Πi∈JEQ[gi(Yi)]

proving the thesis.

3. Let us show that, for each i, Ri+1 is independent of Fi; this implies that Ri+1 is independent of
(R1, . . . , Ri) (since the Rk, k ≤ i are Fi-measurable, i.e. σ(R1, . . . , Ri) ⊆ Fi), and so that the
{Rk}k=0,...,T−1 are independent (as stated in remark 99 in the lecture notes).

First, notice that Xi+1 is Q-independent of (X1, . . . , Xi) since, by definition of Q,

Q(Xi+1 = H|ω1, . . . , ωi) = p̃i :=
(1 + r)− d
u− d

,

and the latter it deterministic (i.e. it does not depend on ω1, . . . , ωi) in this exercise. Since Ri+1 only
depends on the (i + 1)th coin toss Xi+1 we can write Ri+1 = fi+1(Xi+1) for some (Borel) function
fi+1. By part b, Ri+1 = fi+1(Xi+1) is Q-independent of Fi = σ(X1, . . . , Xi).

The {Rk}k=0,...,T−1 are also identically distributed, since {Ri = u} = {Xi = H} has probability p̃i,
and p̃i does not actually depend on i.

4. Since the {Rk}k=0,...,T−1 are independent, the two vectors (Rk)k=0,...,T0 and (Rk)k=T0+1,...,T−1 are
independent (as stated in remark 99 in the lecture notes). Since ST

ST0
= RT0+1 · · ·RT and analogously

ST0 = S0R1 · · ·RT0 ,
ST

ST0
is independent of ST0 by part b.

5. Since the discounted stock price is a martingale under Q,

1

(1 + r)T0
EQ (ST0) =

1

(1 + r)0
EQ (S0) = S0, and so EQ (ST0) = S0(1 + r)T0 .
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6. Since ST0 > 0 we can write (ST −KST0)
+ as the product of the two independent random variables

ST0 and
(

ST

ST0
−K

)+
, and so

V0 =
1

(1 + r)T
EQ (ST0) Ẽ

[(
ST

ST0

−K
)+
]
,

which one could of course also have derived using the independence lemma. Since EQ (ST0) =
x(1 + r)T0 and x > 0 we get that

V0 = x
1

(1 + r)T−T0
EQ

[(
ST

ST0

−K
)+
]

=
1

(1 + r)T−T0
EQ

[(
x
ST

ST0

−Kx
)+
]
.

Since the (Rk)k are IIDs, the random variables

x
ST

ST0

= xRT0+1 · · ·RT , ST−T0 = S0R1 · · ·RT−T0

have the same law (under Q), and so

V0 =
1

(1 + r)T−T0
EQ [(ST−T0 −Kx)+

]
= c(T − T0, Kx).
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