This document contains 2 questions.

1. [default,M1]

Consider a binomial market model $(B_n, S_n)_{n \leq N}$ where the bank account B has interest rate r = 0 and the price of the underlying S starts at $S_0 = 80$, and its value increases by 10 in case of Heads and decreases by 10 in case of Tails, i.e.

$$S_{n+1}(\omega) := \begin{cases} S_n(\omega_1, \dots, \omega_n) + 10, & \text{if } \omega_{n+1} = H \\ S_n(\omega_1, \dots, \omega_n) - 10, & \text{if } \omega_{n+1} = T \end{cases}, \qquad n \in 0, \dots, N-1.$$

Denote with \mathbb{Q} the unique risk-neutral measure and with X_n the coin tosses, given as usual by $X_n(\omega) = \omega_n$.

- (a) Draw the binary tree representing S. Can you draw it as a recombinant tree?A. No B. Yes
- (b) Are $(X_n)_{n \leq N}$ independent under \mathbb{Q} ? A. No B. Yes
- (c) Is S Markov under \mathbb{Q} ?
 - A. No B. Yes
- (d) Are $(X_n)_{n \leq N}$ identically distributed under \mathbb{Q} ? A. No B. Yes
- (e) Compute $\mathbb{Q}(\{\omega\})$ for every $\omega \in \{H, T\}^N$, then choose the correct statement
 - A. $\mathbb{Q}(\{\omega\})$ it not constant in N, nor in $\omega \in \{H, T\}^N$
 - B. $\mathbb{Q}(\{\omega\})$ it not constant in N, but is constant in $\omega \in \{H, T\}^N$
 - C. $\mathbb{Q}(\{\omega\}) = 1/2^N$ for all $N \ge 1, \omega \in \{H, T\}^N$
 - D. None of the above
- (f) Consider the following methods to compute the price C_0 of a call option on S with strike K = 80 and maturity N.
 - 1. Compute \mathbb{Q} , then use it to compute $C_0 = \mathbb{E}^{\mathbb{Q}}[C_N]$, where $C_N := (S_N 80)^+$
 - 2. Compute C_N , then use $C_n = \mathbb{E}^{\mathbb{Q}}[C_{n+1}|\mathcal{F}_n]$ to compute $(C_n)_{n=0}^{N-1}$ by backward induction

Which of the following statement (about computing C_0 numerically using a computer for big N, say N > 100) is correct?

- A. Both methods allow to compute C_0 even for big N
- B. Only the first method allows to compute C_0 even for big N
- C. Only the second method allows to compute C_0 even for big N
- D. Neither method allows to compute C_0 for big N
- (g) Which of the following statement about computing C_0 by hand when N = 5 and using one of two methods above is correct?
 - A. Both methods allow to compute C_0 reasonably fast
 - B. Only the first method allows to compute C_0 reasonably fast

- C. Only the second method allows to compute C_0 reasonably fast
- D. Neither method allows to compute C_0 reasonably fast
- (h) Compute C_0 by hand when N = 5, then choose the correct statement A. $C_0 \in (6, 8)$ B. $C_0 \in [8, 10]$ C. $C_0 \in (10, 12)$ D. None of the above
- 2. [default,M15]

Consider a market $(B_n, S_n)_{n=0,1,...,T}$ described by a multi-period binomial model with constant parameters 0 < d < 1 + r < u, and as usual let $\mathcal{F}_k = \sigma(X_1, \ldots, X_k), 0 \leq k \leq T$ be the filtration generated by the coin tosses $(X_i)_i$. Consider a *forward-start call option*, which entitles its holder to receive at time $T_0 \in \mathbb{N}, T_0 < T$ a call option (on the stock S) with maturity T and strike KS_{T_0} (where K > 0). Answer the following questions, and (other than in item (a)) justify carefully with proofs.

(a) Write down a formula, involving the expectation with respect to the risk-neutral measure \mathbb{Q} , for

 $V_0 :=$ the price at time 0 of the forward-start call option.

- (b) Show that, if $\{X_i\}_{i \in I}$ are independent random vectors and $\{f_i\}_{i \in I}$ are Borel functions then $\{f_i(X_i)\}_{i \in I}$ are independent random vectors
- (c) Prove that the random variables

$$R_{k+1} := \frac{S_{k+1}}{S_k}, \quad k = 0, 1, \dots, T-1,$$

are IID under the EMM \mathbb{Q} .

- (d) Prove that $\frac{S_T}{S_{T_0}}$ is independent of S_{T_0} under \mathbb{Q} .
- (e) Compute the expectation of S_{T_0} under \mathbb{Q} .
- (f) Show that $V_0 = c(T T_0, Kx)$, where c(t, x) is the price at time 0 of a call option with expiry t and $S_0 = x$.