This document contains 2 questions.

1. [default,O4]

Consider a one period market model composed of a bank account with constant interest rate r = 2 and a stock whose price at time 0 is $S_0 > 0$. Assume that the stock price S_1 at time one is given by $S_1 = 1 + N$, where N is a Poisson distributed random variable with parameter one.

- (a) For what values of S_0 is the market free of arbitrage? A. $S_0 < 1/3$ B. $S_0 \le 1/3$ C. $S_0 > 1/3$ D. $S_0 \ge 1/3$ E. $S_0 > 1$ F. $S_0 \ge 1$
- (b) When this market is free of arbitrage, is it complete?
 - A. No B. Yes C. It depends on the exact value of S_0

.....

2. [default,O19]

Consider the one-period binomial model with interest rate r = 0 and stock price with value $S_0 = 150$ at time 0, and which takes the values 200, 140 at time 1; thus, we model its price at time 1 with the random variable $S_1(H) = 200, S_1(T) = 140$, defined on $\Omega := \{H, T\}$. Assume that the probability of $\{S_1 = 200\}$ is $\frac{9}{10}$, i.e. $\mathbb{P}(\{H\}) = \frac{9}{10}$.

(a) Is this model arbitrage free ?

A. No B. Yes

- (b) Consider from now on the call option with strike K = 150. What is the expected value $\mathbb{E}[C_1]$ of the call ?
 - A. 50 B. 45 C. 44 D. 194
- (c) What is the initial value of a portfolio which is replicating the call ? Try to solve the problem in two similar ways:
 - i. Describing the portfolio as (k, h), where k the number of bonds and h of shares, whose wealth is $V_t^{k,h} := kB_t + hS_t$ for both t = 0 and t = 1.
 - ii. Describing the portfolio as (x, h), where $x = k + S_0 h$ is the initial capital and h the number of shares, and whose wealth is $V_0^{x,h} := x$, $V_1^{x,h} := x(1+r) + h(S_1 - S_0(1+r))$.
 - A. The call is not replicable B. For multiple possible values C. $\frac{50}{6}$ D. $-\frac{350}{3}$ E. $\frac{350}{3}$
- (d) Suppose that we extend the binomial market, so that one can trade not only the bond and the stock, but also the call option at (initial) price $C_0 := p$. In the extended market (B, S, C), analogously to item (c) ii, describe a portfolio as (x, h, y), where x is the initial capital, h the number of shares, and y the number of options.
 - i. What random variable do I need to require to be always ≥ 0 , and sometimes > 0, for the corresponding portfolio to be an arbitrage?
 - A. $h(S_1 S_0(1+r)) + y(C_1 p(1+r)).$ B. $h(S_1 - S_0(1+r)) + y(C_1 - p).$ C. $x(1+r) + h(S_1 - S_0(1+r)) + y(C_1 - p(1+r)).$ D. $x(1+r) + h(S_1 - S_0(1+r)) + y(C_1 - p).$

E. None of the above.

ii. If I buy one option, for which values of p can I make an arbitrage (by appropriately investing also in the bond and the stock) ?

A. None of the other answers B. For no value of p C. $p = \frac{50}{6}$ D. $p \neq \frac{50}{6}$ E. $p > \frac{50}{6}$ F. $p \ge \frac{50}{6}$ G. $p < \frac{50}{6}$ H. $p \le \frac{50}{6}$

- iii. If p = 0 and I buy one option, for what values of h do I get an arbitrage? A. any $h \le 0$ B. $h \in (0,1)$ C. $h \in [0,1]$ D. $h \in (-1,0)$ E. $h \in [-1,0]$
- iv. If I *sell one* option, for which values of p can I make an arbitrage (by appropriately investing also in the bond and the stock) ?

A. None of the other answers B. For no value of p C. $p = \frac{50}{6}$ D. $p \neq \frac{50}{6}$ E. $p > \frac{50}{6}$ F. $p \ge \frac{50}{6}$ G. $p < \frac{50}{6}$ H. $p \le \frac{50}{6}$

- v. For which value(s) of $p \in \mathbb{R}$ is the extended market (B, S, C) arbitrage-free?
 - A. For $p = \mathbb{E}[C_1]$
 - B. For p = the initial value of a portfolio which is replicating the call
 - C. For $p = \frac{350}{3}$
 - D. For p = 50
 - E. There is no such value of p
 - F. None of the above