This document contains 1 questions.

1. [default,O7]

In this exercise we consider the general one-period linear market model of an arbitrage-free market (with no imperfections) i.e. assume that the final wealth of an investor is

$$
V_0^{x,h} := x, \quad V_1^{x,h} := x(1+r) + h \cdot (S_1 - S_0(1+r)), \quad (x,h) \in \mathbb{R} \times \mathbb{R}^m,
$$
 (1)

where x represent the initial capital and h the number of units of the underlying S in the portfolio, and $r > -1$ the interest rate for investing in a bank account. We will assume that $m = 1$, i.e. there is only one risky asset S, which is assumed to be strictly positive, i.e. it has value $S_1 > 0$ at time $T := 1$ and value $S_0 > 0$ at time 0. We will consider all models in the above class, i.e. we do not specify the law of the random variable S_1 . Denote by $C_0(K)$ a time-zero arbitrage-free price of a call option (on S) with strike price $K > 0$.

Consider the inequalities

A. $(S_0 - K)^+ \leq C_0(K)$ B. $S_0 - \frac{K}{1+r} \leq C_0(K)$ C. $(S_0 - \frac{K}{1+r})$ $\left(\frac{K}{1+r}\right)^{+} \leq C_{0}(K)$ D. $C_{0}(K) \leq S_{0}$ E. $C_0(K) \leq S_0 - K$

For each inequality, consider the following questions, and choose one of the following answers:

Questions:

- Does the inequality hold in every model (in the given class)?
- If so, does the inequality hold with strict inequality in every model (in the given class), or does it fail to be strict in at least some models?

Answers:

- 1. The inequality fails in some models
- 2. The inequality holds in all models, but not always strictly
- 3. The inequality holds strictly in all models

In summary, answer the following questions:

- (a) What is the right answer for inequality A? √ $1 \quad \bigcirc \quad 2 \quad \bigcirc \quad 3$
- (b) What is the right answer for inequality B? \bigcirc 1 √ 2 \bigcirc 3
- (c) What is the right answer for inequality C? \bigcirc 1 √ 2 \bigcirc 3
- (d) What is the right answer for inequality D? \bigcirc 1 \bigcirc 2 √ 3
- (e) What is the right answer for inequality E? √ $1 \quad \bigcirc \quad 2 \quad \bigcirc \quad 3$

Hint: Although to prove that an inequality is satisfied in every model (i.e. for every choice of r, S_0 , S_1 , K) you cannot just restrict to considering binomial models, to find counter-examples it is often enough to consider binomial (or trinomial) models.

Solution: Of course we have to solve this exercise using the *domination principle* to prove a positive result, and building a counter-example to prove a negative result.

- A The inequality $(S_0 K)^+ \leq C_0(K)$ can fail, as we will soon show. It is however interesting to notice that the inequality $(S_0 - K)^+ < C_0(K)$ holds across all models s.t. $r > 0$ and
	- either $K \leq S_0$,
	- $\mathbb{P}(K < S_1) > 0$,

since in these cases at least one of the inequalities $S_0 - K < C_0(K)$ and $0 < C_0(K)$ holds, as it follows from the strict domination principle and the inequalities

- $S_1 K(1+r) < S_1 K \leq (S_1 K)^+$, which holds a.s. (actually for all ω),
- $0 \leq (S_1 K)^+$ a.s., and = does not hold a.s.,

the 1st (resp. 2nd) one of which holds under the 1st (resp. 2nd) assumption above.

So, for $(S_0 - K)^+ \leq C_0(K)$ to fail, we look for an *arbitrage-free* model (as simple as possible, so that we can carry on the computations) where the above conditions are not satisfied. Taking $r < 0$ this becomes easy: consider the binomial model with $S_0 = 2, u = 2 = 1/d, r = -1/4, K = 1$, which is arbitrage-free since it satisfies $1/2 = d < 1 + r = 3/4 < u = 2$. In it, calculate explicitly $C_0(K)$ by solving $x(1+r) + h(S_1 - S_0(1+r)) = (S_1 - K)^+$, i.e.

$$
\begin{cases}\nx(1 - 1/4) + h(4 - 2 \cdot 3/4) = (4 - 1)^+ \\
x(1 - 1/4) + h(1 - 2 \cdot 3/4) = (1 - 1)^+\n\end{cases}
$$

or equivalently

$$
\begin{cases} 3x/4 + 5h/2 = 3 \\ 3x/4 - h/2 = 0 \end{cases}
$$

whose solution is $h = 1, x = 2/3$, and so $C_0(K) = x = 2/3 < 1 = 2 - 1 = S_0 - K$.

B,C To prove inequality C

$$
\max\left(0, S_0 - \frac{K}{1+r}\right) \le C_0(K),\tag{2}
$$

notice that $0 \leq (S_1 - K)^+$ implies that $0 \leq C_0(K)$, whereas $S_1 - K \leq (S_1 - K)^+$ implies inequality B

$$
S_0 - \frac{K}{1+r} \le C_0(K),\tag{3}
$$

as it follows by the domination property, first applied to the call versus the zero portfolio, and then to the call versus the portfolio which at time 0 is long one stock and short $K/(1+r)$ cash. Thus, inequalities B,C hold in all models.

These inequalities are not necessarily strict. It is easy to see why: since for some model the inequality $K \leq S_1$ holds a.s., so $S_1 - K \leq (S_1 - K)^+$ holds with equality, and so also does [\(3\)](#page-1-0) (by the replication property); since [\(2\)](#page-1-1) holds, the fact that [\(3\)](#page-1-0) holds with equality shows that [\(2\)](#page-1-1) also does. It still remains to show that there actually exists one such model (i.e. s.t. $K \leq S_1$ a.s.), by providing an example of it. It is important to point out that the model in question needs to be arbitrage-free (this was of course among the assuptions in our question). So, for example choose the binomial model with $S_0 = 2, u = 2, u = 1/d, r = 0$ (which is arbitrage-free since it satisfies $1/2 = d < 1 + r = 1 < u = 2$), and take $K = 1$, so that $S_1(H) = 4 \ge 1 = K$ and $S_1(T) = 1 \ge 1 = K$, i.e. $K \le S_1$ holds a.s..

- D The inequality $C_0(K) < S_0$ holds in every model, as it follows from the strict domination principle and the fact that at time 1 the payoffs of a call with strike K is $(S_1 - K)^+$, which is strictly smaller than the payoff S_1 of a stock, since if $S_1 - K \leq 0$ then $(S_1 - K)^+ = 0 < S_1$, whereas if $S_1 - K > 0$ then $(S_1 - K)^+ = S_1 - K < S_1$ (recall that we assumed $S_1, K > 0$).
- E The inequality $C_0(K) \leq S_0 K$ can fail. The idea is that if $r > 0$ then

$$
S_1 - (1+r)K < S_1 - K \leq (S_1 - K)^+,
$$

and so by the strict domination principle $S_0 - K < C_0(K)$. Choosing one such complete (and arbitrage-free) model, for example taking the binomial model with $S_0 = 2, u = 2 = 1/d, r =$ $1/2, K = 1$ (which is arbitrage-free since it satisfies $1/2 = d < 1 + r = 3/2 < u = 2$), then gives an example where $S_0 - K < C_0(K)$ holds (by the above reasoning), and moreover can easily double-check the answer by calculating explicitly $C_0(K)$ by solving

$$
x(1+r) + h(S_1 - S_0(1+r)) = (S_1 - K)^+,
$$

i.e.

$$
\begin{cases} 3x/2 + h(4 - 2 \cdot 3/2) = (4 - 1)^+ \\ 3x/2 + h(1 - 2 \cdot 3/2) = (1 - 1)^+ \end{cases}
$$

or equivalently

$$
\begin{cases} 3x/2 + h = 3 \\ 3x/2 - 2h = 0 \end{cases}
$$

whose solution is $h = 1, x = 4/3$, and so $C_0(K) = x = 4/3 > 1 = 2 - 1 = S_0 - K$.