This document contains 2 questions.

1. [default,Q3]

Given X, Y independent, $X, Y \sim Unif[0, 1]$, use the properties of the conditional expectation to compute $\mathbb{E}((X+Y)^2|X)$.

Solution: $\mathbb{E}((X+Y)^2|X) = X^2 + X + 1/3$, since $(X+Y)^2 = X^2 + 2XY + Y^2$ and

$$\mathbb{E}[X^2|X] = X^2, \quad \mathbb{E}[2XY|X] = 2X\mathbb{E}[Y] = X, \quad \mathbb{E}[Y^2|X] = \mathbb{E}[Y^2] = 1/3$$

by linearity, and where we used respectively

- 1. Take out what is know
- 2. Take out what is know, and Independence
- 3. Independence

and using the density $1_{[0,1]}$ of $Y \sim Unif[0,1]$ of we computed

$$\mathbb{E}[Y] = \int_0^1 y dy = \frac{1^2}{2} - 0 = \frac{1}{2}, \qquad \mathbb{E}[Y^2] = \int_0^1 y^2 dy = \frac{1^3}{3} - 0 = \frac{1}{3}$$

2. [default,P7]

Which of the following statements about the process $Y = (Y_n)_{n \in \mathbb{N}}$ are correct?

We are assuming that $\mathbb{E}|Y_n| < \infty$ for all $n \in \mathbb{N}$. Justify carefully with either proofs or counterexamples. Recall that a random variable X is said to be bounded if $|X| \leq c$ for some constant $c < \infty$.

- (a) If Y is a martingale, then $\mathbb{E}(Y_n) = \mathbb{E}(Y_0)$ for every n.
- (b) If Y is a martingale and τ a bounded stopping time then $\mathbb{E}(Y_{\tau}) = \mathbb{E}(Y_0)$.
- (c) If Y satisfies $\mathbb{E}(Y_n) = \mathbb{E}(Y_0)$ for every n then Y is a martingale.
- (d) If Y satisfies $\mathbb{E}(Y_{\tau}) = \mathbb{E}(Y_0)$ for every bounded stopping time τ then Y is a martingale. *Hint: Given* s < t, $A \in \mathcal{F}_s$, $\tau := t1_{A^c} + s1_A$, compare $\mathbb{E}(Y_{\tau})$ with $\mathbb{E}(Y_t)$.

Solution:

(a) By the martingale property $Y_0 = \mathbb{E}_0(Y_n)$ and taking expectations and using the tower property of the conditional expectation we get $\mathbb{E}[Y_n] = \mathbb{E}[\mathbb{E}_0[Y_n]] = \mathbb{E}[Y_0]$.

(b) If $\tau \leq N \in \mathbb{N}$ then, since τ is a stopping time, by Kolmogorov's characterisation of the conditional expectation of $\mathbb{E}(Y_N | \mathcal{F}_n) = Y_n$ we get $\mathbb{E}[Y_N 1_{\{\tau=n\}}] = \mathbb{E}[Y_n 1_{\{\tau=n\}}]$. Thus, since by definition of Y_{τ} we have $Y_{\tau} 1_{\{\tau=n\}} = Y_n 1_{\{\tau=n\}}$, we have that

$$\mathbb{E}[Y_N] = \sum_{n=0}^N \mathbb{E}[Y_N 1_{\{\tau=n\}}] = \sum_{n=0}^N \mathbb{E}[Y_\tau 1_{\{\tau=n\}}] = \mathbb{E}[Y_\tau].$$

Since by item (a) we have $\mathbb{E}[Y_N] = \mathbb{E}[Y_0]$, we conclude $\mathbb{E}[Y_\tau] = \mathbb{E}[Y_0]$.

(c) In a binomial model where coin tosses are independent and heads and tails have the same probability, consider the process Z described by the following binomial tree:

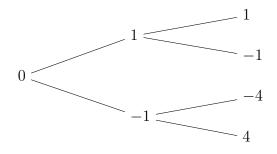


Figure 1: Tree of Z.

Since

$$\mathbb{E}_1[Z_2](T) = \frac{1}{2} \cdot (-4) + \frac{1}{2} \cdot 4 = 0 \neq -1 = Z_1(T),$$

Z is not a martingale, yet clearly $\mathbb{E}[Z_2] = \mathbb{E}[Z_1] = Z_0 = 0.$

(d) If s < t and $A \in \mathcal{F}_s$ then $\tau := t \mathbf{1}_{A^c} + s \mathbf{1}_A$ is a stopping time, and so

$$\mathbb{E}[X_0] = \mathbb{E}[X_{\tau}] = \mathbb{E}[X_t \mathbb{1}_{A^c}] + \mathbb{E}[X_s \mathbb{1}_A]$$

On the other hand, the constant t itself is a bounded stopping time, and so

$$\mathbb{E}[X_0] = \mathbb{E}[X_t] = \mathbb{E}[X_t \mathbf{1}_{A^c}] + \mathbb{E}[X_t \mathbf{1}_A],$$

and comparing the two gives $\mathbb{E}[X_s 1_A] = \mathbb{E}[X_t 1_A]$, and so $\mathbb{E}[X_t | \mathcal{F}_s] = X_s$, i.e. X is a martingale.