
Solutions Sheet 1 (rev 7, 12th May 2021)

Notation: we use || · ||2 to denote the l2-norm.

Question 1

We write the sum of squared residuals as L(a, b) =
n∑
i=1

e2i =
∑
i

(wi − a − bhi)2

The least squares estimates are given by (ã, b̃) = min
a,b
L(a, b). We solve

∂L
∂a

∣∣∣∣
ã,b̃

= 0,
∂L
∂b

∣∣∣∣
ã,b̃

= 0. (1)

We then have
∑
i(wi − ã− b̃hi) = 0, hence ã =

∑
i
wi−b̃

∑
i
hi

n . From (1), we also

have
∑
i(wi − ã− b̃hi)hi = 0. Plugging in ã, we have∑

i

(wihi − w̄hi + b̃h̄hi − b̃h2i ) = 0. (2)

Therefore

b̃ =

∑
i wihi − w̄

∑
i hi∑

i h
2
i − nh̄2

=
n
∑
i wihi − (

∑
i hi)(

∑
i wi)

n
∑
i h

2
i − (

∑
i hi)

2
(3)

To show they are indeed minimisers, one could check the Hessian is positive
(semi)-definite.

Question 2

Since we have shifted the mean, we simply replace hi in the expression of ã by
gi. Since ḡ = n−1

∑
i gi = 0, we have ã(g) = w̄ = n−1

∑
i wi. Doing the same for

b̃, we obtain

b̃(g) =

n∑
i=1

giwi/

n∑
i=1

g2i . (4)

Writing gi = hi − h̄, and plugging it into equation (4), we get

b̃(g) =

∑
i(hi − h̄)wi∑
i(hi − h̄)2

=
n
∑
i wihi − (

∑
i hi)(

∑
i wi)

n(
∑
i h

2
i − 2h̄

∑
i hi + nh̄2)

(5)

=
n
∑
i wihi − (

∑
i hi)(

∑
i wi)

n
∑
i h

2
i − (

∑
i h

2
i )

= b̃ (6)

then it is straightforward to see that

ã = ã(g) − h̄b̃(g) (7)
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Question 3

For each j, the fitted value ŵj is given by ŵj = ã + b̃hj . Substituting in the

values of ã and b̃, we obtain

ŵj =
1

n
(
∑
i

wi − b̃
∑
i

hi) + b̃hj (8)

From the expression of b̃ from question 1, we can see that b̃ is a LC of {wi}ni=1 .
Hence, both b̃

∑
i hi and b̃hj are LCs of {wi}ni=1. Therefore ŵj is a LC of {wi}ni=1.

[In general, if we have a linear model Y = Xβ+ ε, with X ∈ Rn×p, In Statistical
Modelling I, we have seen that Ŷ satisfy Ŷ = PY where P := X(XTX)−1XT .
Hence, the fitted values Ŷ can always be written as a linear combination of the
components of Y in OLS.]

Question 4

In this question I will write the definitions in terms of a multidimensional linear
model where Y = Xβ + ε, with X ∈ Rn×p
Leverage: Recall that the fitted values Ŷ satisfy Ŷ = HY where H =
X(XTX)−1XT . The value hi := Hii is called the leverage of the i-th ob-
servation. It measures the contribution that Yi makes to the fitted value Ŷ . It
can be shown that 0 ≤ hi ≤ 1. Since Var(ε̂i) = σ2(1− hi), values of hi close to 1
force the regression line (or plane) to pass very close to Yi.
Cook’s distance: The Cook’s distance Di of the observation (Yi, xi)

Di :=

1
p ||X(β̂(−i) − β̂)||22

σ̃2
(9)

where β̂(−i) is the OLS estimate of β when omitting observation (Yi, xi) and

σ̃2 := (n− p)−1||Y −Xβ̂||22.
Cook’s distance tries to understand how the fitted values change when you

omit a point from the fit and measures the size of that change, normalised by
the sampling variance, so the Cook’s distances can be seen to be on a normalised
scale. Under the usual null hypothesis, Cook’s distance has a Fp,n−p distribution
and the median of that distribution has been used as a cutoff, in that if Cook’s
distance is greater then the point, i that was omitted is considered to be highly
influential. A rule-of-thumb of Di > 1 is another indicator of an influential point.

If a point has an influential Cook’s distance then it is worth going back and
checking that there were no errors with the original collection and recording of
that observation, or otherwise scrutinising that individual for validity.

[So why is 0 ≤ hi ≤ 1? Well, H is symmetric because:

HT =
{
X(XTX)−1XT

}T
= X(XTX)−1XT = H, (10)

and idempotent, which means

H2 =
{
X(XTX)−1XT

}{
X(XTX)−1XT

}
(11)

= X(XTX)−1(XTX)(XTX)−1XT (12)

= X(XTX)−1XT = H. (13)
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Now, let B = H2 and the usual formula for matrix multiplication can be written

bi,j =

n∑
k=1

hi,khk,j . (14)

Hence, bi,i =
∑n
k=1 hi,khk,i and since H = H2 = B this means that

hi,i = hi,1h1,i + hi,2h2,i + · · ·+ hi,nhn,i (15)

= h2i,1 + h2i,2 + · · ·+ h2i,n ≥ h2i,i. (16)

Since h2i,i ≤ hi,i this means simultaneously that hi,i ≥ h2i,i ≥ 0 and, dividing
through by hi,i gives hi,i ≤ 1, as required.]

Question 5

Using suffix notation, we have w = βiAijβj , ∂βk
w = δikAijβj + βiAijδik =

Akjβj + βiAik = 2Akjβj = 2(Aβ)k, where we have used that A is symmetric in
the penultimate equality.

Or start with the definition of matrix multiplication
∑p
i=1 βi

∑p
j=1Ai,jβj .

Question 6

The eigenvalues are 1 + λ+ p and 1 + λ− p. The corresponding eigenvectors are
(−1, 1)T and (1, 1)T .

Question 7

Note that the first column of the design matrix is 1, and the first component of
β is β0.

(A) For random variables Y, β Bayes theorem states:

p(β|Y ) =
p(Y |β)p(β)

p(Y )
. (17)

However, a “standard trick”/device in Bayesian statistics is to realize that we
will eventually be interested in learning about the form of posterior density of
p(β|Y ) as a function of β. You’re not interested in anything that might be a
constant multiple of it, because you know that since p(β|Y ) is a density you
always know that ∫

β

p(β|Y )dβ = 1, (18)

and whatever bit of the density does not directly involve β is part of the
normalizing constant and we don’t need to know what it is. In particular, p(Y )
is part of the normalising constant, because it does not involve β, so we can
temporarily ignore it and focus on learning:

p(β|Y ) ∝ p(Y |β)p(β). (19)

(B) So, let’s figure out what p(β) and p(Y |β) are. The question says that
βi ∼ N(0, τ2). So, you will remember the formula for the normal distribution,
which means the prior density for βi is

p(βi) =
1√

2πτ2
exp

(
− β2

i

2τ2

)
, (20)
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for β ∈ (−∞,∞). Now, remember we are only interested in anything that
directly involves β, so we can simplify our interest in (20) to get

p(βi) ∝ exp

(
− β2

i

2τ2

)
. (21)

Now, we need the prior density for the vector β, not just the ith component. We
assume that the {βi} are independent and so the multivariate prior for the β is
just the product of the individual densities:

p(β) =

p∏
i=1

p(βi) ∝
p∏
i=1

exp

(
− β2

i

2τ2

)
= exp

(
− 1

2τ2

p∑
i=1

β2
i

)
, (22)

using the exp(a) exp(b) = exp(a+ b) facility of exp. We know ||β||22 =
∑p
i=1 β

2
i ,

which is just the squared 2-norm of β, so we can write

p(β) ∝ exp

(
−||β||

2
2

2τ2

)
. (23)

The question also states that Yi ∼ N(β0 + xTi β, σ
2), which is just the

regression model and enforcing that the errors are Gaussian with variance of σ2.
We follow a similar procedure that we did immediately above for β, so:

p(Yi|β) ∝ exp

{
− (Yi − β0 − xTi β)2

2σ2

}
, (24)

is from the univariate normal distribution formula and, by exactly the same
reasoning as in the previous paragraph, this becomes

p(Y |β) ∝ exp

(
−||Y −Xβ||

2
2

2σ2

)
, (25)

for the multivariate Y = (Y1, . . . , Yn)T , incorporating the β0 into the β vector
and the associated vector of 1s into the design matrix X.

(C) Now to get the essential part of the posterior density p(β|Y ) we use (19)
to obtain:

p(β|Y ) ∝ p(Y |β)p(β) (26)

= exp

(
−||Y −Xβ||

2
2

2σ2

)
exp

(
−||β||

2
2

2τ2

)
(27)

= exp

{
−||Y −Xβ||

2
2 + (σ2/τ2)||β||22
2σ2

}
(28)

= exp

{
−||Y −Xβ||

2
2 + λ||β||22

2σ2

}
, (29)

where λ = σ2/τ2.
Now the formula for the multivariate normal distribution, where V ∼ Np(µ,Σ)

and V is a p-dimensional random vector, µ is the p-dimensional mean vector
and Σ is the p× p variance-covariance matrix with cov(Vi, Vj) = Σi,j , is given by

f(V |µ,Σ) ∝ exp

{
−1

2
(V − µ)TΣ−1(V − µ)

}
. (30)
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Although we haven’t done it yet, we are thinking of equating β to V and then
showing that β has a normal distribution.

So, can we rewrite (29) in the form of (30)? Let us write out the numerator
of (29) inside the exponential:

||Y −Xβ||22 + λ||β||22 = (Y −Xβ)T (Y −Xβ) + λβTβ (31)

= Y TY − 2βTXTY + βTXTXβ + λβTβ (32)

= βT (XTX + λIp)β − 2βTXTY + Y TY. (33)

Now similarly expand the similar quantity inside the exponential (30) to get

(V − µ)TΣ−1(V − µ) = V TΣ−1V − 2V TΣ−1µ+ µTΣ−1µ. (34)

The form of (33) and (34) are similar. Look at the quadratic forms in each line
first: then you can see that we can set V = β and Σ−1 = (XTX + λIp). We also
set Σ−1µ = XTY . Then, we can rewrite (33) as

(33) = βTΣ−1β − 2βTΣ−1µ+ Y TY (35)

= βTΣ−1β − 2βTΣ−1µ+ µTΣ−1µ− µTΣ−1µ+ Y TY (36)

= βTΣ−1β − 2βTΣ−1µ+ µTΣ−1µ+ const not depending on β(37)

= (β − µ)TΣ−1(β − µ) + const not depending on β. (38)

Using our Bayesian ‘constant not depending on β’ not relevant when considering
the distribution (using the Bayesian device/trick mentioned earlier), we can
ignore the constant. The remainder is precisely the form of the term inside
the exponential for the multivariate normal distribution. So, the posterior
distribution of β|Y ∼ Np(µ,Σ).

(D) For the normal distribution the mean is the mode. So the posterior mean
(and mode) of β|Y is given by

µ = ΣXTY = (XTX + λIp)
−1XTY, (39)

and this answers the question: the posterior mean is precisely the ridge regression
estimator as given on slide 10 of Lecture 4.

(E) Note that this derivation does not mention the objective function (di-
rectly), nor maximisation, but it’s based purely on a Bayesian argument from
prior and likelihood through the posterior. The ridge parameter λ = σ2/τ2 is
entirely controlled by the prior variance for β — so you can think of λ and τ are
equivalent quantities. For example, if your prior knowledge is very strong about
β, then you’d expect to consider a small prior variance, which translates to a
large λ. It’s also noticeable that the Bayesian approach does not really consider
the condition number or how invertible XTX is directly.

The above solution is written in a lot of detail. It’s acceptable to be brief and
here is a more compact solution, which starts at (C) and replaces the argument
after point (C).

Since β and Y are normally distributed, p(β) ∝ exp(− ||β||
2
2

2τ2 ). Therefore,

p(β|Y ) ∝ exp
(
− ||Y−Xβ||

2
2+(σ2/τ2)||β||22
2σ2

)
, which is also normally distributed

(which can be immediately recognised by the form, esp. the quadratic and
linear bits in β). Since the distribution is Gaussian, the mean is obtained by
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maximising the density function. Observe that inside the exponential it has the

same form (up to a constant) as a ridge regression with λ = σ2

τ2 . The mode and
the mean of this distribution is

arg min
β

||Y −Xβ||22 + (σ2/τ2)||β||22 (40)

which is indeed the ridge regression estimate.
For the variance, we know that p(β|Y ) is has a normal distribution and its

mean is given by the ridge estimator β̂Rλ . Using Σ for the covariance matrix, so

that p(β|Y ) ∼ N (β̂Rλ ,Σ). The exponent is given − 1
2 (β − β̂Rλ )TΣ−1(β − β̂Rλ ) =

− 1
2 (βTΣ−1β − 2βTΣ−1β̂Rλ + (β̂Rλ )TΣ−1β̂Rλ ). Find Σ−1 by equating the second

order β term from the p(β|Y ) exponent:

βTΣ−1β =
1

σ2
βTXTXβ +

1

τ2
βTβ =

1

σ2
βT (XTX +

σ2

τ2
I)β (41)

Hence the Σ−1 = 1
σ2 (XTX + σ2

τ2 I). The covariance matrix is given by its inverse.

Question 8

Centring is given in Lecture 3 , page 6 as

x∗i,j = xi,j − x̄j , (42)

where x̄j is the mean of variable j = 1, . . . , p, i.e. x̄j = n−1
∑n
i=1 xi,j . We can

construct the vector of the p x̄j means by notation:

n−11TX = X̄T . (43)

I.e. X̄ = (x̄1, x̄2, . . . , x̄p)
T . To form a centred data matrix we want to subtract

the jth mean off the jth column of X, which we can do by

XC = X − 1X̄T = X − 11TX/n = (In − 11T /n)X, (44)

as required.
Define the centring matrix by C = In − 11T /n. Observe that 11T ∈ Rn×n is

a matrix with all entries 1. C2 = (In − 11T

n )(In − 11T

n ) = In − 211T

n + n11T

n2 =

In − 11T

n = C. Therefore Ck = C for all k ∈ N, so it is idempotent and hence a
projection matrix.

Since CT = C, it is an orthogonal projection matrix. Further, Cv is a
projection of v onto the n− 1 dimensional subspace that is orthogonal to the 1,
which is the subspace of all n-vectors whose components sum to zero.

Question 9

Recall that the Ridge estimator is β̂Rλ = (XTX+λI)−1XTY . Therefore the bias

is given by Eβ̂Rλ − β = (XTX + λI)−1XTXβ− β. Plugging in XTX =

(
1 ρ
ρ 1

)
,

and writing β = (β0, β1)T , the bias is then given by
(
λ(β0−β1ρ+β0λ)
ρ2−(1+λ2) , λ(β1−β0ρ+β1λ)

ρ2−(1+λ2)

)T
.

As an exercise, one could show that XTX + λI is always invertible, even when
X doesn’t not have full rank. One implication of this is that we can always find
the ridge estimator when we cannot find the OLS estimator.
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Question 10

We want to minimise

Mj = −β̂ls
j βj +

1

2
β2
j + λ|βj | (45)

When β̂ls
j < 0, using the same argument as in lectures, βj ≤ 0. Taking derivative

of Mj and set equal to zero with βj ≤ 0.

∂Mj

∂βj
= −β̂ls

j + β̂lasso
j − λ (46)

So the solution β̂lasso
j = β̂ls

j + λ. This quantity is only feasible if < 0, so the
solution is given by

−(−β̂ls
j − λ)+ = sgn(β̂ls

j )(|β̂ls
j | − λ)+.

An alternative method of doing this is via the Karush-Kuhn-Tucker conditions.
A reference of the KKT conditions can be found in section 2.24 at http://www.
statslab.cam.ac.uk/~rds37/teaching/modern_stat_methods/notes_MSM.pdf

Note that

1

2
||Y −Xβ||22 =

p∑
j=1

1

2
(β̂OLS
k − βk)2 +

1

2
||Y −Xβ̂OLS||22. (47)

where β̂OLS
j = β̂ls

j . Hence finding the Lasso estimator amounts to finding the
minimiser of

1

2
(β̂OLS
k − βk)2 + λ|βk|. (48)

We write β̂ for β̂Lλ for simplicity. One could show that |β̂k| is unique. By the
KKT conditions,

β̂OLS
k − β̂k = λv̂k (49)

where |v̂k| ≤ 1 and v̂k = sgn(β̂k) if β̂k 6= 0. Thus β̂k = 0 when |β̂OLS| ≤ λ. If

β̂OLS
k > λ, β̂k = β̂OLS

k − λ. If β̂OLS
k < −λ, β̂k = β̂OLS

k + λ.

Question 11&12

Please see https://www.r-bloggers.com/ridge-regression-and-the-lasso/ for some
R codes and explanations. See the following sample code

# Make swiss easier to access and type

swiss <- datasets::swiss

# Load ridge/lasso/lar packages

library(glmnet)

library(lars)

# Make x the model matrix for glmnet

x <- model.matrix(Fertility~., swiss)[,-1]
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# Get the response

y <- swiss$Fertility

lambda.value=5 # Choose a lambda value

# Fit the ridge and lasso models

ridge.fit = glmnet(x, y,alpha=0,lambda=lambda.value)

lasso.fit = glmnet(x, y,alpha=1,lambda=lambda.value)

# Do prediction with them

y.lasso<-predict(lasso.fit,newx=x,s=lambda.value)

y.ridge<-predict(ridge.fit,newx=x,s=lambda.value)

# Work out the MSE

lasso.MSE=mean((y.lasso-y)^2)

ridge.MSE=mean((y.ridge-y)^2)

# Fit the LAR and plot it

lars.fit=lars(x, y,type=c("lasso"))

plot(lars.fit)
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