
Elements of Statistical Learning
Homework Sheet 1

Optional. Only if you want. You can hand in solutions to questions 7 and 10
for marking for formative FEEDBACK. Questions 7 and 10 are marked below
in blue and with ∗. Hand in solutions on Blackboard on Tuesday February 7th.
Ensure your name is CLEARLY written on them. If you submit more than
one page, ensure that the pages uploaded as a single document and in the right
order, please!

Guidance. These questions are partly practice and partly to help you think
about what you have seen in lectures. You do not have to answer all of them,
but obviously the more you answer the more practice you will get. Since this
is a formative work, please feel to work in groups and talk to each other about
the questions, but ensure YOU participate!

It is also important that you keep check of your overall workload, so do
whatever you think is reasonable to ensure you maintain a healthy workload
and healthy work/life balance: this is different for everybody.

1. For the data (hi, wi)
n
i=1, where n is the number of data points. Derive the

formulae for the least squares estimates (ã, b̃) as given in lectures.

2. To make calculations easier, let h̄ = n−1
∑n

i=1 hi be the sample mean of
the hs. Form a new, temporary variable gi = hi− h̄. Show that the linear
regression estimates of (gi, wi)

n
i=1 are given by

b̃(g) =

n∑
i=1

giwi/

n∑
i=1

g2i and ã(g) = w̄.

Show how to obtain (ã, b̃) from (ã(g), b̃(g)).

3. Show that the fitted values ŵj can be written as a linear combination of
the {wi}ni=1 values. I.e. show that you can write ŵj =

∑n
i=1 riwi for some

set of values {ri}. This is another characterisation of linear methods.

4. Find out the definition of leverage and Cook’s distance and what value of
Cook’s distance for a point would mean that you take a closer interest in
that point.

5. Suppose A is a symmetric p×pmatrix and β is a p-vector. Let w = βTAβ.
Show that ∂w

∂β = 2Aβ.

6. Compute the eigenvalues and eigenvectors of

(
1 + λ ρ
ρ 1 + λ

)
.

7. ∗ Show that if βj ∼ N(0, τ2) is a prior distribution for the β parameters
in a linear model and Yi ∼ N(β0 + xTi β, σ

2), then the ridge regression
estimate is the posterior mode, work out the variance of the posterior
distribution.
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8. Let X be a n×p data matrix. Suppose we centre each value in the matrix
by xci,j = xi,j − x̄j , where x̄j is the sample mean of the jth variable, i.e.

x̄j = n−1
∑n

i=1 xi,j .

Show that the centred data matrix XC = (In − 11T /n)X, where 1 is the
n-vector of ones. Show that the centering matrix C = In − 11T /n is
idempotent and a projection matrix. Geometrically interpret the action
of applying the centering matrix.

9. Work out the bias for the ridge regression estimate when XTX =

(
1 ρ
ρ 1

)
for ridge parameter λ.

10. ∗ Prove that β̂lasso
j = sgn(β̂ls)(|β̂ls

j |−λ)+ for the case β̂ls
j < 0 in the lecture

notes.

11. Work out the mean squared error on the swiss data for different values of
λ for ridge regression or lasso. In each case, look at the parameter values.

12. Use the lars package to carry out a least angle regression on the swiss

data. Examine the associated plots and the fit.
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