
Elements of Statistical Learning
Solution Sheet 2

1. (a) The scaling factor −1
2 is the same for B and bm,`, so let’s omit it from our

consideration for now. The operation

− 2B = (In − 1n1
T
n/n)E (In − 1n1

T
n/n), (1)

can be broken down into four parts. The four parts are really three, as two
of the parts are similar. They are

A1 = InEIn, A2 = −1n1TnEIn/n and A3 = 1n1
T
nE1n1

T
n/n

2, (2)

which immediately simplifies to

A1 = E,A2 = −1n1TnE/n and A3 = 1n1
T
nE1n1

T
n/n

2, (3)

The first matrix A1 = E explains the em,` term in the bm,` sum.
Let’s pick out the mth row of the matrix −1n1TnE/n. The mth entry in
the first 1n is just 1, so we need to understand 1TnE. This is a 1×nmatrix,
with each entry equal to summing a column of E and dividing by n. This
is a vector containing the average of each column of E and selecting the
mth row of the combined matrix selects the average of the mth column.
Ditto with the other cross-term which is similar (E1n1

T
n/n).

The final component A3 simultaneously works out the column and row
average, ending up the the grand average.

(b) To show that 1n is an eigenvector of B see that

B1n = −1

2
(In − 1n1

T
n/n)E (In − 1n1

T
n/n),1n. (4)

Just look at the last bit

(In− 1n1
T
n/n)1n = 1n−

1

n
1n1

T
n1n = 1n− 1n

n

n
= 1n− 1n = 0. (5)

So B1n = 01n hence 1n is an eigenvector of B with eigenvalue of 0.

2. (a) A simple answer could be:

plot(cmdscale(eurodist), type="n")
text(cmdscale(eurodist), labels=dimnames(cmdscale(eurodist))[[1]],

cex=0.8)

but could be made more complex/prettier with proper axis labels, flipping
the axes to make it look more like a proper map of Europe.

(b) Similarly, for UScitiesD we can do

plot(cmdscale(UScitiesD), type="n")
text(cmdscale(UScitiesD),

labels=dimnames(cmdscale(UScitiesD))[[1]], cex=0.8)
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3. (a) B = XXT =

17 14 13
14 40 56
13 56 82

. We use em,` = bm,m + b`,` − 2bm,` to

get E =

 0 29 73
29 0 10
73 10 0

. To obtain the mean of X , just take the mean

of each column, which gives µ = (21
3 , 5

1
3). The centred data matrix is

Xc =

 12
3 −41

3
−1

3
2
3

−11
3 32

3

. Then Bc = XcX
T
c = 1

9

 194 −31 −163
−31 5 26
−163 26 137

.

(b) I did this in R. My code was:

Sheet2Q3 <- function(ret.X=FALSE, ret.B=FALSE, ret.Cm=FALSE,
ret.E=FALSE, ret.Xmean=FALSE, ret.Xcen=FALSE, ret.Bcen=FALSE,
ret.Ecen=FALSE, ret.Y=FALSE, ret.By=FALSE)

{
X <- matrix( c(4,1,2,6,1,9), nrow=3, byrow=TRUE)

if (ret.X==TRUE)
return(X)

B <- X %*% t(X)

if (ret.B==TRUE)
return(B)

Cm <- (diag(1, 3) - matrix(c(1,1,1), nrow=3)%*%
matrix(c(1,1,1), ncol=3)/3)

if (ret.Cm==TRUE)
return(Cm)

E <- matrix(0, 3,3)

for(i in 1:3)
for(j in 1:3)
E[i, j] <- B[i,i] + B[j,j] - 2*B[i,j]

if (ret.E==TRUE)
return(E)

Xmean <- apply(X, 2, mean)

if (ret.Xmean==TRUE)
return(Xmean)

Xcen <- Cm %*% X
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if (ret.Xcen==TRUE)
return(Xcen)

Bcen <- Xcen %*% t(Xcen)

if (ret.Bcen==TRUE)
return(Bcen)

Ecen <- E # Just to create matrix of correct dim

for(i in 1:3)
for(j in 1:3)
Ecen[i, j] <- Bcen[i,i] + Bcen[j,j] - 2*Bcen[i,j]

if (ret.Ecen==TRUE)
return(Ecen)

Bev <- eigen(Bcen)

f1 <- sqrt(Bev$values[1])*Bev$vectors[,1]
f2 <- sqrt(Bev$values[2])*Bev$vectors[,2]

Y <- cbind(f1, f2)

if (ret.Y==TRUE)
return(Y)

By <- Y %*% t(Y)

if (ret.By==TRUE)
return(By)
}

The recovered configuration, Y , is:

Sheet2Q3(ret.Y=TRUE)
f1 f2

[1,] 4.64271 0.02821952
[2,] -0.74144 -0.07630379
[3,] -3.90127 0.04808427

The inner product matrix (×9 to make the numbers easier to see) associated
with the recovered configuration:

> Sheet2Q5(ret.By=TRUE)*9
[,1] [,2] [,3]

[1,] 194 -31 -163
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[2,] -31 5 26
[3,] -163 26 137

4. You should have looked at

https://en.wikipedia.org/wiki/Seriation_(archaeology)

5. We prove that if d1, d2 are metrics then so is d = d1 + d2, and the result follows
by induction.

(a) Clearly, d(x, y) = d1(x, y) + d2(x, y) ≥ 0 as both d1, d2 are, for objects
x, y. If x = y then d1(x, y) = d2(x, y) = 0, which implies d(x, y) = 0.

(b) Also easy that if both d1, d2 are symmetric then d(x, y) = d1(x, y) +
d2(x, y) = d1(y, x) + d2(y, x) = d(y, x), so d is symmetric.

(c) For the triangle inequality we have, for some a, b, c

d(a, b) + d(b, c) = d1(a, b) + d2(a, b) + d1(b, c) + d2(b, c) (6)

= d1(a, b) + d1(b, c) + d2(a, b) + d2(a, b) (7)

≥ d1(a, c) + d2(a, c) (8)

= d(a, c), (9)

as d1, d2 are metrics, as required.

6. For the first part, look at the two triangles in the figure

Triangle (a) is isosceles. It does not matter how you enter the points into the
ultrametric inequality, it’s always satisfied.

With triangle (b). Clearly, 4 ≤ max(5, 6) and 5 ≤ max(4, 6), but 6 > max(4, 5).
To satisfy the last inequality, you’d have to increase either the 4 or 5 to 6, and
then you’re back in the situation as triangle (a). Similarly, if you move that point
further than 6, the triangle becomes invalid again for the inequality.

For the discrete metric.

(a) Clearly, ρ(x, y) ≥ 0, since ρ is either zero or one.

(b) Clearly, ρ(x, y) = ρ(y, x), since it depends on =.
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(c) By definition ρ(x, x) = 0.

(d) By definition ρ(x, y) = 0 implies x = y.

(e) You only need look at three cases. They are (I) if x = y = x, then all
discrete metrics between all pairs are zero and the ultrametric inequality
is satisfied; (II) x = y, but x 6= z. Then ρ(x, y) = 0 and ρ(x, z) =
ρ(y, z) = 1 and this satisfies the ultrametric inequality (and corresponds
to the isosceles triangle); (III) x 6= y and y 6= z and x 6= z. Then ρ(x, y) =
ρ(y, z) = ρ(x, z) = 1 (and corresponds to the equilateral triangle).

QED.

For those who have time and the interest, this https://www.colby.edu/
math/faculty/Faculty_files/hollydir/Holly01.pdfwas an in-
teresting article on ultrametric spaces. This article is NOT examinable.

[Updated: Feb 19th 2021]
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