
Elements of Statistical Learning
Solution Sheet 3 (Rev 3, 29th April 2021)

1. Show that Sλ (defined by equation (23), slide 27 in Lecture 11) is symmetric and positive
semi-definite. On page 27 of the notes in Lecture 11, we have

Sλ = N(NTN + λΩn)−1NT . (1)

Let A = NTN + λΩn. From the form of Ωn in equation (19) on page 26 we can see
that it is symmetric. Hence, A is symmetric and (we assume) invertible, hence A−1 is
symmetric (you can find lots of proofs of these, or use the fact that it can be diagonalized).
Hence:

STλ = {NA−1NT }T = N{A−1}TNT = NA−1NT = Sλ, (2)

and hence Sλ is symmetric.

To show that Sλ is positive semi-definite we only need to show Ωn is positive semi-definite
(because then we’re multiplying by positive λ, then adding NTN , which is positive semi-
definite and then, A, that we defined above, is also positive semi-definite and so is A−1

(as eigenvalues of A are all positive [due to invertibility] and thus so will those of A−1

being the reciprocal). It is then easy to show NA−1NT is positive semi-definite.

So, to show Ωn is positive semi-definite, we can use a similar argument to slide 25 (but
that involved specific θs) and show for arbitrary vector a

aTΩna =

n∑
i=1

ai

n∑
k=1

Ωi,kak (3)

=

∫ n∑
i=1

aiN
′′
i (t)

n∑
k=1

akN
′′
k (t) dt (4)

=

∫
r2(t) dt ≥ 0, (5)

where r(t) =
∑n

i=1 aiN
′′
i (t).

2. Show how the criterion

RSS(θ, λ) = (y −Nθ)T (y −Nθ) + λθTΩnθ, (6)

can give solution
θ̂ = (NTN + λΩn)−1NT y. (7)

by using the ridge regression machinery — hint: using a reparametrisation of ridge. This
was from slide 25 of Lecture 11. Assume all of the inverses you need.

Consider the parametrisation β = Ω
1/2
n θ. Then

RSS(θ, λ) = (y −Nθ)T (y −Nθ) + λθTΩnθ (8)

= (y −NΩ−1/2β)T (y −NΩ−1/2β) + λβTβ. (9)
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Now let X = NΩ−1/2, then XTX = Ω−1/2NTNΩ−1/2. The ridge regression estimator
is, and can be rewritten as

β̂R = (XTX + λI)−1XTY (10)

= (Ω−1/2NTNΩ−1/2 + λI)−1Ω−1/2NTY (11)

= {Ω−1/2(NTN + λΩ)Ω−1/2}−1Ω−1/2NTY (12)

= Ω1/2(NTN + λΩ)−1Ω1/2Ω−1/2NTY (13)

= Ω1/2(NTN + λΩ)−1NTY (14)

= Ω1/2θ̂, (15)

so θ̂ = (NTN + λΩ)−1NTY .

3. In kernel density estimation, the kernel K(x) is chosen to satisfy the following properties
(i) K(x) ≥ 0; (ii)

∫
K(x) dx = 1 and

∫
xK(x) dx = 0. Explain why it would not be

desirable to choose a kernel that did not satisfy all of those properties. If the kernel could
be negative, this means that it is possible that the kernel density estimate f̂(x) could also
be negative, which is not usually what one wants when estimating a density f(x) which
is always non-negative (however, it should be pointed out that some orthogonal series
density estimators can be negative, but usually slightly). Property (ii) forces the kernel
density estimator to integrate to one, again mimicking the true density — if we don’t
have this property, the estimator might not integrate to 1. For (iii) we usually assume the
‘uncertainty’ around Xi is symmetric, and hence we need a kernel that puts equal mass to
the left and right of each Xi. However, non-symmetric kernels do exist.

4. Show that the kernel density estimate f̂n,h,K(x) defined on slide 6 of Lecture 12 is a density
(i.e. integrates to one). We will do this by directly integrating f̂ :∫

f̂n,h,K(x) dx = (nh)−1
n∑
i=1

∫ ∞
−∞

K{(Xi − x)/h} dx (16)

Let y = (Xi − x)/h, then dy = −h−1 dx and we have to change the order of the integra-
tion limits, so ∫

f̂n,h,K(x) dx = (nh)−1h

n∑
i=1

∫ ∞
−∞

K(y) dy = n−1n = 1, (17)

as
∫
K(y) dy = 1, by definition of the kernel.

5. Let f̂(x) be a kernel density estimator for density f(x) with kernel K. Use methods
similar to those on slides 24, 25 and 26 from Lecture 12 to show that

bias{f̂ ′(x)} = h2C3f
′′′(x) +O(h3). (18)

[Assume f is a density that is three times differentiable on R and the kernel K satisfies
limx→±∞ f(x)K(x) = 0 and that K has at least one derivative.]
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To find the bias of f ′(x) we first consider its expectation.

E{f̂ ′(x)} = E

[
(nh)−1

n∑
i=1

∂

∂x
K{(Xi − x)/h}

]
(19)

= E

[
(nh)−1

n∑
i=1

K ′{(Xi − x)/h} × −h−1
]

(20)

= −(nh2)−1
n∑
i=1

E
[
K ′{(Xi − x)/h}

]
(21)

Let us now work out the expectation, noting that Xi ∼ f :

E
[
K ′{(Xi − x)/h}

]
=

∫ ∞
−∞

K ′{(y − x)/h}f(y) dy (22)

= h [f(y)K{(y − x)/h}]∞−∞ (23)

−h
∫ ∞
−∞

f ′(y)K{(y − x)/h} dy (24)

The first term is zero because limx→±∞ f(x)K(x) = 0 from the assumption in the ques-
tion. A Taylor series expansion of f ′(x+ δ) for δ small is

f ′(x+ δ) = f ′(x) + δf ′′(x) + δ2f ′′′(x)/2 +O(δ3). (25)

Now let us substitute v = (y − x)/h in (24), so dv = h−1dy. So

(24) = −h2
∫ ∞
−∞

f ′(x+ hv)K(v) dv (26)

= −h2

f ′(x)
�
��

�
��*

1∫
K(v) dv + f ′′(x)h

��
�
��

��*0∫
vK(v) dv +

1

2
f ′′′(x)h2

��
�
��

��*
C∗3∫

v2K(v) dv

+O(h5)

= −h2f ′(x)− h4C3f
′′′(x)−O(h5), (27)

and we absorb the constant 1/2 into C3 = C∗3/2. Now substitute (27) into (21)

E{f̂ ′(x)} = (nh2)−1n
{
h2f ′(x) + h4C3f

′′′(x) +O(h5)
}

(28)

= f ′(x) + h2C3f
′′′(x) +O(h3). (29)

6. Define the (basis) functions Ψk(x) = exp(2πikx), for x ∈ [0, 1] for k ∈ Z. Show that the
set {Ψk(x)}k∈Z is orthonormal.

Let’s look at their inner product for k, j:

< Ψk,Ψj > =

∫ 1

0
Ψk(x)Ψj(x) dx (30)

=

∫ 1

0
exp{2πi(k − j)x} dx (31)

=

∫ 1

0
exp(2πi`x) dx, (32)
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where ` = k − j. Here is a not very rigorous argument. For ` 6= 0:

< Ψk,Ψj >=
[
(2πi`)−1 exp(2πi`x)

]1
0
. (33)

And, in substituting the 0, 1 into the expression gives exp(0) = 1 for the 0, and

exp(2πi`) = cos(2π`) + i sin(2π`) = 1. (34)

Hence, the inner product is zero for ` 6= 0. For ` = 0 we have < Ψk,Ψj >=
∫ 1
0 dx = 1.

Hence the {Ψj(x)} are orthonormal.

7. Let φ(x) be the usual probability density function of the standard normal distribution.
Define the function ψ(x) = φ′′(x), the second derivative of the density. Show that ψ(x)
satisfies the key wavelet property of

∫
ψ(x) dx = 0. We know that

φ(x) = (2π)−1/2 exp(−x2/2), (35)

and hence
φ′(x) = (2π)−1/2 × (−x)× exp(−x2/2) = −xφ(x), (36)

Then we can write∫ ∞
−∞

ψ(x) dx =

∫ ∞
−∞

φ′′(x) dx =
[
φ′(x)

]∞
−∞ = [−xφ(x)]∞−∞ = 0, (37)

as required.

8. Let f(x), g(x) be two functions with orthogonal series expansions of f(x) =
∑

ν fνξν(x)
and g(x) =

∑
ν gνξν(x), where {ξν} is some orthogonal basis for the space of functions

we’re considering. Show Parseval’s relation . . . where F = {fν}ν and similarly for G
and < f, g >=

∫
f(x)g(x) dx and < F,G >=

∑
ν fνgν .

Then

< f, g > =

∫
f(x)g(x) dx (38)

=

∫ ∑
ν

fνξν(x)
∑
µ

gµξµ(x) dx (39)

=
∑
ν

∑
µ

fνgµ

∫
ξν(x)ξµ(x) dx (40)

=
∑
ν

∑
µ

fνgµδν,µ (41)

=
∑
ν

fνgν (42)

= < F,G >, (43)
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where F = {fν}ν is the coefficient set of all the fν , and similarly forG. This is Parseval’s
relation. Plancherel’s theorem is

||f ||2 =< f, f >=< F,F >= ||F ||2ν , (44)

where the first norm is a norm on functions and the second is a norm on the sequence
space. These results work, e.g. for Fourier and wavelet systems (and many others) and
mean, e.g. that the energy of a function across time is equivalent to the energy across
frequency (where energy is a loose wording for the norm squared).

9. Given a function, f(t), we can compute the continuous wavelet transform (CWT) by

γ(s, τ) =

∫
f(t)ψ∗s,τ (t) dt, (45)

where ∗ denotes complex conjugation and the function f(t) can be reconstructed from the
CWT by

f(t) =

∫ ∫
γ(s, τ)ψs,τ (t) dτds, (46)

where the wavelets are generated by a mother wavelet by

ψs,τ (t) = s−1/2ψ

(
t− τ
s

)
, (47)

where s is the scale factor and τ is the translation or location factor. The rth moment of
the wavelet is defined by

Mr =

∫
trψ∗(t) dt. (48)

A wavelet with p vanishing moments means that Mr = 0 for r = 0, . . . , p.

Suppose our wavelet has p vanishing moments, and that f(t) is (p+ 1)-times differen-
tiable. By using a Taylor expansion for f(t) around t = 0, show that the wavelet coeffi-
cients at scale s are γ(s, 0) = C∗Mp+1s

p+3/2, where C∗ is some constant.

The Taylor expansion of f(t) around t = 0 is

f(t) = f(0) + tf (1)(0) + t2f (2)(0)/2! + . . . tpf (p)(0)/p! + C∗tp+1 (49)

=

p∑
r=0

f (r)(0)tr/r! + C∗tp+1, (50)

using the Lagrange form of the remainder, where C∗ is some constant.

Inserting this into the formula for the CWT gives:

γ(s, 0) = s−1/2

[
p∑
r=0

f (r)(0)

∫
tr

r!
ψ∗
(
t

s

)
dt+ C∗

∫
tp+1ψ∗(t/s) dt

]
. (51)
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Substitute u = t/s, sdu = dt gives

sec = s−1/2C∗
∫

(us)p+1ψ∗(u) sdu (52)

= s1/2sp+1C∗
∫
up+1ψ∗(u) du (53)

= sp+3/2C∗Mp+1, (54)

for the second term in (51). Then

fir = s1/2
p∑
r=0

f (r)(0)
sr

r!

∫
urψ∗(u) du (55)

= s1/2
p∑
r=0

f (r)(0)Mrs
r/r!. (56)

If Mr = 0 for r = 0, . . . , p, then fir = 0 and γ(s, 0) = C∗Mp+1s
p+3/2.
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