
Elements of Statistical Learning
Homework Sheet 3 (Rev 2, 29th April 2021)

Optional: you can hand in solutions to questions 2, 4 and/or 7 for marking if you like. These
questions are marked below in blue and with ∗. This is for formative assessment only and not
official coursework and does not count towards your final course grade. Hand in solutions via
Blackboard on Monday Mar 13th by 1pm. Ensure your name is CLEARLY written on them. If
you submit more than one page, ensure that the pages uploaded as a single document and in the
right order, please!

1. Show that Sλ (defined by equation (23), slide 27 in Lecture 11) is symmetric and positive
semi-definite.

2. (*) Show how the criterion

RSS(θ, λ) = (y −Nθ)T (y −Nθ) + λθTΩnθ, (1)

can give solution
θ̂ = (NTN + λΩn)−1NT y. (2)

by using the ridge regression machinery — hint: using a reparametrisation of ridge. This
was from slide 25 of Lecture 11. Assume all of the inverses you need.

3. In kernel density estimation, the kernel K(x) is chosen to satisfy the following properties
(i) K(x) ≥ 0; (ii)

∫
K(x) dx = 1 and

∫
xK(x) dx = 0. Explain why it would not be

desirable to choose a kernel that did not satisfy all of those properties.

4. (*) Show that the kernel density estimate f̂n,h,K(x) defined on slide 6 of Lecture 12 is a
density (i.e. integrates to one).

5. Let f̂(x) be a kernel density estimator for density f(x) with kernel K. Use methods
similar to those on slides 24, 25 and 26 from Lecture 12 to show that

bias{f̂ ′(x)} = h2C3f
′′′(x) +O(h3). (3)

[Assume f is a density that is three times differentiable on R and the kernel K satisfies
limx→±∞ f(x)K(x) = 0 and that K has at least one derivative.]

6. Define the (basis) functions Ψk(x) = exp(2πikx), for x ∈ [0, 1] for k ∈ Z. Show that
the set {Ψk(x)}k∈Z is orthonormal.

7. (*) Let φ(x) be the usual probability density function of the standard normal distribution.
Define the function ψ(x) = φ′′(x), the second derivative of the density. Show that ψ(x)
satisfies the key wavelet property of

∫∞
−∞ ψ(x) dx = 0. A normalised version of this

negative second derivative is known as the Ricker wavelet. Don’t confuse the pdf of a
standard normal φ(x) for the typical notation for a father wavelet.
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8. Let f(x), g(x) be two functions with orthogonal series expansions of f(x) =
∑

ν fνξν(x)
and g(x) =

∑
ν gνξν(x), where {ξν} is some orthogonal basis for the space of functions

we’re considering. Show Parseval’s relation

< f, g >=< F,G >, (4)

where F = {fν}ν and similarly for G and < f, g >=
∫
f(x)g(x) dx and < F,G >=∑

ν fνgν . Also prove Plancheral’s theorem ||f ||2 = ||F ||2ν , where the norms are defined
using the two inner products < f, g >,< F,G >, respectively.

9. Given a function, f(t), the continuous wavelet transform (CWT) is

γ(s, τ) =

∫
f(t)ψ∗s,τ (t) dt, (5)

where ∗ denotes complex conjugation and the function f(t) can be reconstructed from the
CWT by

f(t) =

∫ ∫
γ(s, τ)ψs,τ (t) dτds, (6)

where the wavelets are generated by a mother wavelet by

ψs,τ (t) = s−1/2ψ

(
t− τ
s

)
, (7)

where s is the scale factor and τ is the translation or location factor. The rth moment of
the wavelet is defined by

Mr =

∫
trψ(t) dt. (8)

A wavelet with p vanishing moments means that Mr = 0 for r = 0, . . . , p.

Suppose our wavelet has p vanishing moments, and that f(t) is (p+ 1)-times differen-
tiable. By using a Taylor expansion for f(t) around t = 0, show that the wavelet coef-
ficients at scale s are γ(s, 0) = C∗Mp+1s

p+3/2, where C∗ is some constant. (Knowing
the decay/size of wavelet coefficients for functions of a certain smoothness is useful for
establishing theoretical results and can be used for characterising function classes.)
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