
Elements of Statistical Learning
Solution Sheet 4 (Rev 2, Apr 28 2021)

1. Suppose X is a centred and sphered n × p data matrix. Let y = Xa, where a
is a unit norm projection vector, where y = (y1, . . . , yn). Show that the mean
and variance of y are zero and one respectively. Suppose b is another unit norm
vector and bTa = 0. Show that the data z = Xb is uncorrelated with y. Why is
it pointless to apply principal components analysis to X?

If X is centred and sphered then X̄ = n−11TX = 0 and S = XTX/n = Ip.
Let Y = Xa. Then

Ȳ = n−11TY = n−11TXa = 0, (1)

and

Sy = n−1(Y − Ȳ )T (Y − Ȳ ) (2)

= n−1Y TY (3)

= n−1aTXTXa (4)

= aT Ipa = aTa = 1. (5)

For the second part z = Xb so

cov(Z, Y ) = n−1bTXTXa = bTa = 0. (6)

There’s no point apply PCA to a centred and sphered matrix, X , as the variance
matrix of X is the identity and already diagonalized and the eigenbasis is just
the standard basis (i.e. the one you are in). Moreover, all eigenvalues are the
same (1)

2. LetX be a p-dimensional random vector with mean zero and identity covariance
matrix. Let θ be a unit norm vector and write the projection of X onto θ as
Yθ = XT θ. Let fθ(y) be the density of Yθ. Then, the L2 distance between fθ(y)
and φ(y) is

J(θ) =

∫ ∞
−∞
{fθ(y)− φ(y)}2 dy, (7)

where φ(y) is the standard normal density. Let H0, H1, . . . be Hermite polyno-
mials, orthogonal on R with respect to the weight function φ2(x) and standard-
ised by ∫

H2
j (y)φ2(y) dy = j!π−1/22j−1, (8)

and that the term of the highest degree in Hi has positive coefficient. Note:
H0(x) = 1.

Show that the Hermite functions

hj(y) = (j!)−1/2π1/42−(i−1)/2Hj(y)φ(y), −∞ < y <∞, (9)

are orthonormal.
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The Hermite function representation of fa(x) is given by

fθ(y) =

∞∑
i=0

ai(θ)hi(y), (10)

where
ai(θ) =

∫
fθ(y)hi(y) dy = E{hi(Yθ)}. (11)

Show that

J(θ) =
∞∑
i=0

ai(θ)
2 − (21/2/π1/4)a0(θ) + (2π1/2)−1. (12)

To do this, see that∫
hi(x)hj(x) dx =

∫
(i!j!)−1/2π1/22−(i−1)/2−(j−1)/2Hi(x)Hj(x)φ2(x) dx

= (i!j!)−1/2π1/22−(i+j−2)/2
∫
Hi(x)Hj(x)φ2(x) dx (13)

= 0 (14)

if i 6= j as the Hi(x) are orthogonal polynomials with weight function φ2(x)
and ∫

h2i (x) dx = (i!)−1π1/22−(i−1)i!π−1/22i−1 = 1. (15)

So
∫
hi(x)hj(x) dx = δi,j , the Kronecker delta.

For the second part note that

h0(y) = 21/2π1/4H0(y)φ(y), (16)

hence φ(y) = 2−1/2π−1/4h0(y). So,

J(θ) =

∫ { ∞∑
i=0

ai(θ)hi(y)− 2−1/2π−1/4h0(y)

}2

(17)

=

∫ { ∞∑
i=0

bi(θ)hi(y)

}2

dy, (18)

where b0(θ) = a0(θ)−2−1/2π−1/4 and bi(θ) = ai(θ) for i = 1, 2, . . .. Since the
Hermite functions are an orthogonal series expansion, we can use Plancheral’s
theorem from Homework Sheet 3, Question 8 to show that

J(θ) =
∞∑
i=0

b2i (θ) (19)

= b20(θ) +

∞∑
i=0

bi(θ)
2 (20)

= a20(θ)− 21/2π−1/4a0(θ) + 2−1π−1/2 +
∞∑
i=1

ai(θ)
2 (21)

=

∞∑
i=0

ai(θ)
2 − 21/2π−1/4a0(θ) + 2−1π−1/2, (22)
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as required.

3. Let Yj be the jth component of the random p-vector Y . Show that
∑p

j=1H(Yj)
is the entropy of the ‘independence version’ of Y , i.e.

∏p
j=1 gj(yj), where gj is

the marginal density of Yj .

We have

H

 p∏
j=1

gj(yj)

 =

∫
Rp

p∏
j=1

gj(yj) log

{
p∏
i=1

gi(yi)

}
dpy (23)

=

∫
Rp

p∏
j=1

gj(yj)

p∑
i=1

log{gi(yi)}dpy (24)

=

p∑
i=1

∫
Rp


p∏
j=1

gj(yj)

 log{gi(yi)}dpy (25)

=

p∑
i=1

Ri =

p∑
i=1

H(Yi), (26)

since

Ri =

∫
Rp

gi(yi)×
p∏

j=1,j 6=i
gj(yj)

 log{gi(yi)}dpy, (27)

for i = 1, . . . , p. Now

Ri =

∫
R
gi(yi) log{gi(yi)}dyi

p∏
j=1,j 6=i�

��
��

��*
1∫

R
gj(yj)dyj = H(Yi), (28)

as gj is a probability density.

4. From slide 11 in Lecture 16 we assumed X is a random vector with covariance
I , Y = ATX , where A is orthogonal. Show that

I(Y ) =

p∑
j=1

H(Yj)−H(X), (29)

where H(Y ) is the entropy of random variable Y .

If we can show that H(Y ) = H(X)− log |detA|, then, since detA = ±1 for
an orthogonal matrix we have that H(Y ) = H(X) since log | ± 1| = 0. So, the
entropy of Y is H(Y ) = H(AX). The probability density of X , fX , bestows
probability density status on Y = AX , which is gY . The formula for writing
the density of Y in terms of that for X is given by

gY (y) = fX{x1(y), . . . , xp(y)}
∣∣∣∣∂x∂y

∣∣∣∣ . (30)
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This is the multivariate version of the usual change of variable formula for prob-
ability densities. So,

H(Y ) = −
∫
g(y) log{g(y)}dpy (31)

= −
∫
fX{x1(y), . . . , xp(y)}

∣∣∣∣∂x∂y
∣∣∣∣ log

{
fX{x1(y), . . . , xp(y)}

∣∣∣∣∂x∂y
∣∣∣∣} dpy

= −
∫
fX(ATy)|detAT |

[
log
{
fX(ATy)

}
+ log(|detA|)

]
dpy (32)

Now effect a change of variable from y to x using X = Y AT , which is a linear
transformation with Jacobian |detA|. So,

H(Y ) = −
∫
fX(x) [log {fX(x)}+ log(| detA|)] dpx (33)

= −
∫
fX(x) log {fX(x)} dpx− log(| detA|)

�
��

�
��
�*1∫

fX(x)dpx

= H(X)− log(|detA|), (34)

as required.

5. Apply independent components analysis to the iris data within R. E.g. use
the fastICA package. ICA here should produce projections/solutions that are
non-Gaussian (and assumed independent) and so should do a job similar to
exploratory projection pursuit. Perhaps start with

fastICA(X=iris[,1:4], n.comp=3)

and experiment with the arguments.

6. Visit the site:

https://developers.google.com/machine-learning/crash-course/
introduction-to-neural-networks/playground-exercises

and play with some of the nice interactive graphics to build your own neural
networks and assess performance. Just visit and play!

7. (This is question 11.7 from ELS) Fit a neural network to the spam data of Sec-
tion 9.1.2, and compare the results to those for the additive model given in
that chapter. Compare both the classification performance and interpretabil-
ity of the final model. The spambase data that is referred to in ELS can be
found in the nutshell package. Unfortunately, this package is no longer ac-
tive, but can be found in the CRAN archive section. I downloaded the tarball
nutshell_2.0.tar.gz and then applied the following unix commands (on
a mac) by

gunzip nutshell_2.0.tar.gz
tar xvf nutshell_2.0.tar
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this created a nutshell_2.0 directory and then in the data subdirectory of
this you can find the spambase.rda data file containing the data.

Here is the R code I used. Note the scaling.

library("neuralnet") # Load in the neural networks library
load("spambase.rda") # Load in the spambase data

# Spambase is_spam is a factor, convert it to 0-1
spambase$is_spam <- as.numeric(spambase$is_spam)-1

# Generate training and test data set (using same numbers as in ELS)
train.index <- sample(1:nrow(spambase), 3065)
sp.train <- spambase[ train.index,]
sp.test <- spambase[-train.index,]

# Apply scaling, as per lectures
maxss <- as.numeric(apply(sp.train, 2, max))
minss <- as.numeric(apply(sp.test, 2,min))
sp.train.scaled <- as.data.frame(scale(sp.train, center=minss,

scale=maxss-minss))

sp.test.scaled <- as.data.frame(scale(sp.test, center=minss,
scale=maxss-minss))

# Get names of spambase
nm <- names(sp.train)

# Construct formula for the neural network
form <- as.formula(paste("is_spam ˜",

paste(nm[!nm %in% "is_spam"], collapse="+ ")))

# Train the neural network
sp.train.nn <- neuralnet(f=form, data=sp.train.scaled, hidden=c(5,3),

linear.output=FALSE)

# Plot it
plot(sp.train.nn)

#
# Now compute predictions on test set

sp.test.pred <-compute(ans, sp.test.scaled[,1:57])$net.result

# Return cross-classified table
sp.test.adj <- sp.test.pred
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# note, some predictions from compute a very small, but not zero.
# Make them zero; and similarly for any that are close to 1,
# but not exactly.
sp.test.adj[sp.test.adj < 0.5] <- 0
sp.test.adj[sp.test.adj > 0.5] <- 1
table(sp.test.adj, sp.test[,58])

If you run this code, it plots the neural network and outputs the following table:

sp.test.adj 0 1
0 896 32
1 43 565

You can divide the table by 1536 to get the cross-classification rates:

>round(100*ans/1536, 2)

sp.test.adj 0 1
0 58.33 2.08
1 2.80 36.78

The total misclassification rate is (32 + 43)/1536 = 4.9%, which is a little
better than the error rate of 5.3% from the additive logistic regression model
from ELS §9.1.2 and a bit better than the linear logistic regression mentioned
there of 7.6%. However, this is but one neural network model, possibly a more
complicated one, with more layers, might do better still.

More interesting, perhaps, is the note the simplicity of the additive model fit
given in ELS Table 9.2. That model indicates only 16 significant predictors that
achieve the rate of 5.3% in an additive model - so pretty simple. Compare that to
the monster that is presented by the neural network plot in Figure 1. For me, this
example summarises neural networks. They CAN do a great job at prediction
and do not need a lot of human intervention in fitting, although it can take time.
However, the returned models are often extremely hard to interpret. This can
make it harder to answer other forms of prediction questions — e.g. a simple
‘what if’ we change something.
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Figure 1: Neural network for the spambase data.
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