
Elements of Statistical Learning
Homework Sheet 4 (Rev 2: Apr 28 2021)

Optional: you can hand in solutions to questions 1 and/or 3 for marking if you
like. These questions are marked below in blue and with ∗. This is for formative
assessment only and not official coursework and does not count towards your final
course grade. Hand in solutions via Blackboard on Tuesday Mar 21st. Ensure your
name is CLEARLY written on them. If you submit more than one page, ensure that
the pages uploaded as a single document and in the right order, please!

1. (*) Suppose X is a centred and sphered n× p data matrix. Let y = Xa, where
a is a unit norm projection vector, where y = (y1, . . . , yn). Show that the mean
and variance of y are zero and one respectively. Suppose b is another unit norm
vector and bTa = 0. Show that the data z = Xb is uncorrelated with y. Why is
it pointless to apply principal components analysis to X?

2. Let X be a p-dimensional random vector with mean zero and identity covariance
matrix. Let θ be a unit norm vector and write the projection of X onto θ as
Yθ = XT θ. Let fθ(y) be the density of Yθ. Then, the L2 distance between
fθ(y) and ϕ(y) is

J(θ) =

∫ ∞

−∞
{fθ(y)− ϕ(y)}2 dy, (1)

where ϕ(y) is the standard normal density. Let H0, H1, . . . be Hermite polyno-
mials, orthogonal on R with respect to the weight function ϕ2(x) and standard-
ised by ∫

H2
j (y)ϕ

2(y) dy = j!π−1/22j−1, (2)

and that the term of the highest degree in Hi has positive coefficient. Note:
H0(x) = 1.

Show that the Hermite functions

hj(y) = (j!)−1/2π1/42−(j−1)/2Hj(y)ϕ(y), −∞ < y < ∞, (3)

are orthonormal.

The Hermite function representation of fa(x) is given by

fθ(y) =
∞∑
i=0

ai(θ)hi(y), (4)

where
ai(θ) =

∫
fθ(y)hi(y) dy = E{hi(Yθ)}. (5)

Show that

J(θ) =

∞∑
i=0

ai(θ)
2 − (21/2/π1/4)a0(θ) + (2π1/2)−1. (6)
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[Interesting info: J(θ) can be approximated by Ĵm(θ) =
∑m

i=0 âi(θ)
2 − (21/2/π1/4)â0(θ) +

(2π1/2)−1, i.e. truncating the infinite sum (which cannot be computed directly) to m terms, which

can be, and âi(θ) = n−1 ∑n
j=1 hi(Yθ,j), where Yθ,j is the jth individual in the projected data

Yθ . For projection pursuit, we want to find vectors θ that maximise J(θ), i.e. look for densities

that are very non-normal. Let θ1 be a local maximum of J(θ). It can be shown that if m increases

sufficiently quickly as a function of n, yet more slowly than n2/3, then there exists a θ̂1, which

gives at least a local maximum of Ĵm(θ) and is
√
n-consistent for θ1. This means that Ĵm(θ) is a

computable statistic that ought to find interesting projections (and it does). See Hall, P. (1989) On

polynomial-based projection indices for exploratory projection pursuit. The Annals of Statistics,

17, 589–605. Peter Hall was one of the most outstanding and prolific statisticians of the 20th and

21st Centuries.]

3. (*) Let Yj be the jth component of the random p-vector Y . Show that
∑p

j=1H(Yj)
is the entropy of the ‘independence version’ of Y , i.e.

∏p
j=1 gj(yj), where gj is

the marginal density of Yj .

4. From slide 11 in Lecture 16 we assumed X is a random vector with covariance
I , Y = ATX , where A is orthogonal. Show that

I(Y ) =

p∑
j=1

H(Yj)−H(X), (7)

where H(Y ) is the entropy of random variable Y .

5. Apply independent components analysis to the iris data within R. E.g. use
the fastICA package. ICA here should produce projections/solutions that are
non-Gaussian (and assumed independent) and so should do a job similar to ex-
ploratory projection pursuit.

6. Visit the site:

https://developers.google.com/machine-learning/crash-course/
introduction-to-neural-networks/playground-exercises

and play with some of the nice interactive graphics to build your own neural
networks and assess performance.

7. (This is question 11.7 from ELS) Fit a neural network to the spam data of Sec-
tion 9.1.2, and compare the results to those for the additive model given in that
chapter. Compare both the classification performance and interpretability of the
final model.
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