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1 Prelude

1.5 Strategies

Definition 1.1. A move refers to the action a player must make on their turn to progress
from one game position to the next position

Definition 1.2. An outcome of a game refers to the final result of a game once the game
has been played

Definition 1.3. A strategy for a player involves a complete description of all the moves
that will be made in any game position, including responses to any random moves, and
the opponent’s moves. A strategy is a program which can be followed to play the game
mechanically.

Definition 1.4. A pure strategy is a strategy that doesn’t involve any self-imposed
random chances of playing any moves.

Definition 1.5. Finite game - if all players in the game have a finite number of pure
strategies. If at least one player has an infinite number of pure strategies, the game is
called an infinite game.

2 Dominance, Best Response and Equilibria

Define the following notation to start with

Note. Player A will have pure strategies As = {a1, a2, . . .}, the set may be finite or infinite.
Similarly, player B will have pure strategies Bs = {b1, b2, . . .}

Denote by gA(ai, bj) the payoff to player A when player A plays pure strategy ai and
player B plays pure strategy bj .

Definition 2.6. Strategy a ∈ As is strictly dominated by another strategy a′ ∈ As if

gA(a, b) < gA(a
′, b) ∀b ∈ Bs

Definition 2.7. In an n-player game, a strategy si ∈ Si for player i is strictly dominated
by another strategy s′i ∈ Si if

gi(si, s−i) < gi(s
′
i, s−i) ∀s−i ∈ S−i

s−i denotes the strategies of all players other than i

Definition 2.8. a ∈ As is weakly dominated by a′ ∈ As if

gA(a, b) ≤ gA(a
′, b) ∀b ∈ Bs

and there exists at least one b ∈ Bs such that the inequality is strict

3



Definition 2.9. In an n-player game, a strategy si ∈ Si for player i is weakly dominated
by another strategy s′i ∈ Si if

gi(si, s−i) ≤ gi(s
′
i, s−i) ∀s−i ∈ S−i

and there exists at least one s−i ∈ S−i such that the inequality is strict

Definition 2.10. In an n-player game, a strategy si ∈ Si for player i is payoff equivalent
to another strategy s′i ∈ Si if

gi(si, s−i) = gi(s
′
i, s−i) ∀s−i ∈ S−i

Definition 2.11. In an n-player game, a strategy si ∈ Si for player i is a best response
to a strategy profile s−i ∈ S−i if

gi(si, s−i) ≥ gi(s
′
i, s−i) ∀s′i ∈ Si

Proposition 2.12. A dominated strategy is never a best response

2.6 Equilibria

Definition 2.13 (Nash Equilibrium). An equilibrium of an n-player game is a strategy
profile s ∈ S such that

gi(si, s−i) ≥ gi(s
′
i, s−i) ∀s′i ∈ Si

for all players i.

2.8 Iterative Deletion of Dominated Strategies

Proposition 2.14. In an N -player game, with strategy sets S1, S2, . . . , SN , let si, s
′
i be two

strategies for player i. Suppose s′i weakly dominates or is payoff equivalent to si. Consider
game G′ with identical payoffs as G but where Si is replaced by Si − {si}, Then:

1. Any Nash equilibrium of G′ is a Nash equilibrium of G

2. If si is dominated by s′i, then G and G′ have the same equilibria

Proposition 2.15. Consider game G that upon performing iterative deletion of dominated
strategies, results in game G′ with a single strategy profile. Then, the single strategy profile
is the unique equilibrium of G.
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3 Mixed Equilibria

3.1 Mixed Strategies

Definition 3.16. A mixed strategy for a player is a self-imposed randomization over
the player’s pure strategies. A mixed strategy is a probability distribution over the pure
strategies. A mixed strategy α for player A is denoted as

α = (p1, p2, . . . , pn), or

α = p1a1 + p2a2 + . . .+ pnan, where

n∑
i=1

pi = 1, 0 ≤ pi ≤ 1

We extend the pure strategy set As to the more general mixed strategy set, As - the
infinite set of all possible α for player A.

Definition 3.17. Let player A have pure strategy set As = {a1, . . . , an} and player B
have pure strategy set Bs = {b1, . . . , bm}.

If player A choses to play the mixed strategy α = (p1, . . . , pn) ∈ As and player B choses
to play the mixed strategy β = (q1, . . . , qm) ∈ Bs, then the expected payoff to player A
is

gA(α, β) =

n∑
i=1

m∑
j=1

piqjgA(ai, bj)

If As, Bs are infinite sets then the summation is replaced by integration.

gA(α, β) =

∫
x

∫
y
gA(x, y)fA(x)fB(y) dx dy

where fA(x), fB(y) are the probability density functions of the mixed strategies α, β re-
spectively.

Definition 3.19. A pair of mixed strategies α∗ for A and β∗ for B, are said to be in mixed
equilibrium if

gA(α
∗, β∗) ≥ gA(α, β

∗) ∀α ∈ As

and gB(α
∗, β∗) ≥ gB(α

∗, β) ∀β ∈ Bs

3.3 Finding mixed equilibria by considering Pure strategies

Proposition 3.20. For any mixed strategies α∗ of player A and β∗ of player B, then

max
α∈As

{gA(α, β∗)} = max
a∈As

{gA(a, β∗)},

max
β∈Bs

{gB(α∗, β)} = max
b∈Bs

{gB(α∗, b)}
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Definition 3.21. Let c a constant. A mixed strategy α∗, for player A is an equaliser
strategy if

gA(α
∗, b) = c ∀b ∈ Bs

Similarly for player B

Proposition 3.22. In a 2-player game, if α∗ is an equaliser strategy for A using B’s
payoffs and β∗ is an equaliser strategy for B using A’s payoffs, then (α∗, β∗) is a mixed
equilibrium

3.4 Geometry of Games

Note. Define the convex hull of a set of points as the smallest convex set that contains all
the points. For a set of points {x1, . . . , xn} with each xi ∈ Rm, form their convex hull as

C =

{
n∑

i=1

λixi | λi ≥ 0,
n∑

i=1

λi = 1

}

3.5 Existence of an equilibrium

Theorem 3.23 (Nash, 1951). Every finite game has at least one mixed equilibrium

3.6 Finding equilibria by checking subgames

3.7 The upper envelope method

3.8 Degenerate games

Definition 3.24 (Degenerate game). A 2-player game is said to be degenerate if some
player has a mixed strategy that assigns positive probability to exactly k pure strategies
so that the other player has more than k pure strategies.

4 Zero-sum games

4.3 Max-min and Min-max Strategies

Definition 4.25. A max-min strategy α̂ ∈ As of player A is a strategy such that

min
β∈Bs

{gA(α̂, β)} = max
α∈As

{
min
β∈Bs

{gA(α, β)}
}

assuming that the maxima and minima exist. This also defines the max-min payoff to
player A
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Definition 4.26. A min-max strategy β̂ ∈ Bs of player B is a strategy such that

max
α∈As

{gB(α, β̂)} = min
β∈Bs

{
max
α∈As

{gB(α, β)}
}

This also defines the min-max payoff to player B

Proposition 4.27. In a zero-sum game, for α ∈ As, then

min
β∈Bs

{gA(α, β)} = min
b∈Bs

{gA(α, b)}

Similarly for β ∈ Bs, then

max
α∈As

{gB(α, β)} = max
a∈As

{gB(a, β)}

4.4 Relationship of Equilibria and Max-min/Min-max Strategies

Proposition 4.28. In a finite zero-sum game with α̂ ∈ As, β̂ ∈ Bs then (α̂, β̂) is a mixed
equilibrium if and only if α̂ is a max-min strategy for A and β̂ is a min-max strategy for
B, and

max
α∈As

{
min
β∈Bs

{gA(α, β)}
}

= min
β∈Bs

{
max
α∈As

{gB(α, β)}
}

4.5 The Minimax theorem of Von Neumann

Theorem 4.29 (Von Neumann, 1928). In a finite zero-sum game then

max
α∈As

{
min
β∈Bs

{gA(α, β)}
}

= v = min
β∈Bs

{
max
α∈As

{gB(α, β)}
}

where v is the unique max-min payoff to A (and cost to B), called the value of the game.

4.6 Finding solutions in small zero-sum games

Proposition 4.30. Consider 2 zero-sum games G,G′, where G′ is obtained from G by
deleting a weakly dominated strategy of one of the players. Then any equilibrium of G′ is
also an equilibrium of G, and G and G′ have the same value.

5 Cooperative Games

5.1 Bargaining sets

Definition 5.31. Bargaining (Negotiation) set, S, resulting from a 2-player game in strate-
gic form is the convex hull of all payoff pairs, with the added constraint that

∀(x, y) ∈ S, x ≥ tA, y ≥ tB
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where tA, tB are the max-min payoff of player A and B respectively. Known as A and B’s
security level or threat level.

Call (tA, tB) the threat point

5.2 Bargaining Axioms

Definition 5.32 (Axioms for bargaining solution). For a bargaining set S with threat
point (tA, tB), a Nash bargaining solution N(S) = (X,Y ) is said to satisfy the following
axioms:

(a) Efficiency - (X,Y ) ∈ S

(b) Pareto optimality - (X,Y ) are Pareto optimal, i.e. ∀(x, y) ∈ S if x ≥ X and y ≥ Y ,
then (x, y) = (X,Y )

(c) Invariant under payoff scaling, meaning if a, c > 0 and b, d ∈ R and we define S′

to be the bargaining set

S′ = {(ax+ b, cy + d) | (x, y) ∈ S}

with threat point (atA + b, ctB + d), then N(S′) = (aX + b, cY + d)

(d) Symmetry - If tA = tB and (x, y) ∈ S implies (y, x) ∈ S then we must have X = Y

(e) Independence of irrelevant alternatives - If S, T are bargaining sets with the same
threat point and S ⊂ T , then either N(S) = N(T ) or N(T ) /∈ S

5.3 The Nash Bargaining Solution

Theorem 5.33. Under the axioms of bargaining solution, (a)-(e) above. Every bargaining
set S that contains a point (x, y) with x > tA, y > tB, has a unique Nash bargaining solution
N(S) = (X,Y )

Obtained as the unique point (x, y) ∈ S that maximises the Nash product

(x− tA)(y − tB)

6 Congestion Games

6.5 Components of a Congestion Game

Definition 6.34. A congestion network has the following components:

1. A finite set of nodes
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2. A finite set of directed edges, each edge, e, an ordered pair written AB from node A
to node B

3. Each edge e has an associated cost function ce(x) giving value when there are x users
on edge e, with ce(x) weakly increasing in x

x ≤ y =⇒ ce(x) ≤ ce(y)

Definition 6.35. To form a congestion game, we need the following components:

1. A congestion network

2. N users of network with each user having a origin node, Oi and a destination node
Di

3. A strategy of user i is a path Pi from Oi → Di. Given strategy Pi for each user i,
the flow on edge e is the number of users using edge e

fe = ∥{i : e ∈ Pi}∥

4. The cost to user i of using path Pi is the sum of the costs of the edges in Pi

Costi(Pi) =
∑
e∈Pi

ce(fe)

Definition 6.36. Say Pi a best response for user i if against strategies Pj , j ̸= i, then∑
e∈Pi

ce(fe) ≤
∑

e∈Pi∩Qi

ce(fe) +
∑

e∈Pi/Qi

ce(fe + 1)

holds for every possible alternative path Qi for user i

Definition 6.37. In a congestion game with N users strategies P1, P2, . . . , PN of all N
users define an equilibrium if each strategy is a best response to the other strategies. i.e
if the above inequality holds for all i

6.6 Existence of Equilibrium in Congestion Games

Theorem 6.38. Every congestion game has at least one equilibrium
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6.7 Price of Anarchy

Definition 6.39. The price of anarchy of a congestion game is the ratio of the cost of
the worst equilibrium to the cost of the best possible solution

PoA =
Worst average cost per user in any equilibrium

Average cost per user in social optimum
=

maxP
∑

iCosti(Pi)

minP
∑

iCosti(Pi)

Proposition 6.40. For atomic flow congestion games, the price of anarchy is at most 5/2

Proposition 6.41. For split-able flow congestion games, the price of anarchy is at most
4/3

7 Combinatorial Games

These are 2-player, perfect information games with no chance moves. They come in 2
types:

� Partizan games - where the players have different sets of moves

� Impartial games - where the players have the same set of moves

7.0.1 The Ending Condition

A combinatorial game ends when there are no legal moves left for any player. The game
is then said to be in a terminal position. This is a necessary condition for a game to be
a combinatorial game.

7.0.2 The Normal Play Convention

The normal play convention is that the player who cannot move loses the game. This is a
necessary condition for a game to be a combinatorial game.

7.1 Nim and Impartial Games

Definition 7.42. An option of a game position in a combinatorial game is a position that
can be reached in one move from the player to move.

7.1.1 Winning and Losing Positions

Impartial games, game positions belong to one of 2 classes:

� Winning positions - the player to move has a winning move

� Losing positions - the player to move has no winning move
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Proposition 7.43. In an impartial game, a game position is losing if and only if all its
options are winning positions. A game is winning if and only if at least one of its options
is a losing position; moving to that position is a winning move.

Proposition 7.44. A Nim position is losing if and only if the Nim sum equals zero for
all columns in the binary representation of the position; such a position is called a zero
position. A Nim position is winning if and only if the Nim sum is not zero.

7.2 Top-down induction

7.2.1 Partial and Total Orders

Definition 7.45. A binary relation ≃ on a set S is a partial order if, for all x, y, z ∈ S,
we have:

� Reflexivity - x ≃ x

� Antisymmetry - x ≃ y and y ≃ x implies x = y

� Transitivity - x ≃ y and y ≃ z implies x ≃ z

If in addition to the above, for all x, y ∈ S, we have:

� Comparability - x ≃ y or y ≃ x

then ≃ is a total order

Definition 7.46. For a given partial order ≃ on a set S, we define the strict order ∼
corresponding to ≃ by; for all x, y ∈ S:

x ∼ y ⇐⇒ x ≃ y and x ̸= y

Definition 7.47. An element x ∈ S is maximal if there is no y ∈ S such that x ∼ y

7.2.2 Back to Top-Down Induction

Definition 7.48. Consider a set S of games, defined by a starting game and all the games
that can be reached from it via any sequence of moves of the players. For two games;
G,H ∈ S, we call H simpler than G, denoted with the binary relation H ≤ G, if there is
a sequence of moves that leads from G to H. We allow for G = H where this sequence is
empty.

Proposition 7.49. The binary relation ≤ (’simpler than’) on a set S of games is a partial
order

Proposition 7.50. Every non-empty subset, T , of S has a minimal element
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Theorem 7.51 (Top-down induction). Consider a set S with a partial order ≃ such that
every non-empty subset of S has a minimal element. Let P (x) be a statement about an
element x ∈ S that may be true or false. Assume that P (x) holds whenever P (y) holds for
all y ∈ S such that y ∼ x. Then P (x) is true for all x ∈ S. That is

(∀x : (∀y ∼ x : P (y)) =⇒ P (x)) =⇒ (∀x : P (x))

7.3 Game Sums

Definition 7.52. Suppose thatG andH are games with optionsG1, . . . , Gn andH1, . . . ,Hm

respectively. Then the game sum G+H is the game with options G1+H, . . . , Gn+H,G+
H1, . . . , G+Hm

Proposition 7.53. Denoting the losing game with no options by 0, then for any games
G,H and J we have

� Commutativity of +:
G+H = H +G

� Associativity of +:
(G+H) + J = G+ (H + J)

� Identity of +:
G+ 0 = G

7.4 Equivalence of Games

Definition 7.54. Two games G and H are called equivalent, written G ≡ H, if and only
if for any other game J , the game sum G+ J is losing if and only if H + J is losing

Lemma 7.55. The binary relation of equivalence, ≡, is an equivalence relation between
games, this means that it is:

� Reflexive - G ≡ G

� Symmetric - G ≡ H implies H ≡ G

� Transitive - G ≡ H and H ≡ J implies G ≡ J

Proposition 7.56. Two Nim piles are equivalent if and only if they have the same size

Proposition 7.57. G is a losing game if and only if G ≡ 0

Corollary 7.58. Any two losing games are equivalent

12



Lemma 7.59. For all games G,H and K we have:

G ≡ H =⇒ G+K ≡ H +K

Lemma 7.60. Let J be a losing game. Then G+ J ≡ G for any game G

Proposition 7.61 (The Copycat Principle). G+G ≡ 0 for any impartial game G

Lemma 7.62. For impartial games G and H, then G ≡ H if and only if G+H ≡ 0

7.5 Notation for Nim Piles

Definition 7.63. If G is a single Nim pile with n ≥ 0 tokens in it, then we denote this
game by ∗n. This game is specified by its n options, defined recursively as

∗0, ∗1, . . . , ∗(n− 1)

Definition 7.64. If G ≡ ∗m for an impartial game G, then m is called the Nim value of
G

7.6 The Mex Rule

Definition 7.65. For a finite set of natural numbers S, theminimum excluded number
of S, written mex(S), is defined as

mex(S) = min{n ∈ N | n /∈ S}

In other words,mex(S) is the smallest non-negative integer not contained in S e.g. mex({0, 1, 3, 4, 6}) =
2

Theorem 7.66 (The Mex Rule). Any impartial game G has Nim value m, where m is
uniquely determined as follows; for each option H of G, let H have Nim value sH , and let
S = {sH : H is an option of G}. Then m = mex(S), that is, G ≡ ∗(mex(S))

7.7 Sums of Nim Piles

Definition 7.67. If ∗k ≡ ∗m + ∗n, then we call k the Nim sum of m and n, and write
k = m⊕ n

Theorem 7.68. Let n ∈ Z+, and represent n as a unique sum of powers of 2, i.e. write
n = 2a + 2b + 2c + . . ., where a > b > c > . . . ≥ 0. Then

∗n ≡ ∗2a ⊕ ∗2b ⊕ ∗2c ⊕ . . .
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