Problem Set 3

1). Determine **all** equilibria (meaning both pure and mixed) in the following two-player games:

				3				Ι.	В	.
	_		61	62				Ы	b2	٥з
a).	A	a,	2,2	8,1	b).	A	a (-1,-1	2,-3	1,-2
		a ₂	5,3	1,7			مر	1,0	2,0	-2,1
	B				B					
			Ы	b2				b,	62	63
c).	A	a _l	0,1	6,0	d)	A	a ₁	1,0	2,2	4,-1
		a2	2,0	5,2	u).		az	- _/	0,-S	5,8
		٨з	3,3	3,4			az	-4,-2	- ,-	8,3

	1	B					
_		bı	62	b3	by	bg	
Δ	a _l	0,2	2,4	٢,3	0,5	3,0	
A	a ₂	1,7	0,4	4,5	1,0	0,8	

e).

2). Consider the **trust dilemma** as seen on problem set 2 with normal form as shown in the figure below.

Figure 1: The Trust Dilemma.

- a). Give a sketch of the payoff set for the game.
- b). Find all mixed equilibria in the game (Problem Set 2, Q1(b) tasked you with finding the pure equilibria already).
- 3). Hawks and Doves: Let's consider a game of conflict between two different animal species: hawks, H, and doves, D. The species are in conflict over a contested resource, which might be food, nesting grounds, etc, which is worth a value v > 0 to the animals.

When two doves come into conflict over the resource they peacefully split the resource equally. When a hawk meets a dove, the dove stands off and the hawk takes all of the resource for themself. When two hawks meet a ferocious fight over the resource occurs between them, the victor takes the resource and the loser, not only receives nothing, but incurs a cost, c, of injury where c > v > 0. We assume all hawks are equally likely to win/lose this contest, so on average a hawk gets a payoff of (v - c)/2 < 0 when meeting another hawk. According to this, the normal form of the game is shown in the figure below where an animal A meets an animal B.

- a). Find all equilibria in the game.
- b). What could any mixed equilibria found in (a) represent contextually in this game?
- c). If we were to set c = v, what game that we have seen does this become equivalent to? What about if c < v?
- d). (\diamond) Look up the Bourgeois variant of Hawks and Doves. You might also like to investigate the concept of evolutionary stable strategies and replicator dynamics in this context.

Figure 2: Hawks and Doves.

- 4). Determine **all** equilibria in the following two-player games:
 - a). A variant of the **inspection game** (see section 3.2, page 36 of the lecture notes) where the inspectee gets no gain from acting illegally.

b). The **defence of Rome** (see section 2.3, page 18 of the lecture notes).

c). The 2×3 game below.

		Ы	B b2	b3
Λ	al	0,2	3,1	2,0
F١	a ₂	1,0	2,	0,2

- 5). Prove that in any equilibrium of a two-player game that is **not** degenerate, both players use mixed strategies that mix over the same number of pure strategies.
- 6). In a two-player game let $\alpha, \hat{\alpha} \in \mathbb{A}_S$ and $\beta \in \mathbb{B}_S$. Suppose that (α, β) and $(\hat{\alpha}, \beta)$ are both equilibria of the game. Prove that $(k\alpha + (1 k)\hat{\alpha}, \beta)$ is also an equilibrium of the game for any $k \in [0, 1]$.
- 7). $(\star)(\diamond)$ Here's a very pretty result that I would've loved to derive in lectures had we more time to go into extra theory:

Theorem: A finite two-player non-degenerate game has an **odd** number of equilibria.

Prove this result.

To prove this you need some tools that we haven't developed in our course: the idea of labelling in best-response diagrams and the Lemke-Howson algorithm. If this result intrigues you and you want to learn some theory and see a proof then one resource is pages 223 - 235 of the book 'Game Theory Basics'.