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1 Mathematical Preliminaries

1.1 Vector Spaces

Definition 1.1 (Vector Space). A vector space over a field F is a set V equipped with two
operations: vector addition + : V × V → V and scalar multiplication · : F× V → V such
that the following properties hold:

1. Closure under Addition: For all u, v ∈ V , u+ v ∈ V .

2. Associativity of Addition: For all u, v, w ∈ V , (u+ v) + w = u+ (v + w).

3. Commutativity of Addition: For all u, v ∈ V , u+ v = v + u.

4. Additive Identity: There exists a vector 0 ∈ V such that for all v ∈ V , v + 0 = v.

5. Additive Inverse: For all v ∈ V , there exists a vector −v ∈ V such that v+(−v) =
0.

6. Closure under Scalar Multiplication: For all λ ∈ F and v ∈ V , λv ∈ V .

7. Distributivity of Scalar Multiplication over Vector Addition: For all λ ∈ F
and u, v ∈ V , λ(u+ v) = λu+ λv.

8. Distributivity of Scalar Multiplication over Field Addition: For all λ, µ ∈ F
and v ∈ V , (λ+ µ)v = λv + µv.

9. Compatibility of Scalar Multiplication with Field Multiplication: For all
λ, µ ∈ F and v ∈ V , (λµ)v = λ(µv).

10. Identity Element of Scalar Multiplication: For all v ∈ V , 1v = v.

Definition 1.2 (Inner Product). An inner product on a vector space V is a function
⟨·, ·⟩ : V × V → F such that for all u, v, w ∈ V and λ ∈ F, the following properties hold,
considering only real vector spaces:

1. Symmetry: ⟨u, v⟩ = ⟨v, u⟩.

2. Additivity: ⟨u+ v, w⟩ = ⟨u,w⟩+ ⟨v, w⟩.

3. Homogeneity: ⟨λu, v⟩ = λ⟨u, v⟩, ∀λ ∈ R.

4. Positive Definiteness: ⟨v, v⟩ ≥ 0 with equality if and only if v = 0.

Definition 1.3 (Norm). The norm of a vector v ∈ V is defined as ∥v∥ =
√

⟨v, v⟩. The
norm satisfies the following properties:

1. ∥v∥ ≥ 0 with equality if and only if v = 0.
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2. ∥λv∥ = |λ|∥v∥.

3. ∥u+ v∥ ≤ ∥u∥+ ∥v∥.

Theorem 1.4 (Cauchy-Schwarz Inequality). For all u, v ∈ V , |⟨u, v⟩| ≤ ∥u∥∥v∥. Equality
holds if and only if u and v are linearly dependent.

Definition 1.5 (Matrix Norms). A norm |·| on Rm×n is a function |·| : Rm×n → R such
that for all A,B ∈ Rm×n and λ ∈ R, the following properties hold:

1. Non-negativity: |A| ≥ 0 with equality if and only if A = 0.

2. Homogeneity: |λA| = |λ| |A|.

3. Triangle Inequality: |A+B| ≤ |A|+ |B|.

Definition 1.6 (Induced Norms). Given matrix A ∈ Rm×n and two norms ∥·∥a and ∥·∥b
on Rm and Rn respectively, the induced norm ( a, b) norm ) of A is defined as:

∥A∥a,b = max
x

{∥Ax∥b : ∥x∥a ≤ 1}

Example 1.7 (Examples of Norms). 1. Spectral Norm: ((2,2)-norm): ∥A∥2 = σmax(A).

2. ℓ1 norm: ∥A∥1 = maxj
∑

i |aij |.

3. ℓ∞ norm: ∥A∥∞ = maxi
∑

j |aij |.

4. Frobenius Norm: ∥A∥F =
√∑

i,j a
2
ij .

1.2 Eigenvalues and Eigenvectors

Definition 1.8 (Eigenvalues and Eigenvectors). Let A ∈ Rn×n. A scalar λ ∈ C is an
eigenvalue of A if there exists a non-zero vector x ∈ Cn such that Ax = λx. The vector x
is called an eigenvector corresponding to the eigenvalue λ.

Theorem 1.9 (Spectral Factorization Theorem). Let A ∈ Rn×n be a symmetric matrix.
Then, there exists an orthogonal matrix Q and a diagonal matrix Λ such that A = QΛQT .

The columns of Q are the eigenvectors of A and the diagonal elements of Λ are the
corresponding eigenvalues of A.

Corollary 1.10 (Trace and Determinant). Let A ∈ Rn×n be a symmetric matrix with
eigenvalues λ1, λ2, . . . , λn. Then, the trace and determinant of A are given by:

tr(A) =
n∑

i=1

λi and det(A) =
n∏

i=1

λi
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Corollary 1.11 (Rayleigh Quotient Bound). Let A ∈ Rn×n be a symmetric matrix with
eigenvalues λ1 ≤ λ2 ≤ . . . ≤ λn. Then, for any vector x ∈ Rn, the Rayleigh quotient
satisfies:

λ1 ≤
xTAx

xTx
≤ λn

1.3 Basic Topological Concepts

Definition 1.12 (Balls). An open ball of radius ϵ > 0 centered at a point x ∈ Rn is defined
as:

B(x, ϵ) = {y ∈ Rn : ∥y − x∥ < ϵ}

A closed ball of radius ϵ > 0 centered at a point x ∈ Rn is defined as:

B̄(x, ϵ) = {y ∈ Rn : ∥y − x∥ ≤ ϵ}

Definition 1.13 (Interior Point). A point x ∈ Rn is an interior point of a set S ⊆ Rn if
there exists an open ball centered at x that is contained in S. The set of all interior points
of S is denoted by int(S).

int(S) = {x ∈ S : there exists an open ball B(x, ϵ) ⊆ S}

Definition 1.14 (Closed Set). A set S ⊆ Rn is closed if it contains all its limit points. A
limit point of a set S is a point x ∈ Rn such that every open ball centered at x contains a
point in S.

We have that a set U is closed ⇐⇒ U c is open.

Definition 1.15 (Boundary Points). A point x ∈ Rn is a boundary point of a set S ⊆ Rn

if every open ball centered at x contains points in S and points not in S. The set of all
boundary points of S is denoted by ∂S.

∂S = {x ∈ Rn : every open ball centered at x contains points in S and points not in S}

Definition 1.16 (Closure). The closure of a set S ⊆ Rn is the union of S and its boundary
points. Equivalently the closure of a set S is the smallest closed set containing S.

S̄ = S ∪ ∂S, S̄ =
⋂

{U ⊆ Rn : U is closed and S ⊆ U}

1.4 Directional Derivatives and Gradients

Definition 1.17 (Directional Derivative). Let f : Rn → R be a function and x ∈ Rn. The
directional derivative of f at x in the direction of a vector d ∈ Rn is defined as:

∇df(x) = lim
t→0

f(x+ td)− f(x)

t
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Definition 1.18 (Continuous Differentiability). A function f : Rn → R is continuously
differentiable at a point x ∈ Rn if all the partial derivatives of f exist and are continuous
in a neighbourhood of x.

Proposition 1.19. Let f : U → R defined on open set U ⊆ Rn. Suppose that f is
continuously differentiable over U . Then

lim
d→0

f(x+ d)− f(x)−∇f(x)Td

∥d∥
= 0, ∀x ∈ U

Or equiv:
f(y) = f(x) +∇f(x)T (y − x) + o(∥y − x∥)

where o(∥y − x∥) is the Landau notation for a function that vanishes faster than a linear

function. i.e o(t)
t → 0 as t → 0

Definition 1.20 (Twice differentiablility and Hessian). Let f : Rn → R be a function.
The second order partial derivatives of f at a point x ∈ Rn are defined as:

∂2f

∂xi∂xj
=

∂

∂xi

(
∂f

∂xj

)
The Hessian matrix of f at x is defined as:

∇2f(x) =


∂2f
∂x2

1

∂2f
∂x1∂x2

· · · ∂2f
∂x1∂xn

∂2f
∂x2∂x1

∂2f
∂x2

2
· · · ∂2f

∂x2∂xn

...
...

. . .
...

∂2f
∂xn∂x1

∂2f
∂xn∂x2

· · · ∂2f
∂x2
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Theorem 1.21 (Linear Approximation Theorem). Let f : U → R be a function defined on
U ⊆ Rn, that is twice continuously differentiable over U . Let x ∈ U and ϵ > 0 satisfying
B(x, ϵ) ⊆ U . Then for any y ∈ B(x, ϵ), there exists ξ ∈ [x,y] such that:

f(y) ≈ f(x) +∇f(x)T (y − x) +
1

2
(y − x)T∇2f(ξ)(y − x)

Theorem 1.22 (Quadratic Approximation Theorem). Let f : U → R, defined on open
set U ⊆ Rn. Suppose f is twice continuously differentiable over U . Let x ∈ U and r > 0
satisfying B(x, r) ⊆ U . Then for any y ∈ B(x, r) :

f(y) = f(x) +∇f(x)T (y − x) +
1

2
(y − x)T∇2f(x)(y − x) + o(∥y − x∥2)

Proposition 1.23 (Gradient of Linear Function). Given function f(w) = aTw. Then

∇f(w) = a
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Proposition 1.24 (Gradient of Quadratic Function). Given function f(w) = wTAw.
Then

∇f(w) = (A+AT )w

Note that if A is symmetric, then ∇f(w) = 2Aw
More generally for a function f(w) = 1

2w
TAw + bTw + γ, the gradient is given by:

∇f(w) =
1

2
(AT +A)w + b

And again if A is symmetric, then ∇f(w) = Aw + b

Proposition 1.25 (Hessian of Quadratic Function). For function of the form f(w) =
wTAw. The Hessian is given by:

∇2f(w) = A+AT

Which for A symmetric simplifies to ∇2f(w) = 2A

2 Unconstrained Optimisation

2.1 Global Minimum and Maximum

Definition 2.1 (Global Minimum and Maximum). Let f : S → R, defined on set S ⊆ Rn.
Then

1. x∗ ∈ S a global minimum of f over S if f(x∗) ≤ f(x) for all x ∈ S.

2. x∗ ∈ S a strict global minimum of f over S if f(x∗) < f(x) for all x ∈ S,x ̸= x∗.

3. x∗ ∈ S a global maximum of f over S if f(x∗) ≥ f(x) for all x ∈ S.

4. x∗ ∈ S a strict global maximum of f over S if f(x∗) > f(x) for all x ∈ S,x ̸= x∗.

We denote by global optimum the global minimum or maximum.

� maximal value of f over S
sup{f(x) : x ∈ S}

� minimal value of f over S
inf{f(x) : x ∈ S}
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2.2 Local Minima and Maxima

Definition 2.2 (Local Minimum and Maximum). Let f : S → R be defined on a set
S ⊆ Rn. Then:

1. x∗ ∈ S a local minimum of f over S if there exists r > 0 for which f(x∗) ≤ f(x) for
any x ∈ S ∩B(x∗, r)

2. x∗ ∈ S a strict local minimum of f over S if there exists r > 0 for which f(x∗) < f(x)
for any x ̸= x∗ ∈ S ∩B(x∗, r)

3. x∗ ∈ S a local maximum of f over S if there exists r > 0 for which f(x∗) ≥ f(x) for
any x ∈ S ∩B(x∗, r)

4. x∗ ∈ S a strict local maximum of f over S if there exists r > 0 for which f(x∗) > f(x)
for any x ̸= x∗ ∈ S ∩B(x∗, r)

Theorem 2.3 (Fermat’s Theorem: First Order Optimality Conditions). Let f : U → R
a function defined on set U ⊆ Rn. Suppose that x∗int(U) a local optimum point and all
partial derivatives of f exist at x∗. Then:

∇f(x∗) = 0

Definition 2.4 (Stationary Points). Let f : U → R a function defined on set U ⊆ Rn.
Suppose that x∗ ∈ int(U) and all partial derivatives of f exist at x∗. Then x∗ is a stationary
point of f if:

∇f(x∗) = 0

2.3 Second Order Optimality Conditions

Theorem 2.5 (Necessary Second Order Optimality Conditions). Let f : U → R a function
defined on open set U ⊆ Rn. Suppose f is twice continuously differentiable over U and x∗

a stationary point. Then:

1. if x∗ a local minimum point, then ∇2f(x∗) ⪰ 0

2. if x∗ a local maximum point, then ∇2f(x∗) ⪯ 0

Theorem 2.6 (Sufficient Second Order Optimality Conditions). Let f : U → R a function
defined on open set U ⊆ Rn. Suppose f is twice continuously differentiable over U and x∗

a stationary point. Then:

1. if ∇f(x∗) = 0 and ∇2f(x∗) ≻ 0, then x∗ a strict local minimum point

2. if ∇f(x∗) = 0 and ∇2f(x∗) ≺ 0, then x∗ a strict local maximum point
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2.4 Saddle Points

Definition 2.7 (Saddle Point). Let f : U → R a function defined on open set U ⊆ Rn.
Suppose f is continuously differentiable over U and x∗ a stationary point. Then x∗ a saddle
point if it is neither a local minimum nor a local maximum.

Theorem 2.8 (Sufficient Condition for Saddle Points). Let f : U → R a function defined
on open set U ⊆ Rn. Suppose f is twice continuously differentiable over U and x∗ a
stationary point. Then:

1. if ∇f(x∗) = 0 and ∇2f(x∗) is indefinite, then x∗ a saddle point

2.5 Attainment of Minimal/Maximal Values

Theorem 2.9 (Weierstrass Theorem). Let f : U → R a continuous function defined on a
non-empty compact set U ⊆ Rn. Then f attains its maximal and minimal values over U .

Definition 2.10 (Coerciveness). A function f : U → R is coercive if for any sequence
{xk} ⊆ U such that ∥xk∥ → ∞, we have that f(xk) → ∞.

Theorem 2.11 (Attainment of Global Optima Points for Coercive Functions). Let f :
U → R a coercive function defined on a non-empty closed set U ⊆ Rn. Then f attains its
global minimal value over U .

2.6 Global Optimality Conditions

Theorem 2.12 (Global Optimality Conditions). Let f be twice continuously differentiable
over Rn . Suppose that ∇2f(x) ⪰ 0 for any x ∈ Rn. Let x∗ ∈ Rn be a stationary point of
f . Then x∗ is a global minimum point of f .

2.7 Quadratic Functions

Proposition 2.13. Let f(x) = 1
2x

TAx+ bTx+ c be a quadratic function defined on Rn.
With A ∈ Rn×n symmetric, b ∈ Rn and c ∈ R. Then:

1. x a stationary point of f if and only if Ax = −b

2. if A ⪰ 0, then x a global minimum point of f if and only if Ax = −b

3. if A ≻ 0, then x = −A−1b a strict global minimum point of f
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2.8 Two Important Theorems on Quadratic Functions

Lemma 2.14 (Coerciveness of Quadratic Functions). Let f(x) = 1
2x

TAx+ bTx+ c be a
quadratic function defined on Rn. With A ∈ Rn×n symmetric, b ∈ Rn and c ∈ R. Then f
is coercive ⇐⇒ A ≻ 0

Theorem 2.15 (Characterization of the Nonnegativity of Quadratic Functions). Consider
the quadratic function f(x) = xTAx+2bTx+c defined on Rn. With A ∈ Rn×n symmetric,
b ∈ Rn and c ∈ R. Then the following are equivalent:

1. f(x) ≡ xTAx+ 2bTx+ c

2. The augmented matrix

(
A b
bT c

)
⪰ 0 is positive semidefinite

2.9 Appendix: Classification of Matrices

Definition 2.16 (Positive Definiteness). A symmetric matrixA ∈ Rn×n is positive semidef-
inite (A ⪰ 0 ) if

xTAx ≥ 0, ∀x ∈ Rn,x ̸= 0

A symmetric matrix A ∈ Rn×n is positive definite (A ≻ 0 ) if

xTAx > 0, ∀x ∈ Rn,x ̸= 0

Proposition 2.17. Let A be positive definite (semidefinite) matrix. Then the diagonal
elements of A are positive. (non-negative)

Definition 2.18 (Negative Definiteness). A symmetric matrix A ∈ Rn×n is negative
semidefinite (A ⪯ 0 ) if

xTAx ≤ 0, ∀x ∈ Rn,x ̸= 0

A symmetric matrix A ∈ Rn×n is negative definite (A ≺ 0 ) if

xTAx < 0, ∀x ∈ Rn,x ̸= 0

Remark. � A is negative (semi)definite ⇐⇒ −A is positive (semi)definite

� A matrix is indefinite if and only if it is neither positive nor negative semidefinite

� A symmetric matrix with positive and negative diagonal elements is indefinite

� The sum of two positive/negative (semi)definite matrices is positive/negative (semi)definite

Theorem 2.19 (Eigenvalue Characterization). Let A be a symmetric n×n matrix. Then:

1. A is positive definite ⇐⇒ λi > 0, ∀i = 1, 2, . . . , n
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2. A is positive semidefinite ⇐⇒ λi ≥ 0, ∀i = 1, 2, . . . , n

3. A is negative definite ⇐⇒ λi < 0, ∀i = 1, 2, . . . , n

4. A is negative semidefinite ⇐⇒ λi ≤ 0, ∀i = 1, 2, . . . , n

5. A is indefinite ⇐⇒ ∃i, j s.t. λi > 0, λj < 0

Definition 2.20 (Principal Minor). Let A be a symmetric n×n matrix. The k-th principal
minor of A is the determinant of the k × k submatrix of A obtained by deleting the last
n− k rows and columns of A.

Proposition 2.21. Let A a n × n symmetric matrix. Then A is positive definite if and
only if all the principal minors of A are positive.

D1(A) > 0, D2(A) > 0, . . . , Dn(A) > 0

Proposition 2.22. Let A a n × n symmetric matrix. Then A is negative definite if and
only if the principal minors of A alternate in sign, starting with a negative minor.

(−1)kDk(A) > 0, ∀k = 1, 2, . . . , n

Definition 2.23 (Diagonal Dominance). Let A symmetric n× n matrix

1. A is diagonally dominant if

|aii| ≥
∑
j ̸=i

|aij | , ∀i = 1, 2, . . . , n

2. A is strictly diagonally dominant if

|aii| >
∑
j ̸=i

|aij | , ∀i = 1, 2, . . . , n

Theorem 2.24 (Positive Definiteness of diagonally dominant matrices). 1. if A sym-
metric, diagonally dominant, with non-negative diagonal elements, then A is positive
semidefinite

2. if A symmetric, strictly diagonally dominant, with positive diagonal elements, then
A is positive definite
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3 Linear and Nonlinear Least Squares Problems

3.1 Linear Least Squares

Definition 3.1 (Linear Least Squares). Let A ∈ Rm×n and b ∈ Rm. We assume A has
full column rank. The linear least squares problem is to find x∗ ∈ Rn that minimizes the
residual sum of squares:

x∗ = arg min
x∈Rn

∥Ax− b∥2

Which is the same as:

min
x∈Rn

{f(x) ≡ xTATAx− 2bTAx+ bTb}

Note that ∇2f(x) = 2ATA ≻ 0 since A of full column rank, and m > n. Therefore we get
the unique optimal solution xLS = ∇f(x) = 0

(ATA)xLS = ATb

xLS = (ATA)−1ATb

Definition 3.2 (Regularised Least Squares). Let A ∈ Rm×n and b ∈ Rm. We assume
A has full column rank. The regularised least squares problem is to find x∗ ∈ Rn that
minimizes the regularised residual sum of squares:

x∗ = arg min
x∈Rn

∥Ax− b∥2 + λR(x)

Where λ the regularisation parameter and R(x) the regularisation/penalty function. A
common choice is the quadratic regularisation function:

min ∥Ax− b∥2 + λ ∥Dx∥2

The optimal solution is then given by:

XRLS = (ATA+ λDTD)−1ATb

Must have that null(S) ∩ null(A) = {0} for the above inversion to be possible.

Example 3.3 (Denoising). Suppose we have a noisy signal y ∈ Rn that is the sum of a
clean signal x ∈ Rn and some noise e ∈ Rn. We can model this as:

y = x+ e

We can then solve the regularised least squares problem to recover the clean signal x from
the noisy signal y. Taking our problem as follows:

min ∥y − x∥2 + λ ∥Lx∥2
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For a matrix L

L =


1 −1 0 · · · 0
0 1 −1 · · · 0
...

...
...

. . .
...

0 0 0 · · · −1


This is a common choice for denoising as it penalises the difference between adjacent
elements of the signal. Direct solution is given by:

xRLS = (I + λLTL)−1y

3.2 Nonlinear Least Squares

Definition 3.4 (Nonlinear Least Squares). Aim to find x∗ ∈ Rn that minimizes:

min
x

m∑
i=1

(fi(x)− bi)
2

4 Gradient Descent Algorithm

Definition 4.1 (Descent Direction). Let f : Rn → R a continuously differentiable function
over Rn. A vector d ∈ Rn is a descent direction at x ∈ Rn if:

∇f(x)Td < 0

Lemma 4.2. Let f be a continuously differentiable function over Rn, and let x ∈ Rn.
Suppose d a descent direction of f at x. Then there exists ϵ > 0, such that for any
α ∈ (0, ϵ), we have:

f(x+ αd) < f(x)

Algorithm 1: Schematic Descent Direction Method

Initialisation: Choose x(0) ∈ Rn, set k = 0
General Step: For k = 0, 1, 2, . . . execute the following:

1. Pick a descent direction d(k) at x(k)

2. Find a stepsize tk satisfying f(xk + tkdk) < f(xk)

3. Set x(k+1) = x(k) + tkd(k)

4. If a stopping criteria is satisfied, then STOP and output x(k+1)
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Choosing a step-size

� Constant stepsize: tk = t

� Exact stepsize: tk = arg min
t

f(x(k) + td(k))

� Backtracking line search: Start with t = 1, and reduce t until the Armijo condition
is satisfied:

f(x(k) + td(k)) ≤ f(x(k)) + αt∇f(x(k))Td(k)

Lemma 4.3. Let f be a continuously differentiable function and let x ∈ Rn be a non-
stationary point. Then an optimal solution of

min
d

{f ′(xδd) : ∥d∥ = 1}

is d = −∇f(x)/ ∥∇f(x)∥

Algorithm 2: The Gradient method

Initialisation: A tolerance parameter ϵ > 0 and choose x(0) ∈ Rn

General Step: For k = 0, 1, 2, . . . execute the following:

1. Pick a stepsize tk by a line search method on the function

g(t) = f(x(k) − t∇f(x(k)))

2. Set x(k+1) = x(k) − tk∇f(x(k))

3. If
∥∥∇f(x(k+1))

∥∥ < ϵ, then STOP and output x(k+1)

Lemma 4.4. Let {xK}k>0 be the sequence generated by the gradient method with exact
line search for solving a problem of minimizing a continuously differentiable function f .
Then for any k = 0, 1, 2, . . .

f(x(k+1)) ≤ f(x(k))

Definition 4.5 (Lipschitz Gradient). Let f be a continuously differentiable function over
Rn. We say that f has a Lipschitz gradient if there exists L ≥ 0 for which:

∥∇f(x)−∇f(y)∥ ≤ L ∥x− y∥ , ∀x,y ∈ Rn

Remark. � If ∇f is Lipschitz with constant L, then it is also Lipschitz continuous with
constant L̃ for all L̃ ≥ L

� The class of functions with Lipschitz gradient with constant L denoted by C1,1
L (Rn)

or just C1,1(Rn)
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� Linear functions: Given a ∈ Rn, the function f(x) = aTx has a Lipschitz gradient
with constant L = ∥a∥

� Quadratic functions: Given A ∈ Rn×n, the function f(x) = xTAx + 2bTx + c a
C1,1 function with the smallest Lipschitz constant L = 2 ∥A∥

Theorem 4.6 (Equivalence to Boundedness of the Hessian). Let f be a twice continuously
differentiable function over Rn. Then the following are equivalent:

1. f has a Lipschitz gradient with constant L

2. The Hessian of f is bounded, i.e. there exists M ≥ 0 for which:∥∥∇2f(x)
∥∥ ≤ M, ∀x ∈ Rn

Lemma 4.7 (Sufficient decrease of the gradient method). Let f ∈ C1,1
L (Rn). Let {xk}k≥0

be the sequence generated by the gradient method for solving

min
x∈Rn

f(x)

with one of the following stepsize strategies:

� constant stepsize t̃ ∈ (0, 2
L)

� exact line search

� backtracking procedure with parameters s ∈ R++, α ∈ (0, 1) and β ∈ (0, 1). Then

f(xk)− f(xk+1) ≥ M
∥∥∥∇f(xk)

∥∥∥2
Where

M =


t̃(1− t̃L2 ) if constant stepsize
1
2L if exact line search

αmin{s, 2(1−α)β
L } if backtracking line search

Theorem 4.8 (Convergence of the Gradient Method). Let {xk}k≥0 be the sequence gen-
erated by the gradient method for solving

min
x∈Rn

f(x)

with one of the following stepsize strategies:

� constant stepsize t̃ ∈ (0, 2
L)
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� exact line search

� backtracking procedure with parameters s ∈ R++, α ∈ (0, 1) and β ∈ (0, 1)

Assume that

� f ∈ C1,1
L (Rn)

� f bounded below over Rn, that is, there exists m ∈ R such that f(x) > m for all
x ∈ Rn

Then:

1. for any k, f(xk+1 < f(xk)) unless ∇f(xk) = 0

2. ∇f(xk) → 0 as k → ∞

Definition 4.9 (Condition number). Let A be an n × n positive definite matrix. The
condition number of A is defined as:

κ(A) =
λmax(A)

λmin(A)

where λmax(A) and λmin(A) are the largest and smallest eigenvalues of A respectively.

Lemma 4.10 (Kantorovich Inequality). Let A be an n× n positive definite matrix. Then
for any 0 ̸= x ∈ Rn, we have:

(xTx)2

(xTAx)(xTA−1x)
≤ 4λmax(A)λmin(A)

(λmax(A) + λmin(A))2

Theorem 4.11 (Gradient method for minimizing xTAx ). Let {xk}k≥0 be the sequence
generated by the gradient method with exact line search for solving the problem

min
x∈Rn

xTAx (A ≻ 0)

Then for any k = 0, 1, . . .

f(xk+1) ≤
(
M −m

M +m

)2

f(xk)

where M = λmax(A) and m = λmin(A)
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Algorithm 3: Scaled Gradient Method

Initialisation: A tolerance parameter ϵ > 0 and choose x(0) ∈ Rn

General Step: For k = 0, 1, 2, . . . execute the following:

1. Pick Dk ≻ 0, a scaling matrix

2. Pick a stepsize tk by a line search method on the function

g(t) = f(x(k) − tD(k)∇f(xk))

3. Set x(k+1) = x(k) − tkD(k)∇f(xk)

4. If
∥∥∇f(xk+1)

∥∥ ≤ ϵ, then STOP and output x(k+1)

Algorithm 4: The Damped Gauss-Newton Method

Initialisation: A tolerance parameter ϵ > 0 and choose x(0) ∈ Rn

General Step: For k = 0, 1, 2, . . . execute the following:

1. Set dk =
(
J(xk)TJ(xk)

)−1
J(xk)TF (xk)

2. Set tk by line search procedure on function

h(t) = g(xk + tdk)

3. Set xk+1 = xk + tkdk

4. If
∥∥∇g(xk+1)

∥∥ ≤ ϵ, then STOP and output x(k+1)

5 Stochastic Gradient Descent

5.1 The Kaczmarz Algorithm

Definition 5.1 (Kaczmarz Algorithm). Let A ∈ Rm×n and b ∈ Rm. The Kaczmarz
Algorithm is an iterative method for solving the linear system Ax = b. The algorithm is
as follows:

1. Start with an initial guess x(0) ∈ Rn

2. For k = 0, 1, 2, . . . execute the following:

(a) For i = 1, 2, . . . ,m execute the following:

x(k+1) = x(k) +
bi − aTi x

(k)

∥ai∥2
ai

16



Note that we do not need to compute A−1. The i-th row that is chosen at the k-th iteration
of the algorithm is cycled periodically through all m rows of A.

i = k mod m

Provided the system is consistent, the Kaczmarz algorithm converges to the solution of the
linear system.
The Kaczmarz algorithm converges exponential to the solution of the linear system, if at
the k-th iteration the i-th row is chosen randomly according to either a uniform distribution
or proportional to the squared row norm: pi = ∥ai∥2 / ∥A∥2,

5.2 Stochastic Gradient Descent

Definition 5.2 (Stochastic Gradient Descent (SGD)). An iterative optimization algo-
rithm used in machine learning to minimize a loss function L(θ), where θ represents the
parameters of the model. SGD modifies the parameters by following these steps:

1. Initialize the parameters θ to some starting values θ0.

2. At each iteration t, randomly select a minibatch Bt from the dataset.

3. Compute the gradient of the loss function approximated over the minibatch:

gt =
1

|Bt|
∑
i∈Bt

∇Li(θt)

where ∇Li(θt) is the gradient of the loss function with respect to θ computed at the
i-th data point.

4. Update the parameters using a learning rate η:

θt+1 = θt − ηgt

5. Repeat steps 2-4 until the parameters converge or a predefined number of iterations
is reached.

SGD is particularly effective for large datasets as it requires less computational resources
per iteration. The random selection of data helps in avoiding local minima, but it also
introduces variability in the gradient estimation, potentially causing fluctuation in the
convergence path.

Theorem 5.3 (Convergence of SGD). Assume:

� The cost g(x) is such that

∥∇g(x)−∇g(y)∥ ≤ L ∥x− y∥ , and ∇2g(x) ⪰ µI
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� The sample gradient ∇Qi(x
k) is an unbiased estimator of ∇g(xk)

� For all x
E
[
∥Qi(x)∥2

]
≤ σ2 + c ∥∇g(x)∥2

Then if tk ≡ t ≤ 1
Lc Then SGD achieves

E
[
g(xk)− g(x∗)

]
≤ tLσ2

2µ
+ (1− µ)k

[
g(x0)− g(x∗)

]
The above implies

� Fast (linear) convergence during first iterations

� Convergence to a neighbourhood of the optimal solution, without further improvement

� If gradient computation noiseless, that is σ = 0, then linear convergence to the optimal
solution

� A smaller stepsize t yield better converging points

6 Convex Sets and Functions

Definition 6.1 (Convex Set). A set C ⊆ Rn is convex if for any x,y ∈ C and any λ ∈ [0, 1],
we have:

λx+ (1− λ)y ∈ C

Example 6.2. � Any line segment in Rn is a convex set

L = {z+ td : t ∈ R}

where z, 0 ̸= d ∈ Rn

� [x, y], (x, y) for x, y ∈ Rn, x ̸= y,∅,Rn

� A hyperplane is a convex set

H = {x ∈ Rn : aTx = b}

� A half-space is a convex set

H− = {x ∈ Rn : aTx ≤ b}

� The open and closed balls are convex sets

18



� An ellipsoid is a convex set

E = {x ∈ Rn : xTQx+ 2bTx+ c ≤ 0}, Q ≻ 0

Lemma 6.3 (Intersection of Convex Sets). The intersection of any collection of convex
sets is a convex set

Theorem 6.4 (Properties of Convex Sets). 1. Let C1, C2, . . . , Ck ⊆ Rn be convex sets
and let µ1, µ2, . . . , µk ∈ R. Then the set

C = {x ∈ Rn : x ∈ µ1C1 + µ2C2 + . . .+ µkCk}, is convex

2. Let Ci ⊂ Rki , i = 1, . . . ,m be convex sets. Then

C = C1 × C2 × . . .× Cm = {(x1,x2, . . . ,xm) : xi ∈ Ci, i = 1, . . . ,m}, is convex

3. Let M ⊆ Rn be a convex set and let A ∈ Rm×n . Then the set

A(M) = {Ax : x ∈ M}, is convex

4. Let D ⊆ Rm be convex and let A ∈ Rm×n. Then the set

A−1(D) = {x ∈ Rn : Ax ∈ D}, is convex

Definition 6.5 (Convex Combinations). Given m points x1, x2, . . . , xm ∈ Rn, a convex
combination of these points is a point of the form:

m∑
i=1

λixi, where λi ≥ 0,

m∑
i=1

λi = 1

Theorem 6.6. Let C ⊆ Rn be a convex set and let x1, x2, . . . , xm ∈ C. Then for any
λ ∈ ∆m, the relation

∑m
i=1 λixi ∈ C holds

Definition 6.7 (The Convex Hull). Let S ⊆ Rn. The convex hull of S, denoted by
conv(S), is the set of all convex combinations of points in S:

conv(S) =

{
m∑
i=1

λixi : xi ∈ S, λi ≥ 0,
m∑
i=1

λi = 1

}

Theorem 6.8 (Caratheodory). Let S ⊆ Rn and let x ∈ conv(S). Then there exists a subset
S′ ⊆ S with |S′| ≤ n+ 1 such that x ∈ conv(S′). That is there exists x1,x2, . . . ,xn+1 ∈ S
such that x ∈ conv({x1, x2, . . . , xn+1}), that is there exists λ ∈ ∆n+1 such that

x =

n+1∑
i=1

λixi
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Definition 6.9 (Extreme Point). A point x ∈ C is an extreme point of a convex set C if
it cannot be expressed as a convex combination of two distinct points in C. That is, x is
an extreme point of C if for any y, z ∈ C and any λ ∈ (0, 1), we have:

x = λy + (1− λ)z =⇒ x = y = z

The set of all extreme points of a convex set C is denoted by ext(C).

Theorem 6.10 (The Krein-Milman Theorem). Let S ⊆ Rn be a compact convex set. Then

S = conv(ext(S))

6.1 Convex Functions

Definition 6.11 (Convex Function). A function f : Rn → R is convex if for any x,y ∈ Rn

and any λ ∈ [0, 1], we have:

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)

Definition 6.12 (Strict Convexity). A function f : C → R defined on convex set C ⊆ Rn

is called strictly convex if for any x,y ∈ C and any λ ∈ (0, 1), we have:

f(λx+ (1− λ)y) < λf(x) + (1− λ)f(y)

Definition 6.13 (Concavity). A function f is concave if −f is convex. Equivalently; a
function f : Rn → R is concave if for any x,y ∈ Rn and any λ ∈ [0, 1], we have:

f(λx+ (1− λ)y) ≥ λf(x) + (1− λ)f(y)

Theorem 6.14 (Jensen’s Inequality). Let f : C → R be a convex function where C ⊆ Rn

is a convex set. Then for any x1,x2, . . . ,xm ∈ C and any λ ∈ ∆m, we have:

f

(
m∑
i=1

λixi

)
≤

m∑
i=1

λif(xi)

Definition 6.15 (Epigraph). Let f : Rn → R be a function. The epigraph of f is the set:

epi(f) = {(x, t) ∈ Rn+1 : f(x) ≤ t}

Theorem 6.16. Let f : Rn → R. Then f is convex if and only if epi(f) is a convex set
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6.2 First-order Characterizations of Convexity

Theorem 6.17 (Gradient Inequality). Let f : C → R be a continuously differentiable
function defined on a convex set C ⊆ Rn. Then f is convex if and only if

f(y) ≥ f(x) +∇f(x)T (y − x), ∀x,y ∈ C

Theorem 6.18 (Stationarity Implies Global Optimality). Let f be a continuously differ-
entiable function convex over a convex set C ⊆ Rn. Suppose ∇f(x∗) = 0 for some x∗ ∈ C.
Then x∗ ∈ C. Then x∗ is a global minimizer of f over C

Theorem 6.19 (Convexity of Quadratic Functions with Positive semidefinite matrices).
Let f : Rn → R be the quadratic function; f(x) = xTAx + 2bTx + c, where A ∈ Rn×n is
symmetric, bf ∈ Rn, c ∈ R. Then f is (strictly) convex if and only if A ⪰ 0 ( A ≻ 0 )

Theorem 6.20 (Monotonicity of the Gradient). Suppose that f is a continuously differ-
entiable function over a convex set C ⊆ Rn. Then f is convex over C if and only if

∇f(y)−∇f(x) ⪰ 0, ∀x,y ∈ C

6.3 Second-order Characterizations of Convexity

Theorem 6.21 (Second-order Characterization of Convexity). Let f be a twice continu-
ously differentiable function over an open convex set C ⊆ Rn. Then f is convex over C if
and only if ∇2 ⪰ 0 for any x ∈ C

6.4 Further Results for Convex Functions

Lemma 6.22 (Operations Preserving Convexity). The following preserve convexity:

� Let f be a convex function over a convex set C ⊆ Rn. Then the αf is convex over C
for any α ≥ 0

� Let f and g be convex functions over a convex set C ⊆ Rn. Then the function f + g
is convex over C

� Let f be a convex function over convex set C ⊆ Rn. Let A ∈ Rn×m and b ∈ Rn.
Then the function g defined by

g(y) = f(Ay + b) is convex over D = {y ∈ Rm : Ay + b ∈ C}

Theorem 6.23 (Preservation of Convexity Under Partial Minimization). Let f : C×D →
R be a convex function over the set C×D where C ⊆ Rn and D ⊆ Rn are convex sets. Let

g(x) = min
y∈D

f(x,y), x ∈ C

where we assume that the minimum is finite. Then g is convex over C
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Definition 6.24 (Level sets). Let f : S → R be a function defined over a set S ⊆ Rn. The
level set of f at level t is the set:

Lev(f, α) = {x ∈ S : f(x) ≤ α}

Theorem 6.25 (Convexity of Level Sets). Let f : S → R be a convex function defined
over a convex set S ⊆ Rn. Then the level set of f at level t is a convex set for any t ∈ R

6.4.1 Four Important Theorems for Convex Functions

Theorem 6.26 (Continuity of Convex Functions). Let f : S → R be a convex function
defined over a convex set S ⊆ Rn. Then f is continuous over S. In particular let x0 ∈
int(S). Then there exists ϵ > 0 and L > 0 such that B(x0, ϵ) ⊆ C and

|f(x)− f(x0)| ≤ L ∥x− x0∥ , ∀x ∈ B(x0, ϵ)

Theorem 6.27 (Existence of directional derivatives of Convex Functions). Let f : S → R
be a convex function defined over a convex set S ⊆ Rn. Then for any x ∈ int(S) and any
0 ̸= d ∈ Rn, the directional derivative of f at x in the direction d exists and is given by:

f ′(x;d) = lim
t→0

f(x+ td)− f(x)

t

Theorem 6.28 (No Maximum inside the Convex Set). Let f : C → R be a convex function
defined over a non-empty convex set C ⊆ Rn. Then f does not attain a maximum at a
point in int(C)

Theorem 6.29 (Maximimum of a Convex Function over a compact convex set). Let f :
C → R be convex over the nonempty convex and compact set C ⊆ Rn. Then there exists
at least one maximiser of f over C that is an extreme point of C

7 Convex Optimisation

Theorem 7.1 (Local minima are global in CVX). Let f : Rn → R be a convex function
defined over a convex set C ⊆ Rn. Suppose that x∗ ∈ C is a local minimizer of f over C.
Then x∗ is a global minimum of f over C

Theorem 7.2. Let f : C → R be a strictly convex function defined on the convex set C.
Let x∗ ∈ C be a local minimum of f over C. Then x∗ is a strict global minimum of f over
C

Theorem 7.3. Let f : C → R be a convex function defined over the convex set C ⊆ Rn.
Then the set of optimal solutions of the problem

min{f(x) : x ∈ C}

is a convex set. If also f is strictly convex, then the set of optimal solutions is a singleton
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Definition 7.4 (Stationarity). Let f be a continuously differentiable function over a closed
and convex set C. Then x∗ is called a stationary point of minx{f(x) : x ∈ C} if

∇f(x∗)T (x− x∗) ≥ 0, ∀x ∈ C

Theorem 7.5 (Stationarity as a Necessary Optimality Condition). Let f be a continuously
differentiable function over a nonempty closed convex set C, and let x∗ be a local minimum
of minx{f(x) : x ∈ C}. Then x∗ is a stationary point of the problem.

7.1 The Orthogonal Projection Operator

Definition 7.6 (Orthogonal Projection). Given a nonempty closed convex set C, the
orthogonal projection operator PC : Rn → C is defined by:

PC(x) = argmin
y∈C

{∥x− y∥2 : y ∈ C}

Theorem 7.7 (The First Projection Theorem). Let C ⊆ Rn be a nonempty closed and
convex set. Then for any x ∈ Rn, the orthogonal projection PC(x) exists and is unique

Theorem 7.8 (The Second Projection Theorem). Let C be a nonempty closed convex set
and let x ∈ Rn. Then z = PC(x) if and only if

(x− z)T (y − z) ≤ 0, ∀y ∈ C

Theorem 7.9 (Reperesentation of Stationarity via the Orthogonal Projection Operator).
Let f be a continuously differentiable function over the nonempty closed convex set C, and
let s > 0 . Then x∗ is a stationarity point of the problem minx{f(x) : x ∈ C} if and only
if

x∗ = PC(x
∗ − s∇f(x∗))

7.2 The Gradient Projection Method

Algorithm 7: The Gradient Projection Method

Initialisation: A tolerance parameter ϵ > 0 and choose x(0) ∈ Rn

General Step: For k = 0, 1, 2, . . . execute the following:

1. Pick stepsize tk by a line search procedure.

2. Set x(k+1) = PC(x
(k) − tk∇f(x(k)))

3. If
∥∥xk − xk+1

∥∥ ≤ ϵ, then STOP and output x(k+1)
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Algorithm 8: The Gradient Projection Method with Backtracking

Initialisation: A tolerance parameter ϵ > 0 and choose x(0) ∈ Rn, Parameters: s > 0, α ∈
(0, 1) and β ∈ (0, 1) General Step: For k = 0, 1, 2, . . . execute the following:

1. Set tk = s

2. While f(xk)− f(PC(xf − tk∇f(xk))) < αtk
∥∥∥G 1

tk

∥∥∥2, set tk = βtk

3. Set x(k+1) = PC(x
(k) − tk∇f(x(k)))

4. If
∥∥xk − xk+1

∥∥ ≤ ϵ, then STOP and output x(k+1)

Theorem 7.10 (Convergence of the Gradient Projection Method). Let {xk} be the se-
quence generated by the gradient projection method for solving problem minx∈C{f(x)} with
either a constant stepsize t ∈ (0, 2

L), where L a Lipschitz constant of ∇f or a backtracking
stepsize strategy. Assume f bounded below. Then:

1. The sequence {f(xk)} is nonincreasing

2. Gd(x
k) → 0 as k → ∞, where

d =

{
1
t

if constant stepsize
1
s if backtracking

8 Optimality Conditions

8.1 Separation Theorem

Definition 8.1. A hyperplane

H = {x ∈ Rn : aTx = b} where a ∈ Rn \ {0}, b ∈ R

is said to strictly separate a point y /∈ S from S if

aTy > b

and
aTx ≤ b ∀y ∈ S

Theorem 8.2 (Separation of a Point from a Closed and Convex Set). Let C ⊆ Rn be a
nonempty closed and convex set, and let y /∈ C. Then there exists p ∈ Rn \ {0} and α ∈ R
such that pTy > α and pTx ≤ α for all x ∈ C

Lemma 8.3 (Farkas’ Lemma - an Alternative Theorem). Let x ∈ Rn and A ∈ Rm×n.
Then exactly one of the following systems has a solution:
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1. Ax ≤ 0, cTx > 0

2. ATy = c,y ≥ 0

Lemma 8.4 (Farkas’ Lemma - Second Formulation). Let c ∈ Rn and A ∈ Rm×n. Then
teh following two claims are equivalent:

1. The implication Ax ≤ 0 =⇒ cTx ≤ 0 holds true

2. There exists y ∈ Rm
+ such that ATy = c

Theorem 8.5 (Gordan’s Alternative Theorem). Let A ∈ Rm×n . Then exactly one of the
follwing systems has a solution:

1. Ax < 0

2. p ̸= 0,ATp = 0,p ≥ 0

Theorem 8.6 (KKT conditions for Linearly Constrained Problems - Necessary Optimality
Conditions). Consider minimization problem{

minx∈Rn f(x)

subject to Ax = b

where f is continuously differentiable over a1, . . . ,an, b1, . . . , bm ∈ R and let x∗ be a local
minimum point of the problem. Then there exists λ1, . . . λm ≥ 0 such that:

∇f(x∗) +
m∑
i=1

λiai = 0

and
λi(a

T
i x

∗ − bi) = 0, i = 1, . . . ,m

Theorem 8.7 (KKT Conditions for Convex Linearly Constrained Problems - Necessary
and Sufficient Optimality Conditions). Consider the minimization problem{

minx∈Rn f(x)

subject to Ax = b

where in addition f is a convex continuously differentiable function over Rn, and let x∗ be
a feasible solution. Then x∗ is an optimal solution if and only if there exists λ1, . . . , λm ≥ 0
such that:

∇f(x∗) +
m∑
i=1

λiai = 0

and
λi(a

T
i x

∗ − bi) = 0, i = 1, . . . ,m
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Theorem 8.8 (KKT Conditions for Linearly Constrained Problems). Consider minimiza-
tion problem 

minx∈Rn f(x)

subject to aTi x ≤ bi, i = 1, . . . ,m

cTj x = dj , j = 1, . . . , p

where f is continuously differentiable ai, cj ∈ Rn, bi, dj ∈ R

1. (Necessity of the KKT ) If x∗ is a local minimum of the problem, then there exist
λ1, . . . , λm ≥ 0 and µ1, . . . , µp ∈ R such that:

∇f(x∗) +

m∑
i=1

λiai +

p∑
j=1

µjcj = 0

λi(a
T
i x

∗ − bi) = 0, i = 1, . . . ,m

2. (Sufficiency of the KKT) If f is convex over Rn and x∗ is a feasible solution of the
problem, for which there exist λ1, . . . , λm ≥ 0 and µ1, . . . , µp ∈ R such that the KKT
conditions are satisfied, then x∗ is an optimal solution of the problem

8.2 Orthogonal Projections

Definition 8.9 (Orthogonal Projection onto Affine Spaces). Let C be the affine space
C = {x ∈ Rn : Ax = b} where A ∈ Rm×n and b ∈ Rm. The orthogonal projection
operator PC : Rn → C is defined by:

PC(y) = y −AT (AAT )−1(Ay − b)

Definition 8.10 (Orthogonal Projection onto Hyperplanes). Consider the hyperplane

H = {x ∈ Rn : aTx = b} where a ∈ Rn \ {0}, b ∈ R

The orthogonal projection operator PH : Rn → H is defined by:

PH(y) = y − aTy − b

∥a∥2
a

Lemma 8.11 (Distance of a point from a hyperplane). Let H = {x ∈ Rn : aTx = b} be a
hyperplane where a ∈ Rn \ {0} and b ∈ R. Then for any y ∈ Rn, the distance of y from H
is given by:

dist(y, H) =

∣∣aTy − b
∣∣

∥a∥
Lemma 8.12. Let H− = {x ∈ Rn : aTx ≤ b} be a half-space where a ∈ Rn \ {0} and
b ∈ R. Then

PH−(x) = x− [aTx− b]+

∥a∥2
a
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8.3 KKT Conditions for nonlinear problems

Lemma 8.13. If x∗ a local optimal solution of the following, then there are no feasible
descent directions.

min f(x) s.t x ∈ C

for some convex set C ⊆ Rn, and f continuously differentiable. We say d ̸= 0 a feasible
descent direction at x ∈ C if

1. ∇f(x)Td < 0, and

2. There exists ϵ > 0 such that x+ td ∈ C for all t ∈ (0, ϵ)

Extending this to the problem:{
min f(x)

s.t gi(x) ≤ 0 i = 1, . . . ,m

We introduce the notion of active constraints. We say the i-the constraint is active at
x̃ if gi(x̃) = 0 i.e. when the constraints are binding.

I(x̃) = {i = {1, . . . ,m} : gi(x̃)} The set of active constraints at x̃

Lemma 8.14. Let x∗ be a local minimum of the problem{
min f(x)

s.t gi(x) ≤ 0 i = 1, . . . ,m

where f and g1, . . . gm are continuously differentiable functions over Rn. Let I(x∗) be the
set of active constraints at x∗. Then, there does not exist a vector d ∈ Rn such that

1. ∇f(x∗)Td < 0, and

2. ∇gi(x
∗)Td ≤ 0, ∀i ∈ I(x∗)

8.4 KKT Conditions for nonlinear convex problems

Theorem 8.15 (Sufficiency of the KKT conditions for convex optimization problems).
Let x∗ be a feasible solution of

min f(x)

subject to gi(x) ≤ 0, i = 1, . . . ,m

hj(x) = 0, j = 1, . . . , p
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where f, g1, . . . , gn are continuously differentiable convex functions over Rn and h1, . . . , hp
are affine functions. Suppose that there exist multipliers λ1, . . . , λm ≥ 0 and µ1, . . . , µp ∈ R
such that

∇f(x∗) +
m∑
i=1

λi∇gi(x
∗) +

p∑
j=1

µj∇hj(x
∗) = 0

λigi(x
∗) = 0, i = 1, . . . ,m

Then x∗ an optimal solution of the problem

Theorem 8.16 (Necessity of the KKT conditions under the generalized Slater’s Condi-
tion). Let x∗ be an optimal solution of the problem

min f(x)

subject to gi(x) ≤ 0, i = 1, . . . ,m

hj(x) ≤ 0, j = 1, . . . , p

sk(x) = 0, k = 1, . . . , q

where f, g1, . . . , gm are continuously differentiable convex functions over Rn, and h1, . . . , hp, s1, . . . , sk
are affine functions. Suppose that there exists a point x̂ satisfying the generalized Slater’s
condition:

gi(x̂) < 0, i = 1, . . . ,m

hj(x̂) ≤ 0, j = 1, . . . , p

sk(x̂) = 0, k = 1, . . . , q

Then there exist multipliers λ1, . . . , λm ≥ 0 and µ1, . . . , µp ∈ R such that

∇f(x∗) +

m∑
i=1

λi∇gi(x
∗) +

p∑
j=1

ηj∇hj(x
∗) +

q∑
k=1

µk∇sk(x
∗) = 0

λigi(x
∗) = 0, i = 1, . . . ,m

ηjhj(x
∗) = 0, j = 1, . . . , p
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9 Duality

Definition 9.1 (Primal Problem). The primal problem is the problem of the form:
min f(x)

subject to gi(x) ≤ 0, i = 1, . . . ,m

hj(x) = 0, j = 1, . . . , p

x ∈ X

where f, g1, . . . , gm are functions defined on the set X ⊆ Rn. This is the ”usual” optimiza-
tion problem. The Lagrangian associated to this problem is

L(x, λ, η) = f(x) +

m∑
i=1

λigi(x) +

p∑
j=1

µjhj(x) (x ∈ X,λ ∈ Rm
+ , µ ∈ Rp)

The domain of the dual objective function is

dom(q) = {(λ, µ) ∈ Rm
+ × Rp : q(λ, µ) > −∞}

The dual problem is given by

q∗ = max q(λ, µ)

subject to (λ, µ) ∈ dom(q)

Theorem 9.2. Consider the primal problem with f, gi, hj , i = 1, . . . ,m, j = 1, . . . , p, func-
tions defined on the set X ⊆ Rn, and let q be the dual function defined in the Dual problem.
Then:

1. dom(q) is a convex set

2. q is a concave function over dom(q)

9.1 Weak and Strong Duality

Theorem 9.3 (Weak Duality Theorem). Consider the primal problem and its dual prob-
lem. Then

q∗ ≤ f∗

where f∗, q∗ are the primal and dual optimal values respectively

Theorem 9.4 (Supporting Hyperplane Theorem). Let C ⊆ Rn be a convex set and let
y /∈ C. Then there exists 0 ̸= p ∈ Rn such that

pTx ≤ pTy ∀x ∈ C
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Theorem 9.5 (Separation of Two Convex Sets). Let C1, C2,⊆ Rn be two nonempty convex
sets such that C1 ∩ C2 = ∅. Then there exists p ̸= 0 for which

pTx ≤ pTy ∀x ∈ C1,∀y ∈ C2

Theorem 9.6 (Nonlinear Farkas Lemma). Let X ⊆ Rn be a convex set and let f, g1, . . . , gm
be convex functions defined over X. Assume that there exists x̂ ∈ X such that

g1(x̂) < 0, g2(x̂) < 0, . . . , gm(x̂) < 0

Let c ∈ R. Then the following two claims are equivalent:

1. The following implication holds true:

x ∈ X, gi(x) ≤ 0, i = 1, . . . ,m =⇒ f(x) ≥ c

2. There exists λ1, . . . , λm ≥ 0 such that

min
x∈X

{
f(x) +

m∑
i=1

λigi(x)

}
≥ c

Theorem 9.7 (Strong Duality of Convex Problems with Inequality Constraints). Consider
the optimization problem

f∗ = min f(x)

subject to gi(x) ≤ 0, i = 1, . . . ,m

x ∈ X

where X is a convex set and f, g1, . . . , gm are convex functions defined over X. Suppose
that there exists x̂ ∈ X for which gi(x̂) < 0, i = 1, 2, . . . ,m. If this problem has a finite
optimal value, then

1. the optimal value of the dual problem is attained

2. the primal and dual problems have the same optimal value f∗ = q∗

Theorem 9.8 (Complementary Slackness Conditions). Consider the optimization problem,

f∗ := min{min f(x) : gi(x) ≤ 0, i = 1, . . . ,m,x ∈ X}

and assume that f∗ = q∗ where q∗ is the optimal value of the dual problem. Let x∗, λ∗ be
feasible solutions of the primal and dual problems. Then x∗, λ∗ are optimal solutions of the
primal and dual problems iff

x∗ ∈ arg min
x∈X

L(x, λ∗)

λ∗
i gi(x

∗) = 0, i = 1, . . . ,m
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Theorem 9.9 (General Strong Duality Theorem). Consider the optimization problem

f∗ = min f(x)

subject to gi(x) ≤ 0, i = 1, . . . ,m

hj(x) ≤ 0, j = 1, . . . , p

sk(x) = 0, k = 1, . . . , q

x ∈ X

where X is a convex set and f, gi, i = 1, . . . ,m are convex functions over X The func-
tions hj , sk are affine functions. Suppose that there exists x̂ ∈ int(X) for which gi(x̂) <
0, hj(x̂) ≤ 0 and sk(x̂) = 0. Then if the problem has a finite optimal value, then the optimal
value of the dual problem

q∗ = max{q(λ, η, µ) : (λ, η, µ) ∈ dom(q)}

where

q(λ, η, µ) = min
x∈X

f(x) + m∑
i=1

λigi(x) +

p∑
j=1

ηjhj(x) +

q∑
k=1

µksk(x)


is attained, and f∗ = q∗

9.2 Three Important Examples of Duality Use

9.2.1 Linear Programming

Consider the linear programming problem

f∗ = min{cTx : Ax = b,x ≥ 0}
subject to Ax = b, c ∈ Rn,b ∈ Rm,A ∈ Rm×n

Assume that the problem is feasible, implying strong duality holds. THe Lagrangian is
given by

L(x, λ) = cTx+ λT (Ax− b) = (c+ATλ)Tx− bTλ

and the dual objective function is

q(λ) = min
x∈Rn

L(x, λ) = min
x∈Rn

(c+ATλ)Tx− bλ =

{
−bTλ if c+ATλ = 0

−∞ otherwise

Therefore, the dual problem is

max−bTλ

subject to c+ATλ = 0

λ ≥ 0
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9.2.2 Strictly Convex Quadratic Programming

Consider the strictly convex quadratic programming problem

min xTQx+ 2fTx

subject to Ax = b

where Q ∈ Rn×n positive definite, f ∈ Rn,A ∈ Rm×n,b ∈ Rn. The Lagrangian is given
by

L(x, λ) = xTQx+ 2fTx+ 2λT (Ax− b) = xTQx+ 2(ATλ+ f)Tx− 2bTλ

the minimizer of the Lagrangian is attained at x∗ = −Q−1(f +ATλ). With this, we work
over the dual objective,

q(λ) = L(x∗, λ)

= −λTAQ−1ATλ− 2(AQ−1f + b)Tλ− fTQ−1f

9.2.3 Computing the Orthogonal onto the Unit Simplex

FILL LATER

10 Optimal Control

10.1 What is Optimal Control?

Definition 10.1. Optimal control is the problem of finding a control function that min-
imizes a given cost functional, subject to a set of differential equations that describe the
dynamics of the system.

We do this by means of an objective function to be optimized, i.e. as a dynamic
optimization problem such as

min
u(·)∈U

∫ T

0
L(x(s),u(s)) ds+Φ(x(T ))

subject to ẋ(t) = f(x(t),u(t))

x(0) = x0

We have the control signal in a space of admissible controls U representing the control
constraints of our problem. The running cost L(x,u) is a running cost, expressing our
wish to achieve an objective with a certain control budget.
We have Φ(x(T )) a final time penalty, encoding the fact that when our optimization
finishes at time t = T , we expect to find the system in the reference position. Here the
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time horizon can be fixed (T or +∞) or variable, i.e treated as an additional optimiza-
tion variable.

Definition 10.2 (Closed-loop Optimal Control). In the optimal control problem, the
control signal u(t) is a function of the state x(t), i.e. u = u(x). This is known as the
closed-loop optimal control problem. The optimal control is a function of the state of the
system.

Definition 10.3 (Open-loop Optimal Control). In the optimal control problem, the control
signal u(t) is a function of time, i.e. u = u(t). This is known as the open-loop optimal
control problem. The optimal control is a function of time.

10.1.1 The optimal control Formulation

Start with nonlinear dynamical system

ẋ = f(t,x(t),u(t)), x(t0) = x0 ∈ Rn, t ∈ [t0, tf ]

We write a cost functional expressing our control goals

J (x,u) := Φ(x(tf ), tj) +

∫ tf

t0

L(x(t),u(t)) dt

by means of a running cost L(x(t),u(t)) and a terminal penalty Φ(x(tf ), tf ). We cast the
control synthesis as a nonlinear optimization problem

min
u(·)

J (x(·),u(·)), subject to ẋ = f(t,x,u) (1)

10.2 Using Calculus of Variations

Lemma 10.4 (Euler-Lagrange to solve (1)). Formally we adjoin the nonlinear constraints
through a time-dependent Lagrange multiplier p(t) to the cost functional, leading to

J̄ := Φ(x(tf ), tf ) +

∫ tf

t0

L[x(t),u(t)] + pT (t)[f(t,x,u)− ẋ] dt

At this point, we define the Hamiltonian as:

H(t,x(t),u(t),p(t)) := L(x(t),u(t)) + pT (t)f(t,x(t),u(t))

Integration by parts of the last term (pT ẋ )in J̄ yields

J = TO FINISH

FINISH THIS LATER
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10.3 Pontryagin’s Maximum Principle

Characterises optimality conditions for a problem of the type

ẋ(t) = f(t,x(t),u(t)), x(t0) = x0 ∈ Rn,u ∈ U ⊂ Rm, t ∈ [t0, tf ]

With a cost functional, also known as the Bolza Problem

J (x,u) := Φ(x(tf ), tf ) +

∫ tf

t0

L(x(t),u(t)) dt

and terminal constraints
Ψ(x(tf )) = 0, Ψ : Rn → Rq

Differences: the terminal time tf is allowed to be free, and we express a set of q terminal
constraints for the final state through Ψ(x(tf )) and the existence of a space of admissible
controls U , where we restrict our optimal control signal.
Recalling Hamiltonian

H(t,x(t),u(t),p(t)) = L(x(t),u(t)) + pT (t)f(t,x(t),u(t))

the optimality conditions now read

The last condition states that the optimal control is the minimizer of the Hamiltonian.
This is equivalent ot the previous condition that ∂H

∂u = 0, but since we include constraint
u ∈ U , we realise this as

u∗ ∈ arg min
w∈U

H(t,x∗(t),w,p∗(t))
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