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Notation for this module

Symbol Object

ℝ𝑛 the space of 𝑛−dimensional real column vectors
x a vector in ℝ𝑛

𝑥𝑖 the 𝑖−th coordinate of a vector x
⟨x, y⟩ inner product of x and y
[x, y] closed line segment between x and y
(x, y) open line segment between x and y
𝐵(c, 𝑟 ) open ball with center c and radius 𝑟
𝐵 [c, 𝑟 ] closed ball with center c and radius 𝑟
ℝ𝑚×𝑛 space of𝑚 × 𝑛 real-valued matrices
A𝑇 transpose of A
e𝑖 𝑖−th vector in the standard basis of ℝ𝑛

e vector of all ones
0 vector of all zeros
| · | absolute value of scalar 𝑥
∥ · ∥𝑝 ℓ𝑝-norm for x ∈ ℝ𝑛

Δ𝑛 unit simplex
ℝ𝑛
+ nonnegative orthant

ℝ𝑛
++ positive orthant
∥A∥𝐹 Frobenius norm of A
∥A∥𝑎𝑏 induced norm of A ∈ ℝ𝑚×𝑛
∥A∥2 spectral norm of A
𝜆𝑚𝑎𝑥 (A) maximum eigenvalue of a symmetric matrix A
𝜆𝑚𝑖𝑛 (A) minimum eigenvalue of a symmetric matrix A
𝑖𝑛𝑡 (𝑆) interior of set 𝑆
𝑓 ′(x; d) directional derivative of 𝑓 at 𝑥 in the direction d
∇𝑓 (x) gradient of 𝑓 at x
∇2𝑓 (x) Hessian of 𝑓 (x) at x
𝐶

1,1
𝐿
(𝐷) class of 𝐿−smooth functions over 𝐷

I𝑛 identity matrix in 𝑅𝑛×𝑛
0𝑚𝑛 zero matrix in 𝑅𝑚×𝑛
𝑑𝑖𝑎𝑔(x) diagonal matrix with entries x
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Part I.
Mathematical Preliminaries

Vector Spaces

The spaceℝ𝑛 is the set of𝑛 -dimensional column vectors xwith real components endowed
with the component-wise addition operator:

x + y =

©­­­­«
𝑥1
𝑥2
...

𝑥𝑛

ª®®®®¬
+

©­­­­«
𝑦1
𝑦2
...

𝑦𝑛

ª®®®®¬
=

©­­­­«
𝑥1 + 𝑦1
𝑥2 + 𝑦2

...

𝑥𝑛 + 𝑦𝑛

ª®®®®¬
,

and the scalar-vector product

𝜆x = 𝜆

©­­­­«
𝑥1
𝑥2
...

𝑥𝑛

ª®®®®¬
=

©­­­­«
𝜆𝑥1
𝜆𝑥2
...

𝜆𝑥𝑛

ª®®®®¬
.

The vectors e1, e2, . . . , e𝑛 denote the standard/canonical basis, and e and 0 denote all ones
and all zeros column vectors, respectively.

Important subsets of ℝ𝑛.

• Nonnegative orthant:

ℝ𝑛
+ =

{
(𝑥1, 𝑥2, . . . , 𝑥𝑛)⊤ : 𝑥1, 𝑥2, . . . , 𝑥𝑛 ≥ 0

}
• Positive orthant:

ℝ𝑛
++ =

{
(𝑥1, 𝑥2, . . . , 𝑥𝑛)⊤ : 𝑥1, 𝑥2, . . . , 𝑥𝑛 > 0

}
.

• If x, y ∈ ℝ𝑛, the closed line segment between 𝑥 and 𝑦 is given by

[x, y] = {x + 𝛼 (y − x) : 𝛼 ∈ [0, 1]} .

• The open line segment (x, y) is similarly defined as

(x, y) = {x + 𝛼 (y − x) : 𝛼 ∈ (0, 1)}

for x ≠ y and (x, x) = ∅.

• The unit-simplex:
Δ𝑛 =

{
x ∈ ℝ𝑛 : x ≥ 0, e⊤x = 1

}
.
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The space ℝ𝑚×𝑛. The set of all real valued𝑚 × 𝑛 matrices is denoted by ℝ𝑚×𝑛. The
𝑛 × 𝑛 identity matrix is denoted by I𝑛 . The𝑚 × 𝑛 zero matrix is denoted by O𝑚×𝑛 .

Inner Products and Norms

Definition (Inner Product). An inner product on ℝ𝑛 is a map ⟨·, ·⟩ : ℝ𝑛 ×ℝ𝑛 → ℝ with
the following properties:

1. Symmetry: ⟨x, y⟩ = ⟨y, x⟩ for any x, y ∈ ℝ𝑛 .

2. Additivity: ⟨x, y + z⟩ = ⟨x, y⟩ + ⟨x, z⟩ for any x, y, z ∈ ℝ𝑛 .

3. Homogeneity: ⟨𝜆x, y⟩ = 𝜆⟨x, y⟩ for any 𝜆 ∈ ℝ and x, y ∈ ℝ𝑛 .

4. Positive definiteness: ⟨x, x⟩ ≥ 0 for any x ∈ ℝ𝑛 and ⟨x, x⟩ = 0 if and only if x = 0.

Examples:

• The usual “dot product":

⟨x, y⟩ = x⊤y =

𝑛∑︁
𝑖=1

𝑥𝑖𝑦𝑖 for any x, y ∈ ℝ𝑛 .

• The “weighted dot product":

⟨x, y⟩w =

𝑛∑︁
𝑖=1
𝑤𝑖𝑥𝑖𝑦𝑖

where w ∈ ℝ𝑛
++.

Definition (Vector Norms). A norm ∥ · ∥ on ℝ𝑛 is a function ∥ · ∥ : ℝ𝑛 → ℝ satisfying:

1. Nonnegativity: ∥x∥ ≥ 0 for any x ∈ ℝ𝑛 and ∥x∥ = 0 if and only if x = 0.

2. Positive homogeneity: ∥𝜆x∥ = |𝜆 |∥x∥ for any x ∈ ℝ𝑛 and 𝜆 ∈ ℝ.

3. Triangle inequality: ∥x + y∥ ≤ ∥x∥ + ∥y∥ for any x, y ∈ ℝ𝑛 .

A natural way to generate a norm on ℝ𝑛 is to take any inner product ⟨·, ·⟩ defined on ℝ𝑛,

and define the associated norm

∥x∥ ≡
√︁
⟨x, x⟩, for all x ∈ ℝ𝑛 .

The norm associated with the dot-product is the so-called Euclidean norm or ℓ2-norm:

∥x∥2 =

√√
𝑛∑︁
𝑖=1

𝑥2
𝑖
for all x ∈ ℝ𝑛 .
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The ℓ𝑝-norm (𝑝 ≥ 1) is defined by

∥x∥𝑝 ≡
(
𝑛∑︁
𝑖=1
|𝑥𝑖 |𝑝

) 1/𝑝

.

The ℓ∞-norm is
∥x∥∞ ≡ max

𝑖=1,2,...,𝑛
|𝑥𝑖 | .

It can be shown that
∥x∥∞ = lim

𝑝→∞
∥x∥𝑝 .

Why ℓ1/2 is not a norm?

Figure 1: Different unit balls ∥x∥𝑝 ≤ 1 in ℝ2.

Theorem (Cauchy-Schwartz Inequality). For any x, y ∈ ℝ𝑛��x⊤y�� ≤ ∥x∥ · ∥y∥
Proof. For any 𝜆 ∈ ℝ :

∥x + 𝜆y∥2 = ∥x∥2 + 2𝜆⟨x, y⟩ + 𝜆2∥y∥2 ,

leading to (why?)
⟨x, y⟩2 ≤ ∥x∥2∥y∥2 ,

establishing the desired result. □
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Definition (Matrix Norms). A norm ∥ · ∥ onℝ𝑚×𝑛 is a function ∥ · ∥ : ℝ𝑚×𝑛 → ℝ satisfying

1. Nonnegativity: ∥A∥ ≥ 0 for any A ∈ ℝ𝑚×𝑛 and ∥A∥ = 0 if and only if A = 0.

2. Positive homogeneity: ∥𝜆A∥ = |𝜆 |∥A∥ for any A ∈ ℝ𝑚×𝑛 and 𝜆 ∈ ℝ.

3. Triangle inequality: ∥A + B∥ ≤ ∥A∥ + ∥B∥ for any A,B ∈ ℝ𝑚×𝑛 .

Induced Norms. Given a matrix A ∈ ℝ𝑚×𝑛 and two norms ∥ · ∥𝑎 and ∥ · ∥𝑏 on ℝ𝑛 and
ℝ𝑚 respectively, the induced matrix norm ∥A∥𝑎,𝑏 (called (𝑎, 𝑏)-norm) is defined by

∥A∥𝑎,𝑏 = max
x
{∥Ax∥𝑏 : ∥x∥𝑎 ≤ 1} ,

from where it follows that
∥Ax∥𝑏 ≤ ∥A∥𝑎,𝑏 ∥x∥𝑎 .

An induced norm is a norm (satisfies nonnegativity, positive homogeneity and triangle
inequality). We refer to the matrix-norm ∥ · ∥𝑎,𝑏 as the (𝑎, 𝑏)-norm. When 𝑎 = 𝑏, we will
simply refer to it as an a-norm.

Relevant cases:

• The spectral norm. If ∥ · ∥𝑎 = ∥ · ∥𝑏 = ∥ · ∥2, the induced (2, 2)-norm of a matrix
A ∈ ℝ𝑚×𝑛 is the maximum singular value of A

∥A∥2 = ∥A∥2,2 =
√︁
𝜆max (A⊤A) ≡ 𝜎max(A) .

This norm is called the spectral norm.

• The ℓ1-norm. When ∥ · ∥𝑎 = ∥ · ∥𝑏 = ∥ · ∥1, the induced (1, 1)-matrix norm of a
matrix A ∈ ℝ𝑚×𝑛 is given by

∥A∥1 = max
𝑗=1,2,...,𝑛

𝑚∑︁
𝑖=1

��𝐴𝑖, 𝑗 �� .
• The ℓ∞-norm.When ∥ · ∥𝑎 = ∥ · ∥𝑏 = ∥ · ∥∞, the induced (∞,∞)-matrix norm of
matrix A ∈ ℝ𝑚×𝑛 is given by

∥A∥∞ = max
𝑖=1,2,...,𝑚

𝑛∑︁
𝑗=1

��𝐴𝑖, 𝑗 ��
• The Frobenius norm.

∥A∥𝐹 =

√√√ 𝑚∑︁
𝑖=1

𝑛∑︁
𝑗=1
𝐴2
𝑖 𝑗
, A ∈ ℝ𝑚×𝑛

The Frobenius norm is not an induced norm. Why is it a norm?
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Eigenvalues and Eigenvectors

Definition (Eigenvalues and eigenvectors). Let A ∈ ℝ𝑛×𝑛 . Then a nonzero vector 𝑣 ∈ ℝ𝑛

is called an eigenvector of A if there exists a 𝜆 ∈ ℂ for which

Av = 𝜆v .

The scalar 𝜆 is the eigenvalue corresponding to the eigenvector v.

In general, real-valued matrices can have complex eigenvalues, but when the matrix is
symmetric the eigenvalues are necessarily real. The eigenvalues of a symmetric 𝑛 × 𝑛
matrix A are denoted by

𝜆1(A) ≥ 𝜆2(A) ≥ . . . ≥ 𝜆𝑛 (A) .

The maximum eigenvalue is also denoted by 𝜆max(A) (= 𝜆1(A)) and the minimum eigen-
value is also denoted by 𝜆min(A) (= 𝜆𝑛 (A)).

Theorem (Spectral Factorization Theorem). Let A ∈ ℝ𝑛×𝑛 be an 𝑛 × 𝑛 symmetric matrix.
Then there exists an orthogonal matrix U ∈ ℝ𝑛×𝑛 (U⊤U = UU⊤ = I𝑛) and a diagonal matrix
D = diag (𝑑1, 𝑑2, . . . , 𝑑𝑛) for which

U⊤AU = D .

The columns of the matrix U constitute an orthogonal basis comprising eigenvectors of
A and the diagonal elements of D are the corresponding eigenvalues. A direct result is
that Tr(A) = ∑𝑛

𝑖=1 𝜆𝑖 (A) and det(A) = Π𝑛𝑖=1𝜆𝑖 (A).

Another important consequence of the spectral decomposition theorem is the bounding of
the so-called Rayleigh quotient. For a symmetric matrix A ∈ ℝ𝑛×𝑛, the Rayleigh quotient
is defined by

𝑅A(x) =
x⊤Ax
∥x∥2 for any x ≠ 0

We use the spectral decomposition theorem to show that if A ∈ ℝ𝑛×𝑛 is symmetric, then

𝜆min(A) ≤ 𝑅A(x) ≤ 𝜆max(A) for any x ≠ 0 .

Basic Topological Concepts

The open ball with center 𝑐 ∈ ℝ𝑛 and radius 𝑟 :

𝐵(𝑐, 𝑟 ) = {x : ∥x − 𝑐 ∥ < 𝑟 } .

The closed ball with center 𝑐 and radius 𝑟 :

𝐵 [𝑐, 𝑟 ] = {x : ∥x − 𝑐 ∥ ≤ 𝑟 } .
10



Definition (Interior Point). Given a set𝑈 ⊆ ℝ𝑛, a point c ∈ 𝑈 is called an interior point
of𝑈 if there exists 𝑟 > 0 for which 𝐵(c, 𝑟 ) ⊆ 𝑈 . The set of all interior points of a given set𝑈
is called the interior of the set and is denoted by int(𝑈 ):

int(𝑈 ) = {x ∈ 𝑈 : 𝐵(x, 𝑟 ) ⊆ 𝑈 for some 𝑟 > 0} .

Examples:
int

(
ℝ𝑛
+
)
= ℝ𝑛

++
int(𝐵 [c, 𝑟 ]) = 𝐵(c, 𝑟 ) (c ∈ ℝ𝑛, 𝑟 ∈ ℝ++)
int( [x, y]) =?

An open set is a set that contains only interior points. Meaning that

𝑈 = int(𝑈 ) .

Examples of open sets are open balls (hence the name...) and the positive orthant ℝ𝑛
++.

The union of any number of open sets is an open set and the intersection of a finite
number of open sets is open.

Closed Sets. A set𝑈 ⊆ ℝ𝑛 is closed if it contains all the limits of convergent sequences
of vectors in𝑈 , that is, if {x𝑖}∞𝑖=1 ⊆ 𝑈 satisfies x𝑖 → x∗ as 𝑖 →∞, then x∗ ∈ 𝑈 . A known
result states that𝑈 is closed iff its complement𝑈 𝑐 is open. Examples of closed sets are
the closed ball 𝐵 [c, 𝑟 ], closed lines segments, the nonnegative orthant ℝ𝑛

+ and the unit
simplex Δ𝑛 . What about ℝ𝑛?∅?

Boundary Points. Given a set 𝑈 ⊆ ℝ𝑛 , a boundary point of 𝑈 is a vector x ∈ ℝ𝑛

satisfying the following: any neighbourhood of x contains at least one point in 𝑈 and at
least one point in its complement𝑈 𝑐 . The set of all boundary points of a set𝑈 is denoted
by bd(𝑈 ).

Examples:
(c ∈ ℝ𝑛, 𝑟 ∈ ℝ++) , bd(𝐵(c, 𝑟 )) =
(c ∈ ℝ𝑛, 𝑟 ∈ ℝ++) , bd(𝐵 [c, 𝑟 ]) =

bd
(
ℝ𝑛
++

)
=

bd
(
ℝ𝑛
+
)
=

bd (ℝ𝑛) =
bd (Δ𝑛) =

Definition (Closure). The closure of a set𝑈 ⊆ ℝ𝑛 is denoted by cl(𝑈 ) and is defined to be
the smallest closed set containing𝑈 :

cl(𝑈 ) =
⋂
{𝑇 : 𝑈 ⊆ 𝑇,𝑇 is closed } .

Another equivalent definition of cl(𝑈 ) is:

cl(𝑈 ) = 𝑈 ∪ bd(𝑈 )
11



Examples:
cl

(
𝑅𝑛++

)
=

(x ≠ y), cl((x, y)) =

Boundedness and Compactness. A set 𝑈 ⊆ ℝ𝑛 is called bounded if there exists
𝑀 > 0 for which𝑈 ⊆ 𝐵(0, 𝑀). A set𝑈 ⊆ ℝ𝑛 is called compact if it is closed and bounded.
Examples of compact sets are: closed balls, unit simplex, and closed line segments.

Directional Derivatives and Gradients

Definition (Directional Derivative). Let 𝑓 be a function defined on a set 𝑆 ⊆ ℝ𝑛 . Let
x ∈ int(𝑆) and let d ∈ ℝ𝑛 . If the limit

lim
𝑡→0

𝑓 (x + 𝑡d) − 𝑓 (x)
𝑡

exists, then it is called the directional derivative of 𝑓 at x along the direction d and is denoted
by 𝑓 ′(x; d). For any 𝑖 = 1, 2, . . . , 𝑛, if the limit

lim
𝑡→0

𝑓 (x + 𝑡e𝑖) − 𝑓 (x)
𝑡

exists, then its value is called the 𝑖-th partial derivative and is denoted by 𝜕𝑓

𝜕𝑥𝑖
(x). If all the

partial derivatives of a function 𝑓 exist at a point x ∈ ℝ𝑛 , then the gradient of 𝑓 at x is

∇𝑓 (x) =
©­­­­­«

𝜕𝑓

𝜕𝑥1
(x)

𝜕𝑓

𝜕𝑥2
(x)
...

𝜕𝑓

𝜕𝑥𝑛
(x)

ª®®®®®¬
.

Definition (Continuous Differentiability). A function 𝑓 defined on an open set𝑈 ⊆ ℝ𝑛 is
called continuously differentiable over𝑈 if all the partial derivatives exist and are continuous
on𝑈 . In that case,

𝑓 ′(x; d) = ∇𝑓 (x)⊤d, x ∈ 𝑈 , d ∈ ℝ𝑛 .

Proposition. Let 𝑓 : 𝑈 → ℝ be defined on an open set 𝑈 ⊆ ℝ𝑛 . Suppose that 𝑓 is
continuously differentiable over𝑈 . Then

lim
d→0

𝑓 (x + d) − 𝑓 (x) − ∇𝑓 (x)⊤d
∥d∥ = 0 , for all x ∈ 𝑈 .

Another way to write the above result is as follows:

𝑓 (y) = 𝑓 (x) + ∇𝑓 (x)⊤(y − x) + 𝑜 (∥y − x∥)

where 𝑜 (·) : ℝ+ → ℝ is a one-dimensional function satisfying 𝑜 (𝑡)
𝑡
→ 0 as 𝑡 → 0.
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Twice Differentiability and the Hessian

The partial derivatives 𝜕𝑓

𝜕𝑥1
are themselves real-valued functions that can be partially

differentiated. The (𝑖, 𝑗)-partial derivatives of 𝑓 at x ∈ 𝑈 (if exists) is defined by

𝜕2𝑓

𝜕𝑥𝑖𝜕𝑥 𝑗
(x) =

𝜕

(
𝜕𝑓

𝜕𝑥 𝑗

)
𝜕𝑥𝑖

(x) .

A function 𝑓 defined on an open set 𝑈 ⊆ ℝ𝑛 is called twice continuously differentiable
over𝑈 if all the second order partial derivatives exist and are continuous over𝑈 . In that
case, for any 𝑖 ≠ 𝑗 and any x ∈ 𝑈 :

𝜕2𝑓

𝜕𝑥𝑖𝜕𝑥 𝑗
(x) = 𝜕2𝑓

𝜕𝑥 𝑗 𝜕𝑥𝑖
(x)

Definition (The Hessian). The Hessian of 𝑓 at a point x ∈ 𝑈 is the 𝑛 × 𝑛 matrix:

∇2𝑓 (x) =

©­­­­­­­«

𝜕2 𝑓
𝜕𝑥2

1

𝜕2 𝑓
𝜕𝑥1𝜕𝑥2

· · · 𝜕2 𝑓
𝜕𝑥1𝜕𝑥𝑛

𝜕2 𝑓
𝜕𝑥2𝜕𝑥1

𝜕2 𝑓
𝜕𝑥2

2

...

...
...

...
𝜕2 𝑓

𝜕𝑥𝑛𝜕𝑥1

𝜕2 𝑓
𝜕𝑥𝑛𝜕𝑥2

· · · 𝜕2 𝑓
𝜕𝑥2

𝑛

ª®®®®®®®¬
For twice continuously differentiable functions, the Hessian is a symmetric matrix.

Theorem (Linear Approximation Theorem). Let 𝑓 : 𝑈 → ℝ be defined on an open set
𝑈 ⊆ 𝑅𝑛 . Suppose that 𝑓 is twice continuously differentiable over 𝑈 . Let x ∈ 𝑈 and 𝑟 > 0
satisfy 𝐵(x, 𝑟 ) ⊆ 𝑈 . Then for any y ∈ 𝐵(x, 𝑟 ), there exists 𝜉 ∈ [x, y] such that:

𝑓 (y) = 𝑓 (x) + ∇𝑓 (x)⊤(y − x) + 1
2 (y − x)

⊤∇2𝑓 (𝜉) (y − x) .

Theorem (Quadratic Approximation Theorem). Let 𝑓 : 𝑈 → ℝ be defined on an open set
𝑈 ⊆ ℝ𝑛 . Suppose that 𝑓 is twice continuously differentiable over 𝑈 . Let x ∈ 𝑈 and 𝑟 > 0
satisfy 𝐵(x, 𝑟 ) ⊆ 𝑈 . Then for any y ∈ 𝐵(x, 𝑟 ) :

𝑓 (y) = 𝑓 (x) + ∇𝑓 (x)⊤(y − x) + 1
2 (y − x)

⊤∇2𝑓 (x) (y − x) + 𝑜
(
∥y − x∥2

)
.

The little “o” notation above can be interpreted as 𝑜 (∥x − y∥2) goes faster to zero than
∥x − y∥2.
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Gradient and Hessian ofQuadratic Functions

Gradient of Linear Function

Consider a linear function of the form

𝑓 (w) = a⊤w

where a and w ∈ ℝ𝑛 . We can derive the gradient in matrix notation as follows:

1. Convert to summation notation:

𝑓 (w) =
𝑛∑︁
𝑗=1
𝑎 𝑗𝑤 𝑗 .

2. Take the partial derivative with respect to a generic element 𝑘 :

𝜕

𝜕𝑤𝑘

[
𝑛∑︁
𝑗=1
𝑎 𝑗𝑤 𝑗

]
= 𝑎𝑘𝑧 .

3. Assemble the partial derivatives into a vector:

∇𝑓 (w) =


𝜕
𝜕𝑤1
𝜕
𝜕𝑤2
...
𝜕
𝜕𝑤𝑛


=


𝑎1
𝑎2
...

𝑎𝑛


= a

So our final result is that
∇𝑓 (w) = a .

This generalizes the scalar case where 𝑑
𝑑𝑤
[𝛼𝑤] = 𝛼.We can also consider general linear

functions of the form
𝑓 (w) = a⊤𝑤 + 𝛽

for a scalar 𝛽 , but in this case we still have ∇𝑓 (w) = a since 𝛽 does not depend on w.

Gradient ofQuadratic Function

Consider a quadratic function of the form

𝑓 (w) = w⊤𝐴w

where w ∈ ℝ𝑛 and 𝐴 in a matrix in ℝ𝑛×𝑛 . We can derive the gradient in matrix notation
as follows:

14



1. Convert to summation notation:

𝑓 (w) = w⊤


∑𝑛
𝑗=1 𝑎1 𝑗𝑤 𝑗∑𝑛
𝑗=1 𝑎2 𝑗𝑤 𝑗

...∑𝑛
𝑗=1 𝑎𝑛𝑗𝑤 𝑗


=

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1
𝑤𝑖𝑎𝑖 𝑗𝑤 𝑗

where 𝑎𝑖 𝑗 is the element in row 𝑖 and column 𝑗 of 𝐴. To help with computing the
partial derivatives, it is useful to re-write it in the form

𝑓 (w) =
𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1
𝑤𝑖𝑎𝑖 𝑗𝑤 𝑗 =

𝑛∑︁
𝑖=1

(
𝑎𝑖𝑖𝑤

2
𝑖 +

∑︁
𝑗≠𝑖

𝑤𝑖𝑎𝑖 𝑗𝑤 𝑗

)
2. Take the partial derivative with respect to a generic element 𝑘 :

𝜕

𝜕𝑤𝑘

[
𝑛∑︁
𝑖=1

(
𝑎𝑖𝑖𝑤

2
𝑖 +

∑︁
𝑗≠𝑖

𝑤𝑖𝑎𝑖 𝑗𝑤 𝑗

)
·
]
= 2𝑎𝑘𝑘𝑤𝑘 +

∑︁
𝑗≠𝑘

𝑤 𝑗𝑎 𝑗𝑘 +
∑︁
𝑗≠𝑘

𝑎𝑘 𝑗𝑤 𝑗

The first term comes from the 𝑎𝑘𝑘 term that is quadratic in𝑤𝑘 , while the two sums
come from the terms that are linear in 𝑤𝑘 .We can move one 𝑎𝑘𝑘𝑤𝑘 into each of
the sums to simplify this to

𝜕

𝜕𝑤𝑘

[
𝑛∑︁
𝑖=1

(
𝑎𝑖𝑖𝑤

2
𝑖 +

∑︁
𝑗≠𝑖

𝑤𝑖𝑎𝑖 𝑗𝑤 𝑗

)
·
]
=

𝑛∑︁
𝑗=1
𝑤 𝑗𝑎 𝑗𝑘 +

𝑛∑︁
𝑗=1
𝑎𝑘 𝑗𝑤 𝑗

3. Assemble the partial derivatives into a vector:

∇𝑓 (w) =


𝜕
𝜕𝑤1
𝜕
𝜕𝑤2
...
𝜕
𝜕𝑤𝑛


=


∑𝑛
𝑗=1𝑤 𝑗𝑎 𝑗1 +

∑𝑛
𝑗=1 𝑎1 𝑗𝑤 𝑗∑𝑛

𝑗=1𝑤 𝑗𝑎 𝑗2 +
∑𝑛
𝑗=1 𝑎2 𝑗𝑤 𝑗

...∑𝑛
𝑗=1𝑤 𝑗𝑎 𝑗𝑛 +

∑𝑛
𝑗=1 𝑎𝑛𝑗𝑤 𝑗


=


∑𝑛
𝑗=1𝑤 𝑗𝑎 𝑗1∑𝑛
𝑗=1𝑤 𝑗𝑎 𝑗2
...∑𝑛

𝑗=1𝑤 𝑗𝑎 𝑗𝑛


+


∑𝑛
𝑗=1 𝑎1 𝑗𝑤 𝑗∑𝑛
𝑗=1 𝑎2 𝑗𝑤 𝑗

...∑𝑛
𝑗=1 𝑎𝑑 𝑗𝑤 𝑗


4. Convert to matrix notation:

∇𝑓 (𝑤) =


∑𝑛
𝑗=1𝑤 𝑗𝑎 𝑗1∑𝑛
𝑗=1𝑤 𝑗𝑎 𝑗2
...∑𝑛

𝑗=1𝑤 𝑗𝑎 𝑗𝑛


+


∑𝑛
𝑗=1 𝑎1 𝑗𝑤 𝑗∑𝑛
𝑗=1 𝑎2 𝑗𝑤 𝑗

...∑𝑛
𝑗=1 𝑎𝑛𝑗𝑤 𝑗


= 𝐴⊤w +𝐴w =

(
𝐴⊤ +𝐴

)
w

So our final result is that
∇𝑓 (w) =

(
𝐴⊤ +𝐴

)
w

Note that if 𝐴 is symmetric (𝐴⊤ = 𝐴) then we have (𝐴⊤ +𝐴) = (𝐴 + 𝐴) = 2𝐴 so we
have

∇𝑓 (w) = 2𝐴w
15



This generalizes the scalar case where 𝑑
𝑑𝑤

[
𝛼𝑤2] = 2𝛼𝑤.We can also consider general

quadratic functions of the form

𝑓 (𝑤) = 1
2w
⊤𝐴w + b⊤𝑤 + 𝛾

Using the above results we have

∇𝑓 (w) = 1
2

(
𝐴⊤ +𝐴

)
w + b

and if 𝐴 is symmetric then
∇𝑓 (w) = 𝐴w + b

Hessian of aQuadratic Form

For a quadratic function of the form,

𝑓 (w) = w⊤𝐴w

we have shown that the partial derivatives are given by linear functions,

𝜕𝑓

𝜕𝑤𝑘
=

𝑛∑︁
𝑗=1
𝑤 𝑗𝑎 𝑗𝑘 +

𝑛∑︁
𝑗=1
𝑎𝑘 𝑗𝑤 𝑗 .

The second partial derivatives are thus constant functions of the form

𝜕2𝑓

𝜕𝑤𝑘𝜕𝑤𝑘 ′
= 𝑎𝑘 ′𝑘 + 𝑎𝑘𝑘 ′

which means that the Hessian matrix has a simple form

∇2𝑓 (w) =


𝜕

𝜕𝑤1𝜕𝑤1
𝑓 (w) 𝜕

𝜕𝑤1𝜕𝑤2
𝑓 (w) · · · 𝜕

𝜕𝑤1𝜕𝑤𝑛
𝑓 (w)

𝜕𝑤2𝜕𝑤1
𝜕𝑤2𝜃𝑤2

𝑓 (w) 𝜕
𝜕𝑤2𝜕𝑤2

𝑓 (w) · · · 𝜕
𝜕𝑤2𝜕𝑤𝑛

𝑓 (w)
...

...
. . .

...
𝜕

𝜕𝑤𝑛𝜕𝑤1
𝑓 (w) 𝜕

𝜕𝑤𝑛𝜕𝑤2
𝑓 (w) · · · 𝜕

𝜕𝑤𝑛𝜕𝑤𝑛
𝑓 (w)


=


𝑎11 + 𝑎11 𝑎21 + 𝑎12 · · · 𝑎𝑛1 + 𝑎1𝑛
𝑎12 + 𝑎21 𝑎22 + 𝑎22 · · · 𝑎𝑛2 + 𝑎2𝑛

...
...

. . .
...

𝑎1𝑛 + 𝑎𝑛1 𝑎2𝑛 + 𝑎𝑛2 · · · 𝑎𝑛𝑛 + 𝑎𝑛𝑛


This gives a result of

∇2𝑓 (w) = 𝐴 +𝐴⊤ ,
and if 𝐴 is symmetric this simplifies to

∇2𝑓 (w) = 2𝐴 .
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Notation for this module

Symbol Object

ℝ𝑛 the space of 𝑛−dimensional real column vectors
x a vector in ℝ𝑛

𝑥𝑖 the 𝑖−th coordinate of a vector x
⟨x, y⟩ inner product of x and y
[x, y] closed line segment between x and y
(x, y) open line segment between x and y
𝐵(c, 𝑟 ) open ball with center c and radius 𝑟
𝐵 [c, 𝑟 ] closed ball with center c and radius 𝑟
ℝ𝑚×𝑛 space of𝑚 × 𝑛 real-valued matrices
A𝑇 transpose of A
e𝑖 𝑖−th vector in the standard basis of ℝ𝑛

e vector of all ones
0 vector of all zeros
| · | absolute value of scalar 𝑥
∥ · ∥𝑝 ℓ𝑝-norm for x ∈ ℝ𝑛

Δ𝑛 unit simplex
ℝ𝑛
+ nonnegative orthant

ℝ𝑛
++ positive orthant
∥A∥𝐹 Frobenius norm of A
∥A∥𝑎𝑏 induced norm of A ∈ ℝ𝑚×𝑛
∥A∥2 spectral norm of A
𝜆𝑚𝑎𝑥 (A) maximum eigenvalue of a symmetric matrix A
𝜆𝑚𝑖𝑛 (A) minimum eigenvalue of a symmetric matrix A
𝑖𝑛𝑡 (𝑆) interior of set 𝑆
𝑓 ′(x; d) directional derivative of 𝑓 at 𝑥 in the direction d
∇𝑓 (x) gradient of 𝑓 at x
∇2𝑓 (x) Hessian of 𝑓 (x) at x
𝐶

1,1
𝐿
(𝐷) class of 𝐿−smooth functions over 𝐷

I𝑛 identity matrix in 𝑅𝑛×𝑛
0𝑚𝑛 zero matrix in 𝑅𝑚×𝑛
𝑑𝑖𝑎𝑔(x) diagonal matrix with entries x

17



Part II.
Unconstrained Optimization

Global Minimum and Maximum

Definition (Global Minimum and Maximum). Let 𝑓 : 𝑆 → ℝ be defined on a set 𝑆 ⊆ ℝ𝑛 .

Then:

1. x∗ ∈ 𝑆 is a global minimum point of 𝑓 over 𝑆 if 𝑓 (x) ≥ 𝑓 (x∗) for any x ∈ 𝑆.

2. x∗ ∈ 𝑆 is a strict global minimum point of 𝑓 over𝑆 if 𝑓 (x) > 𝑓 (x∗) for any x∗ ≠ x ∈ 𝑆.

3. x∗ ∈ 𝑆 is a global maximum point of 𝑓 over 𝑆 if 𝑓 (x) ≤ 𝑓 (x∗) for any x ∈ 𝑆.

4. x∗ ∈ 𝑆 is a strict globalmaximum point of 𝑓 over𝑆 if 𝑓 (x) < 𝑓 (x∗) for any x∗ ≠ x ∈ 𝑆.

Some definitions:

• We denote by global optimum the global minimum or maximum.

• The maximal value of 𝑓 over 𝑆 :

sup{𝑓 (x) : x ∈ 𝑆} .

• The minimal value of 𝑓 over 𝑆 :

inf{𝑓 (x) : x ∈ 𝑆} .

Note that the minimal and maximal values are always unique.

Example: Find the global minimum and maximum points of 𝑓 (𝑥1, 𝑥2) = 𝑥1 + 𝑥2 over
the unit ball in ℝ2, 𝑆 = 𝐵 [0, 1] =

{
(𝑥1, 𝑥2)⊤ : 𝑥2

1 + 𝑥2
2 ≤ 1

}
.

Another example: What about the global maximizers and minimizers in ℝ2 for

𝑓 (𝑥1, 𝑥2) =
𝑥1 + 𝑥2

𝑥2
1 + 𝑥2

2 + 1
?
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Figure 2: The function 𝑓 (𝑥1, 𝑥2) = 𝑥1 + 𝑥2 constrained over the unit ball.

Local Minima and Maxima

Definition (Local Minimum and Maximum). Let 𝑓 : 𝑆 → ℝ be defined on a set 𝑆 ⊆ ℝ𝑛 .

Then:

1. x∗ ∈ 𝑆 is a local minimum of 𝑓 over 𝑆 if there exists 𝑟 > 0 for which 𝑓 (x∗) ≤ 𝑓 (x)
for any x ∈ 𝑆 ∩ 𝐵 (x∗, 𝑟 ).

2. x∗ ∈ 𝑆 is a strict localminimum of 𝑓 over𝑆 if there exists 𝑟 > 0 forwhich 𝑓 (x∗) < 𝑓 (x)
for any x ≠ x∗ in 𝑆 ∩ 𝐵 (x∗, 𝑟 ).

3. x∗ ∈ 𝑆 is a local maximum of 𝑓 over 𝑆 if there exists 𝑟 > 0 for which 𝑓 (x∗) ≥ 𝑓 (x)
for any x ∈ 𝑆 ∩ 𝐵 (x∗, 𝑟 ).

4. x∗ ∈ 𝑆 is a strict local maximum of 𝑓 over 𝑆 if there exists 𝑟 > 0 for which 𝑓 (x∗) >
𝑓 (x) for any x ≠ x∗ in 𝑆 ∩ 𝐵 (x∗, 𝑟 ).

Of course, a global minimum (maximum) point is also a local minimum (maximum)
point.
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Figure 3: The function 𝑓 (𝑥1, 𝑥2) = 𝑥1+𝑥2
𝑥2

1 +𝑥2
2+1

(left) and its contour plot (right).

Example: Identify the different (strict) local minima and maxima of the function

𝑓 (𝑥) =



(𝑥 − 1)2 + 2, −1 ≤ 𝑥 ≤ 1
2, 1 ≤ 𝑥 ≤ 2

−(𝑥 − 2)2 + 2, 2 ≤ 𝑥 ≤ 2.5
(𝑥 − 3)2 + 1.5, 2.5 ≤ 𝑥 ≤ 4
−(𝑥 − 5)2 + 3.5, 4 ≤ 𝑥 ≤ 6
−2𝑥 + 14.5, 6 ≤ 𝑥 ≤ 6.5
2𝑥 − 11.5, 6.5 ≤ 𝑥 ≤ 8

(1)

Figure 4: The function described in (1) has several minima and maxima.

Theorem (Fermat’s Theorem: First Order Optimality Conditions). Let 𝑓 : 𝑈 → ℝ be a
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function defined on a set𝑈 ⊆ ℝ𝑛 . Suppose that x∗ ∈ int(𝑈 ) is a local optimum point and
that all the partial derivatives of 𝑓 exist at x∗. Then ∇𝑓 (x∗) = 0.

Proof. Let 𝑖 ∈ {1, 2, . . . , 𝑛} and consider the 1-D function 𝑔(𝑡) = 𝑓 (x∗ + 𝑡e𝑖). Then, x∗ is a
local optimum point of 𝑓 implies that 𝑡 = 0 is a local optimum of 𝑔, and hence 𝑔′(0) = 0.
Thus, 𝜕𝑓

𝜕𝑥𝑖
(x∗) = 𝑔′(0) = 0.

Definition (Stationary Points). Let 𝑓 : 𝑈 → ℝ be a function defined on a set 𝑈 ⊆ ℝ𝑛 .
Suppose that x∗ ∈ int(𝑈 ) and that all the partial derivatives of 𝑓 are defined at x∗. Then x∗

is called a stationary point of 𝑓 if ∇𝑓 (x∗) = 0.

Figure 5: Pierre de Fermat (1607-1665), French mathematician (and lawyer!) who made
significant contributions to differential calculus and number theory.

Example:

min
{
𝑓 (𝑥1, 𝑥2) = 𝑥1+𝑥2

𝑥2
1 +𝑥2

2+1
: 𝑥1, 𝑥2 ∈ ℝ

}
∇𝑓 (𝑥1, 𝑥2) = 1

(𝑥2
1 +𝑥2

2+1)2
( (
𝑥2

1 + 𝑥2
2 + 1

)
− 2(𝑥1 + 𝑥2)𝑥1(

𝑥2
1 + 𝑥2

2 + 1
)
− 2(𝑥1 + 𝑥2)𝑥2

)
Stationary points are those satisfying:

−𝑥2
1 − 2𝑥1𝑥2 + 𝑥2

2 = −1
𝑥2

1 − 2𝑥1𝑥2 − 𝑥2
2 = −1 .

Hence, the stationary points are (1/
√

2, 1/
√

2) and (−1/
√

2,−1/
√

2), with (1/
√

2, 1/
√

2) a
global maximum, and (−1/

√
2,−1/

√
2) a global minimum.
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Second Order Optimality Conditions

Theorem (Necessary Second Order Optimality Conditions). Let 𝑓 : 𝑈 → ℝ be a function
defined on an open set𝑈 ⊆ ℝ𝑛 Suppose that 𝑓 is twice continuously differentiable over𝑈
and that x∗ is a stationary point. Then

1. if x∗ is a local minimum point, then ∇2𝑓 (x∗) ⪰ 0.

2. if x∗ is a local maximum point, then ∇2𝑓 (x∗) ⪯ 0.

Proof. We prove 1. There exists a ball 𝐵 (x∗, 𝑟 ) ⊆ 𝑈 for which 𝑓 (x) ≥ 𝑓 (x∗) for all
x ∈ 𝐵 (x∗, 𝑟 ). Next, let d ∈ ℝ𝑛 be a nonzero vector. For any 0 < 𝛼 < 𝑟

∥d∥ , we have
x∗𝛼 ≡ x∗ + 𝛼d ∈ 𝐵 (x∗, 𝑟 ) and for any such 𝛼, 𝑓

(
x∗𝛼

)
≥ 𝑓 (x∗).

On the other hand, there exists a vector z𝛼 ∈
[
x∗, x∗𝛼

]
such that

𝑓
(
x∗𝛼

)
− 𝑓 (x∗) = 𝛼2

2 d⊤∇2𝑓 (z𝛼 ) d .

This implies that for any 𝛼 ∈
(
0, 𝑟
∥d∥

)
the inequality d⊤∇2𝑓 (z𝛼 ) d ≥ 0 holds. Since

z𝛼 → x∗ as 𝛼 → 0+, we obtain that d⊤∇2𝑓 (x∗) d ≥ 0, which leads to ∇2𝑓 (x∗) ⪰ 0. The
proof of 2. follows analogously. □

Theorem (Sufficient Second Order Optimality Conditions). Let 𝑓 : 𝑈 → ℝ be a function
defined on an open set𝑈 ⊆ ℝ𝑛 . Suppose that 𝑓 is twice continuously differentiable over𝑈
and that x∗ is a stationary point. Then

1. if ∇2𝑓 (x∗) ≻ 0, then x∗ is a strict local minimum point of 𝑓 over𝑈 .

2. if ∇2𝑓 (x∗) ≺ 0, then x∗ is a strict local maximum point of 𝑓 over𝑈 .

Proof. We prove 1. There exists a ball 𝐵 (x∗, 𝑟 ) ⊆ 𝑈 for which ∇2𝑓 (x) ≻ 0 for any
x ∈ 𝐵 (x∗, 𝑟 ). Then, by the Linear Approximation Theorem (week 1), there exists a vector
zx ∈ [x∗, x] (and hence zx ∈ 𝐵 (x∗, 𝑟 )) for which

𝑓 (x) − 𝑓 (x∗) = 1
2 (x − x

∗)⊤ ∇2𝑓 (zx) (x − x∗) .

From this, it follows that ∇2𝑓 (zx) ≻ 0, implying that for any x ∈ 𝐵 (x∗, 𝑟 ) such that
x ≠ x∗, the inequality 𝑓 (x) > 𝑓 (x∗) holds. Therefore x∗ is a strict local minimum point
of 𝑓 over𝑈 . □

22



Saddle Points

Definition (Saddle Point). Let 𝑓 : 𝑈 → ℝ be a continuously differentiable function defined
on an open set𝑈 ⊆ ℝ𝑛 . A stationary point x∗ ∈ 𝑈 is called a saddle point of 𝑓 over𝑈 if it is
neither a local minimum point nor a local maximum point of 𝑓 over𝑈 .

Theorem (Sufficient Condition for Saddle Points). Let 𝑓 : 𝑈 → ℝ be a function defined
on an open set𝑈 ⊆ ℝ𝑛 . Suppose that 𝑓 is twice continuously differentiable over𝑈 and that
x∗ is a stationary point. If ∇2𝑓 (x∗) is an indefinite matrix, then x∗ is a saddle point of 𝑓
over𝑈 .

Proof. The Hessian ∇2𝑓 (x∗) has at least one positive eigenvalue 𝜆 > 0, corresponding to
a normalized eigenvector denoted by v. There exists a radius 𝑟 > 0 such that x∗ + 𝛼v ∈ 𝑈
for any 𝛼 ∈ (0, 𝑟 ). By the Quadratic Approximation Theorem (week 1), there exists a
function 𝑔 : ℝ++ → ℝ satisfying

𝑔(𝑡)
𝑡
→ 0 as 𝑡 → 0 ,

such that for any 𝛼 ∈ (0, 𝑟 )

𝑓 (x∗ + 𝛼v) = 𝑓 (x∗) + 𝜆𝛼
2

2 ∥v∥
2 + 𝑔

(
∥v∥2𝛼2) .

Recalling that v is normalized, we write

𝑓 (x∗ + 𝛼v) = 𝑓 (x∗) + 𝜆𝛼
2

2 + 𝑔
(
𝛼2)

By the properties of 𝑔, it follows that there exists an 𝜀1 ∈ (0, 𝑟 ) such that 𝑔
(
𝛼2) > −𝜆2𝛼2

for all 𝛼 ∈ (0, 𝜀1) and hence 𝑓 (x∗ + 𝛼v) > 𝑓 (x∗) for all 𝛼 ∈ (0, 𝜀1) . This shows that
x∗ cannot be a local maximum point of 𝑓 over 𝑈 . A similar argument-exploiting an
eigenvector of ∇2𝑓 (x∗) corresponding to a negative eigenvalue-shows that x∗ cannot
be a local minimum point of 𝑓 over 𝑈 , establishing the desired result that x∗ is a saddle
point. □

Attainment of Minimal/Maximal Points

Theorem (Weierstrass’ Theorem). Let 𝑓 be a continuous function defined over a nonempty
compact set 𝐶 ⊆ ℝ𝑛 . Then there exists a global minimum point of 𝑓 over 𝐶 and a global
maximum point of 𝑓 over 𝐶 .

When the underlying set is not compact, Weierstrass theorem does not guarantee the
attainment of the solution, but certain properties of the function 𝑓 can imply attainment
of the solution.

23



Figure 6: Karl Weierstrass (1815-1897), German mathematician considered one of the
founding figures of modern analysis. He formalized the definition of continuity
of a function! If you want to pursue a research career in analysis, you might
want to work/visit the Weierstrass Institute in Berlin.

Definition (Coerciveness). Let 𝑓 : ℝ𝑛 → ℝ be a continuous function over ℝ𝑛 . f is called
coercive if

lim
∥x∥→∞

𝑓 (x) = ∞

Theorem (Attainment of Global Optima Points for Coercive Functions). Let 𝑓 : ℝ𝑛 → ℝ

be a continuous and coercive function and let 𝑆 ⊆ ℝ𝑛 be a nonempty closed set. Then 𝑓
attains a global minimum point on 𝑆 .

Proof. Let x0 ∈ 𝑆 be an arbitrary point in 𝑆 . Since the function is coercive, it follows that
there exists an𝑀 > 0 such that

𝑓 (x) > 𝑓 (x0) for any x such that ∥x∥ > 𝑀 .

Since any global minimizer x∗ of 𝑓 over 𝑆 satisfies 𝑓 (x∗) ≤ 𝑓 (x0) , it follows that the
set of global minimizers of 𝑓 over 𝑆 is the same as the set of global minimizers of 𝑓 over
𝑆 ∩ 𝐵 [0, 𝑀]. The set 𝑆 ∩ 𝐵 [0, 𝑀] is compact and nonempty, and thus by the Weierstrass
theorem, there exists a global minimizer of 𝑓 over 𝑆 ∩ 𝐵 [0, 𝑀] and hence also over 𝑆 . □

Example. Classify the stationary points of the function 𝑓 (𝑥1, 𝑥2) = −2𝑥2
1 + 𝑥1𝑥

2
2 + 4𝑥4

1 .
The gradient is given by

∇𝑓 (𝑥) =
(
−4𝑥1 + 𝑥2

2 + 16𝑥3
1

2𝑥1𝑥2

)
,
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and the stationary points are the solutions to

−4𝑥1 + 𝑥2
2 + 16𝑥3

1 = 0
2𝑥1𝑥2 = 0 .

The stationary points are (0, 0), (0.5, 0), and (−0.5, 0). We compute te Hessian

∇2𝑓 (𝑥1, 𝑥2) =
(
−4 + 48𝑥2

1 2𝑥2
2𝑥2 2𝑥1

)
,

and evaluating at the stationary points leads to

∇2𝑓 (0.5, 0) =
(

8 0
0 1

)
, ∇2𝑓 (−0.5, 0) =

(
8 0
0 −1

)
, ∇2𝑓 (0, 0) =

(
−4 0
0 0

)
.

Classify each stationary point.

Figure 7: The function 𝑓 (𝑥1, 𝑥2) = −2𝑥2
1 + 𝑥1𝑥

2
2 + 4𝑥4

1 and its contour plot.
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Global Optimality Conditions

Theorem (Global Optimality Condition). Let 𝑓 be a twice continuously differentiable
function defined over ℝ𝑛 . Suppose that ∇2𝑓 (x) ⪰ 0 for any x ∈ ℝ𝑛 . Let x∗ ∈ ℝ𝑛 be a
stationary point of 𝑓 . Then x∗ is a global minimum point of 𝑓 .

Proof. By the Linear Approximation Theorem, it follows that for any x ∈ ℝ𝑛, there exists
a vector zx ∈ [x∗, x] for which

𝑓 (x) − 𝑓 (x∗) = 1
2 (x − x

∗)⊤ ∇2𝑓 (zx) (x − x∗) .

Since ∇2𝑓 (zx) ⪰ 0, we have that 𝑓 (x) ≥ 𝑓 (x∗) , establishing the fact that x∗ is a global
minimum point of 𝑓 . □

Example. The function 𝑓 (x) = 𝑥2
1 + 𝑥2

2 + 𝑥2
3 + 𝑥1𝑥2 + 𝑥1𝑥3 + 𝑥2𝑥3 +

(
𝑥2

1 + 𝑥2
2 + 𝑥2

3
)2 has a

gradient

∇𝑓 (x) = ©­«
2𝑥1 + 𝑥2 + 𝑥3 + 4𝑥1

(
𝑥2

1 + 𝑥2
2 + 𝑥2

3
)

2𝑥2 + 𝑥1 + 𝑥3 + 4𝑥2
(
𝑥2

1 + 𝑥2
2 + 𝑥2

3
)

2𝑥3 + 𝑥1 + 𝑥2 + 4𝑥3
(
𝑥2

1 + 𝑥2
2 + 𝑥2

3
) ª®¬ ,

and the Hessian

∇2𝑓 (𝑥) = ©­«
2 + 4

(
𝑥2

1 + 𝑥2
2 + 𝑥2

3
)
+ 8𝑥2

1 1 + 8𝑥1𝑥2 1 + 8𝑥1𝑥3
1 + 8𝑥1𝑥2 1 + 8𝑥2𝑥32 + 4

(
𝑥2

1 + 𝑥2
2 + 𝑥2

3
)
+ 8𝑥2

2
1 + 8𝑥1𝑥3 1 + 8𝑥2𝑥3 2 + 4

(
𝑥2

1 + 𝑥2
2 + 𝑥2

3
)
+ 8𝑥2

3

ª®¬ .
We observe that x = 0 is a stationary point. Check that ∇2𝑓 (x) ⪰ 0 for all x. It follows
that x = 0 is the global minimum point.

Quadratic Functions

A quadratic function over ℝ𝑛 is a function of the form

𝑓 (x) = x⊤Ax + 2b⊤x + c

where A ∈ ℝ𝑛×𝑛 is symmetric, b ∈ ℝ𝑛 and c ∈ ℝ. From here onwards, we adopt the
convention of assuming A to be symmetric. 1

Check(!) that

∇𝑓 (x) = 2Ax + 2b
∇2𝑓 (x) = 2A

1 Otherwise, work with 𝑓 (x) = x⊤Wx + b⊤x + 𝑐 , where W = A+A⊤
2 (it’s the same!).
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Proposition. Let 𝑓 (x) = x⊤Ax + 2b⊤x + c, with A ∈ ℝ𝑛×𝑛symmetric , b ∈ ℝ𝑛, and c ∈ ℝ.
Then

1. x is a stationary point of 𝑓 iff Ax = −b.

2. if A ⪰ 0, then x is a global minimum point of 𝑓 iff Ax = −b.

3. if A ≻ 0, then x = −A−1b is a strict global minimum point of 𝑓 .

Proof. 1. The proof follows immediately from the formula of the gradient of 𝑓 .

2. since ∇2𝑓 (x) = 2A ⪰ 0, it follows from global optimality conditions that the global
minimum points are exactly the stationary points, which combined with part 1.
implies the result.

3. When A ≻ 0, the vector x = −A−1b is the unique solution to Ax = −b, and hence
by parts 1. and 2., it is the unique global minimum point of 𝑓 .

□

Two Important Theorems onQuadratic Functions

Lemma (Coerciveness of Quadratic Functions). Let 𝑓 (x) = x⊤A𝑥 + 2b⊤x + c where
A ∈ ℝ𝑛×𝑛 is symmetric, b ∈ ℝ𝑛 and c ∈ ℝ. Then 𝑓 is coercive if and only if A ≻ 0.

Theorem (Characterization of the Nonnegativity of Quadratic Functions). Consider the
quadratic form 𝑓 (x) = x⊤Ax + 2b⊤x + c, where A ∈ ℝ𝑛×𝑛 is symmetric, b ∈ ℝ𝑛 and c ∈ ℝ.
Then the following two claims are equivalent:

1. 𝑓 (x) ≡ x⊤Ax + 2b⊤x + c ≥ 0 , for all x ∈ ℝ𝑛 .

2. The augmented matrix
(
A b
b⊤ c

)
⪰ 0 .

Proof. Suppose that 2. holds. Then, in particular for any x ∈ ℝ𝑛 the inequality(
x
1

)⊤ (
A b
b⊤ 𝑐

) (
x
1

)
≥ 0

holds, which is the same as the inequality x⊤Ax + 2b⊤x + c ≥ 0, proving the validity of 1.
Now, assume that 1. holds. We begin by showing that A ⪰ 0. Suppose in contradiction
that A is not positive semidefinite. Then there exists an eigenvector v corresponding to a
negative eigenvalue 𝜆 < 0 of A:

Av = 𝜆v .

Thus, for any 𝛼 ∈ ℝ

𝑓 (𝛼v) = 𝜆∥v∥2𝛼2 + 2
(
b⊤v

)
𝛼 + c→ −∞

as 𝛼 → −∞, contradicting the nonnegativity of 𝑓 .
27



Now our objective is to prove 2.; that is, we want to show that for any y ∈ ℝ𝑛 and 𝑡 ∈ ℝ(
y
𝑡

)⊤ (
A b
b⊤ c

) (
y
𝑡

)
≥ 0

which is equivalent to

y⊤Ay + 2𝑡b⊤y + c𝑡2 ≥ 0 (2)

To show the validity of eq. (2) above for any y ∈ ℝ𝑛 and 𝑡 ∈ ℝ, we consider two cases. If
𝑡 = 0, then (2) reads as y⊤Ay ≥ 0, which is a valid inequality since we have shown that
A ⪰ 0. The second case is when 𝑡 ≠ 0. To show that (2) holds in this case, note that (2) is
the same as the inequality

𝑡2𝑓
(y
𝑡

)
= 𝑡2

[(y
𝑡

)⊤
A

(y
𝑡

)
+ 2b⊤

(y
𝑡

)
+ c

]
≥ 0 ,

which holds true by the nonnegativity of 𝑓 . □

Appendix: Classification of Matrices

Definition (Positive Definiteness). 1. A symmetric matrix A ∈ ℝ𝑛×𝑛 is called positive
semidefinite, denoted by A ⪰ 0, if x⊤Ax ≥ 0 for every x ∈ ℝ𝑛 .

2. A symmetric matrix A ∈ ℝ𝑛×𝑛 is called positive definite, denoted by A ≻ 0, if
x⊤Ax > 0 for every x ≠ 0 ∈ ℝ𝑛 .

Exercise: check for

A =

(
2 −1
−1 1

)
and B =

(
1 2
2 1

)
.

Proposition. Let A be a positive definite (semidefinite) matrix. Then the diagonal elements
of A are positive (nonnegative).

Definition (Negative (Semi) Definiteness, Indefiniteness). 1. A symmetricmatrixA ∈
ℝ𝑛×𝑛 is called negative semidefinite, denoted by A ⪯ 0, if x⊤Ax ≤ 0 for every x ∈ ℝ𝑛 .

2. A symmetric matrix A ∈ ℝ𝑛×𝑛 is called negative definite, denoted by A ≺ 0, if
x⊤Ax < 0 for every 0 ≠ x ∈ ℝ𝑛 .

3. A symmetric matrix A ∈ ℝ𝑛×𝑛 is called indefinite if there exist x, y ∈ ℝ𝑛 such that
x⊤Ax > 0, y⊤Ay < 0.

Remark. • A is negative (semi)definite if and only if −A is positive (semi)definite.

• A matrix is indefinite if and only if it is neither positive semidefinite nor negative
semidefinite.
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• A symmetric matrix is with positive and negative elements in the diagonal is indefinite.

• The sum of two positive(negative) (semi)definitematrices is positive(negative) (semi)definite.

Theorem (Eigenvalue Characterization). Let A be a symmetric 𝑛 × 𝑛 matrix. Then:

a) A is positive definite iff all its eigenvalues are positive.

b) A is positive semidefinite iff all its eigenvalues are nonnegative.

c) A is negative definite iff all its eigenvalues are negative.

d) A is negative semidefinite iff all its eigenvalues are nonpositive.

e) A is indefinite iff it has at least one positive eigenvalue and at least one negative
eigenvalue.

Proof. Part a). There exists orthogonal U ∈ ℝ𝑛×𝑛 such that

U⊤AU = D ≡ diag (𝑑1, 𝑑2, . . . , 𝑑𝑛) ,

where 𝑑𝑖 = 𝜆𝑖 (A). Making the linear change of variables x = Uy, we have

x⊤Ax = y⊤U⊤AUy = y⊤Dy =

𝑛∑︁
𝑖=1
𝑑𝑖𝑦

2
𝑖 .

Therefore, x⊤𝐴x > 0 for all x ≠ 0 iff
𝑛∑︁
𝑖=1
𝑑𝑖𝑦

2
𝑖 > 0 for any y ≠ 0 .

The latter holds iff 𝑑𝑖 > 0 for all 𝑖 . (why?) □

Trace and Determinant. Let A be a positive semidefinite (definite) matrix. Then the
trace 𝑇𝑟 (A) and the determinant det(A) are nonnegative (positive). This follows directly
recalling that the trace of a matrix is the sum of its eigenvalues and the determinant its
product.

Exercises. Let A be a symmetric 2 × 2 matrix. Then A is positive semidefinite (definite)
if and only if Tr(A), det(A) ≥ 0 (Tr(A), det(A) > 0).

Classify the matrices

A =

(
4 1
1 3

)
,B =

©­«
1 1 1
1 1 1
1 1 0.1

ª®¬ .
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The Principal Minors Criteria

Given an 𝑛 ×𝑛 matrix, the determinant of the upper left 𝑘 ×𝑘 submatrix is called the 𝑘-th
principal minor and is denoted by 𝐷𝑘 (A).

Example:

A =
©­«
𝑎11 𝑎12 𝑎13
𝑎21 𝑎22 𝑎23
𝑎31 𝑎32 𝑎33

ª®¬
𝐷1(A) = 𝑎11, 𝐷2(A) = det

(
𝑎11 𝑎12
𝑎21 𝑎22

)
, 𝐷3(A) = det ©­«

𝑎11 𝑎12 𝑎13
𝑎21 𝑎22 𝑎23
𝑎31 𝑎32 𝑎33

ª®¬
Proposition. Let A be an 𝑛 ×𝑛 symmetric matrix. Then A is positive definite if and only if

𝐷1(A) > 0, 𝐷2(A) > 0, . . . , 𝐷𝑛 (A) > 0 .

Proposition. Let A be an 𝑛 ×𝑛 symmetric matrix. Then A is negative definite if and only if

(−1)𝑘𝐷𝑘 (A) > 0 , for all 𝑘 = 1, . . . , 𝑛.

This is equivalent to check that −A is positive definite.

Exercise. Classify the matrices

A =
©­«

4 2 3
2 3 2
3 2 4

ª®¬ , B =
©­«

2 2 2
2 2 2
2 2 −1

ª®¬ , C =
©­«
−4 1 1
1 −4 1
1 1 −4

ª®¬ .
Diagonal Dominance

Definition (Diagonal Dominance). Let A be a symmetric 𝑛 × 𝑛 matrix.

a) A is called diagonally dominant if

|A𝑖𝑖 | ≥
∑︁
𝑗≠𝑖

��A𝑖 𝑗 �� ∀𝑖 = 1, 2, . . . , 𝑛

b) A is called strictly diagonally dominant if

|A𝑖𝑖 | >
∑︁
𝑗≠𝑖

��A𝑖 𝑗 �� ∀𝑖 = 1, 2, . . . , 𝑛

Theorem (Positive definiteness of diagonally dominant matrices). a) If the matrixA
is symmetric, diagonally dominant with nonnegative diagonal elements, then A is
positive semidefinite.
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b) If A is symmetric, strictly diagonally dominant with positive diagonal elements, then
A is positive definite.

Proof. a) Suppose in contradiction that there exists a negative eigenvalue 𝜆 of A, and
let u be a corresponding eigenvector. Let 𝑖 ∈ {1, 2, . . . , 𝑛} be an index for which |𝑢𝑖 |
is maximal among |𝑢1 | , |𝑢2 | , . . . , |𝑢𝑛 | . Then by the equality Au = 𝜆u we have

|A𝑖𝑖 − 𝜆 | · |𝑢𝑖 | =
�����∑︁
𝑗≠𝑖

A𝑖 𝑗𝑢 𝑗

����� ≤
(∑︁
𝑗≠𝑖

��A𝑖 𝑗 ��) |𝑢𝑖 | ≤ |A𝑖𝑖 ∥𝑢𝑖 |
implying that |𝑏𝐴𝑖𝑖 − 𝜆 | ≤ |A𝑖𝑖 | , which is a contradiction to the negativity of 𝜆 and
the nonnegativity of A𝑖𝑖 .

b) since by part (a) we know that A is positive semidefinite, all we need to show is that
A has no zero eigenvalues. Suppose in contradiction that there is a zero eigenvalue,
meaning that there is a vector 𝑢 ≠ 0 such that A𝑢 = 0. Then, similarly to the
proof of part (a), let 𝑖 ∈ {1, 2, . . . , 𝑛} be an index for which |𝑢𝑖 | is maximal among
|𝑢1 | , |𝑢2 | , . . . , |𝑢𝑛 | and we obtain

|A𝑖𝑖 | · |𝑢𝑖 | =
�����∑︁
𝑗≠𝑖

A𝑖 𝑗𝑢 𝑗

����� ≤
(∑︁
𝑗≠𝑖

��A𝑖 𝑗 ��) |𝑢𝑖 | < |A𝑖𝑖 ∥𝑢𝑖 |
which is obviously impossible, establishing the fact that A is positive definite.

□
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Appendix: Gradient and Hessian ofQuadratics

Gradient of Linear Function

Consider a linear function of the form

𝑓 (𝑤) = 𝑎⊤𝑤

where 𝑎 and 𝑤 are length-d vectors. We can derive the gradient in matrix notation as
follows:

1. Convert to summation notation:

𝑓 (𝑤) =
𝑑∑︁
𝑗=1
𝑎 𝑗𝑤 𝑗

where 𝑎 𝑗 is element 𝑗 of 𝑎 and𝑤 𝑗 is element 𝑗 of𝑤

2. Take the partial derivative with respect to a generic element 𝑘 :

𝜕

𝜕𝑤𝑘

[
𝑑∑︁
𝑗=1
𝑎 𝑗𝑤 𝑗

]
= 𝑎𝑘

3. Assemble the partial derivatives into a vector:

∇𝑓 (𝑤) =


𝜕
𝜕𝑤1
𝜕
𝜕𝑤2
...
𝜕
𝜕𝑤𝑑


=


𝑎1
𝑎2
...

𝑎𝑑


= 𝑎

So our final result is that
∇𝑓 (𝑤) = 𝑎

This generalizes the scalar case where 𝑑
𝑑𝑤
[𝛼𝑤] = 𝛼.We can also consider general linear

functions of the form
𝑓 (𝑤) = 𝑎⊤𝑤 + 𝛽

for a scalar 𝛽. But in this case we still have ∇𝑓 (𝑤) = 𝑎 since 𝛽 does not depend on𝑤 .

Gradient ofQuadratic Function

Consider a quadratic function of the form

𝑓 (𝑤) = 𝑤⊤𝐴𝑤

where 𝑤 is a length- 𝑑 vector and 𝐴 is a 𝑑 by 𝑑 matrix. We can derive the gradient in
matrix notation as follows
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1. Convert to summation notation:

𝑓 (𝑤) = 𝑤⊤


∑𝑛
𝑗=1 𝑎1 𝑗𝑤 𝑗∑𝑛
𝑗=1 𝑎2 𝑗𝑤 𝑗

...∑𝑛
𝑗=1 𝑎𝑑 𝑗𝑤 𝑗


=

𝑑∑︁
𝑖=1

𝑑∑︁
𝑗=1
𝑤𝑖𝑎𝑖 𝑗𝑤 𝑗

where 𝑎𝑖 𝑗 is the element in row 𝑖 and column 𝑗 of 𝐴. To help with computing the
partial derivatives, it helps to re-write it in the form

𝑓 (𝑤) =
𝑑∑︁
𝑖=1

𝑑∑︁
𝑗=1
𝑤𝑖𝑎𝑖 𝑗𝑤 𝑗 =

𝑑∑︁
𝑖=1

(
𝑎𝑖𝑖𝑤

2
𝑖 +

∑︁
𝑗≠𝑖

𝑤𝑖𝑎𝑖 𝑗𝑤 𝑗

)
2. Take the partial derivative with respect to a generic element 𝑘 :

𝜕

𝜕𝑤𝑘

[
𝑑∑︁
𝑖=1

(
𝑎𝑖𝑖𝑤

2
𝑖 +

∑︁
𝑗≠𝑖

𝑤𝑖𝑎𝑖 𝑗𝑤 𝑗

)
·
]
= 2𝑎𝑘𝑘𝑤𝑘 +

∑︁
𝑗≠𝑘

𝑤 𝑗𝑎 𝑗𝑘 +
∑︁
𝑗≠𝑘

𝑎𝑘 𝑗𝑤 𝑗

The first term comes from the 𝑎𝑘𝑘 term that is quadratic in𝑤𝑘 , while the two sums
come from the terms that are linear in 𝑤𝑘 .We can move one 𝑎𝑘𝑘𝑤𝑘 into each of
the sums to simplify this to

𝜕

𝜕𝑤𝑘

[
𝑑∑︁
𝑖=1

(
𝑎𝑖𝑖𝑤

2
𝑖 +

∑︁
𝑗≠𝑖

𝑤𝑖𝑎𝑖 𝑗𝑤 𝑗

)
·
]
=

𝑑∑︁
𝑗=1
𝑤 𝑗𝑎 𝑗𝑘 +

𝑑∑︁
𝑗=1
𝑎𝑘 𝑗𝑤 𝑗

3. Assemble the partial derivatives into a vector:

∇𝑓 (𝑤) =


𝜕
𝜕𝑤1
𝜕
𝜕𝑤2
...
𝜕
𝜕𝑤𝑑


=


∑𝑑
𝑗=1𝑤 𝑗𝑎 𝑗1 +

∑𝑑
𝑗=1 𝑎1 𝑗𝑤 𝑗∑𝑑

𝑗=1𝑤 𝑗𝑎 𝑗2 +
∑𝑑
𝑗=1 𝑎2 𝑗𝑤 𝑗

...∑𝑑
𝑗=1𝑤 𝑗𝑎 𝑗𝑑 +

∑𝑑
𝑗=1 𝑎𝑑 𝑗𝑤 𝑗


=


∑𝑑
𝑗=1𝑤 𝑗𝑎 𝑗1∑𝑑
𝑗=1𝑤 𝑗𝑎 𝑗2
...∑𝑑

𝑗=1𝑤 𝑗𝑎 𝑗𝑑


+


∑𝑑
𝑗=1 𝑎1 𝑗𝑤 𝑗∑𝑑
𝑗=1 𝑎2 𝑗𝑤 𝑗

...∑𝑑
𝑗=1 𝑎𝑑 𝑗𝑤 𝑗


4. Convert to matrix notation:

∇𝑓 (𝑤) =


∑𝑑
𝑗=1𝑤 𝑗𝑎 𝑗1∑𝑑
𝑗=1𝑤 𝑗𝑎 𝑗2
...∑𝑑

𝑗=1𝑤 𝑗𝑎 𝑗𝑑


+


∑𝑑
𝑗=1 𝑎1 𝑗𝑤 𝑗∑𝑑
𝑗=1 𝑎2 𝑗𝑤 𝑗

...∑𝑑
𝑗=1 𝑎𝑑 𝑗𝑤 𝑗


= 𝐴⊤𝑤 +𝐴𝑤 =

(
𝐴⊤ +𝐴

)
𝑤

So our final result is that
∇𝑓 (𝑤) =

(
𝐴⊤ +𝐴

)
𝑤

Note that if 𝐴 is symmetric (𝐴⊤ = 𝐴) then we have (𝐴⊤ +𝐴) = (𝐴 + 𝐴) = 2𝐴 so we
have

∇𝑓 (𝑤) = 2𝐴𝑤
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This generalizes the scalar case where 𝑑
𝑑𝑤

[
𝛼𝑤2] = 2𝛼𝑤.We can also consider general

quadratic functions of the form

𝑓 (𝑤) = 1
2𝑤
⊤𝐴𝑤 + 𝑏⊤𝑤 + 𝛾

Using the above results we have

∇𝑓 (𝑤) = 1
2

(
𝐴⊤ +𝐴

)
𝑤 + 𝑏

and if 𝐴 is symmetric then
∇𝑓 (𝑤) = 𝐴𝑤 + 𝑏

Hessian of aQuadratic Form

4 Hessian of Quadratic Function For a quadratic function of the form,

𝑓 (𝑤) = 𝑤⊤𝐴𝑤

we show above the partial derivatives are given by linear functions,

𝜕𝑓

𝜕𝑤𝑘
=

𝑑∑︁
𝑗=1
𝑤 𝑗𝑎 𝑗𝑘 +

𝑑∑︁
𝑗=1
𝑎𝑘 𝑗𝑤 𝑗

The second partial derivatives are thus constant functions of the form

𝜕2𝑓

𝜕𝑤𝑘𝜕𝑤𝑘 ′
= 𝑎𝑘 ′𝑘 + 𝑎𝑘𝑘 ′

which means that the Hessian matrix has a simple form

∇2𝑓 (𝑤) =


𝜕

𝜕𝑤1𝜕𝑤1
𝑓 (𝑤) 𝜕

𝜕𝑤1𝜕𝑤2
𝑓 (𝑤) · · · 𝜕

𝜕𝑤1𝜕𝑤𝑑
𝑓 (𝑤)

𝜕𝑤2𝜕𝑤1
𝜕𝑤2𝜃𝑤2

𝑓 (𝑤) 𝜕
𝜕𝑤2𝜕𝑤2

𝑓 (𝑤) · · · 𝜕
𝜕𝑤2𝜕𝑤𝑑

𝑓 (𝑤)
...

...
. . .

...
𝜕

𝜕𝑤𝑑 𝜕𝑤1
𝑓 (𝑤) 𝜕

𝜕𝑤𝑑 𝜕𝑤2
𝑓 (𝑤) · · · 𝜕

𝜕𝑤𝑑 𝜕𝑤𝑑
𝑓 (𝑤)


=


𝑎11 + 𝑎11 𝑎21 + 𝑎12 · · · 𝑎𝑑1 + 𝑎1𝑑
𝑎12 + 𝑎21 𝑎22 + 𝑎22 · · · 𝑎𝑑2 + 𝑎2𝑑

...
...

. . .
...

𝑎1𝑑 + 𝑎𝑑1 𝑎2𝑑 + 𝑎𝑑2 · · · 𝑎𝑑𝑑 + 𝑎𝑑𝑑


This gives a result of

∇2𝑓 (𝑤) = 𝐴 +𝐴⊤

and if 𝐴 is symmetric this simplifies to

∇2𝑓 (𝑤) = 2𝐴
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Part III.
Linear and Nonlinear Least Squares
Problems

A Bit of History

In January 1, 1801, the Italian monk Giuseppe Piazzi, discovered a faint, nomadic object
through his telescope in Palermo, correctly believing it to reside in the orbital region
between Mars and Jupiter. Piazzi watched the object for 41 days but then fell ill, and
shortly thereafter the wandering star strayed into the halo of the Sun and was lost to
observation. The newly-discovered planet had been lost, and astronomers had a mere 41
days of observation covering a tiny arc of the night from which to attempt to compute
an orbit and find the planet again.

Figure 8: Giusepe Piazzi (1746-1826), Italian priest, mathematician, and astronomer. His
observations led to the discovery of the dwarf planet Ceres.

The dean of the French astrophysical establishment, Pierre-Simon Laplace, declared that
the orbit recovery simply could not be done. In Germany, the 24 years old German math-
ematician Car Friedrich Gauss had considered that this type of problem, to determine a
planet’s orbit from a limited handful of observations- “commended itself to mathemati-
cians by its difficulty and elegance.” Gauss discovered a method for computing the planet’s
orbit using only three of the original observations and successfully predicted where Ceres
might be found (now considered to be a dwarf planet). The prediction catapulted him to
worldwide acclaim.

More than 200 years later, in 2019 American computer scientist Katie Bouman used similar
mathematical methods, which heavily rely on optimization and large-scale astronomical
observation datasets, to recover the first image of a black hole.
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Figure 9: Carl Friedrich Gauss (1777-1855) and Pierre-Simon Laplace (1749-1827) need no
introduction. On the left, a 10 Deutsche Mark bank note with Gauss. Laplace
has his name engrave in the Eiffel Tower. How cool is that!

Figure 10: 200 years later, Katie Bouman (1990-) used similar optimization techniques as
Gauss (and a bit of supercomputing power) to recover the first image of a black
hole. After this module, you could be next!

Formulating the Linear Least Squares Problem

Consider the linear system

Sx ≈ b,
(
S ∈ ℝ𝑚×𝑛, b ∈ ℝ𝑚

)
We assume that S has a full column rank, that is, 𝑟𝑎𝑛𝑘 (S) = 𝑛. However, when𝑚 > 𝑛,

that is when you have more equations than unknowns, the system is usually inconsistent
and a common approach for finding an approximate solution is to pick the solution of
the problem

min
x
∥Sx − b∥2 , (LLS)

which is the same as (check!)

min
x∈ℝ𝑛

{
𝑓 (x) ≡ x⊤S⊤Sx − 2b⊤Sx + ∥b∥2

}
Note that ∇2𝑓 (x) = 2S⊤S ≻ 0 since 𝑟𝑎𝑛𝑘 (S) = 𝑛 and 𝑚 > 𝑛. Therefore, the unique
optimal solution x𝐿𝑆 is the solution ∇𝑓 (x) = 0, namely,(

S⊤S
)
xLS = S⊤b← Normal Equations ,
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leading to
xLS =

(
S⊤S

)−1 S⊤b .

A Numerical Example. Consider the inconsistent linear system
𝑥1 + 2𝑥2 = 0
2𝑥1 + 𝑥2 = 1

3𝑥1 + 2𝑥2 = 1
To find the least squares solution, we will solve the normal equations:

©­«
1 2
2 1
3 2

ª®¬
⊤ ©­«

1 2
2 1
3 2

ª®¬
(
𝑥1
𝑥2

)
=

©­«
1 2
2 1
3 2

ª®¬
⊤ ©­«

0
1
1

ª®¬
which is the same as(

14 10
10 9

) (
𝑥1
𝑥2

)
=

(
5
3

)
⇒ x𝐿𝑆 =

(
15/26
−8/26

)
.

Note that Ax𝐿𝑆 = (−0.038; 0.846; 1.115), so that the errors are

b − Sx𝐿𝑆 =
©­«

0.038
0.154
−0.115

ª®¬⇒ sq. error = 0.0382 + 0.1542 + (−0.115)2 = 0.038 .

What is the core numerical task for solving LLS?

Data Fitting

We revisit, from an optimization viewpoint, a fundamental problem in statistics, namely,
linear regression. Assume we have a dataset (𝑠𝑖, 𝑏𝑖) , 𝑖 = 1, 2, . . . ,𝑚, where 𝑠𝑖 ∈ ℝ𝑛 and
𝑏𝑖 ∈ ℝ. Assume that an approximate linear relation holds:

𝑏𝑖 ≈ s⊤𝑖 x, 𝑖 = 1, 2, . . . ,𝑚 .

The corresponding least squares/regression problem reads

min
x∈ℝ𝑛

𝑚∑︁
𝑖=1

(
s⊤𝑖 x − 𝑏𝑖

)2
,

or equivalently

min
x∈ℝ𝑛
∥Sx − b∥2 .

where

𝑆 =

©­­­­«
𝑠⊤1
𝑠⊤2
...

𝑠⊤𝑚

ª®®®®¬
, 𝑡 =

©­­­­«
𝑏1
𝑏2
...

𝑏𝑚

ª®®®®¬
.
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Figure 11: The typical situation in linear regression. A set of scattered data (𝑠𝑖, 𝑡𝑖) (in blue)
suggests a linear relation between 𝑠 and 𝑡 . Among all the possible linear models,
there is an optimal choice (in red) which minimizes the square error between
the model and the measurements.

Polynomial Fitting

Another problem relevant in statistics that can be cast as a linear least squares problems
is the polynomial fit of data. Given a set of points inℝ2 : (𝑢𝑖, 𝑦𝑖) , 𝑖 = 1, 2, . . . ,𝑚, for which
the following approximate relation holds for some 𝑎0, . . . , 𝑎𝑑 :

𝑑∑︁
𝑗=0

𝑎 𝑗𝑢
𝑗

𝑖
≈ 𝑦𝑖, 𝑖 = 1, . . . ,𝑚

The linear system associated to the relation reads:

©­­­­«
1 𝑢1 𝑢2

1 · · · 𝑢𝑑1
1 𝑢2 𝑢2

2 · · · 𝑢𝑑2
...

...
...

...

1 𝑢𝑚 𝑢2
𝑚 · · · 𝑢𝑑𝑚

ª®®®®¬︸                          ︷︷                          ︸
U

©­­­­«
𝑎0
𝑎1
...

𝑎𝑑

ª®®®®¬
=

©­­­­«
𝑦0
𝑦1
...

𝑦𝑚

ª®®®®¬
The least squares solution is of course well defined if the𝑚 × (𝑑 + 1) matrix is of full
column rank. This is true when all the 𝑢𝑖 ’s are different from each other (why?).
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Regularized Least Squares

There are several situations in which the least squares solution does not give rise to a good
estimate of the "true" vector x. In these cases, a regularized problem (called regularized
least squares (RLS)) is often solved:

(RLS) min
x
∥Sx − b∥2 + 𝜆𝑅(x) .

Here, 𝜆 is the regularization parameter and 𝑅(·) is the regularization function (also called
a penalty function). A common choice is a quadratic regularization function:

min ∥Sx − b∥2 + 𝜆∥Dx∥2 .

The optimal solution of the above problem is (why?)

xRLS =
(
S⊤S + 𝜆D⊤D

)−1 S⊤b .

What kind of assumptions are needed to assure that S⊤S + 𝜆D⊤D is invertible? (answer:
Null(S) ∩ Null(D) = {0})2.

Denoising

A very important application of linear least squares and regularization techniques is the
denoising of signals (acoustic, images). Suppose that a noisy measurement of a signal
x ∈ ℝ𝑛 is given:

b = x +w ,

where x is the “true” unknown signal, w is the unknown noise and b is the (known)
measures vector. Note that the least squares problem:

min
x
∥x − b∥2 ,

is meaningless, as we would trivially recover x = b, without any denoising. We need
to enrich the optimization problem by adding a suitable regularization term, exploiting
some a priori information of the signal. For example, if the we know that the signal is
“smooth" in some sense, then 𝑅(·) can be chosen as a penalization of the signal “sudden
variations”

𝑅(x) =
𝑛−1∑︁
𝑖=1
(𝑥𝑖 − 𝑥𝑖+1)2 ,

2 here Null(S) refers to the nullspace of the matrix or kernel, Ker(S) := {x ∈ ℝ𝑛 | Sx = 0}.
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where the regularization 𝑅(·) can also be written as 𝑅(x) = ∥Lx∥2 where L ∈ ℝ(𝑛−1)×𝑛 is
given by

L =

©­­­­­­«

1 −1 0 0 · · · 0 0
0 1 −1 0 · · · 0 0
0 0 1 −1 · · · 0 0
...

...
...

...
...

...

0 0 0 0 · · · 1 −1

ª®®®®®®¬
.

The resulting regularized least squares problem is

min
x
∥𝑥 − 𝑏∥2︸    ︷︷    ︸

fitting

+ 𝜆∥𝐿𝑥 ∥2︸  ︷︷  ︸
denoisig

.

The direct solution of this problem leads to (why?)

xRLS(𝜆) =
(
I + 𝜆L⊤L

)−1 b .

Figure 12: Signal denoising. We only have access to the noisy signal (left), and we would
like to recover a “clear” signal (right) by solving a regularized least squares
problem.

Nonlinear Least Squares

The least squares problem min ∥Sx − b∥2 is often called linear least squares. In some
applications we are given a set of nonlinear equations:

𝑓𝑖 (x) ≈ 𝑏𝑖, 𝑖 = 1, 2, . . . ,𝑚 .

The nonlinear least squares (NLS) problem is the one of finding an x solving the problem

min
x

𝑚∑︁
𝑖=1
(𝑓𝑖 (x) − 𝑏𝑖)2 . (NLS)
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Figure 13: Signal denoising for different regularization parameters. Increasing the reg-
ularization parameters leads to better denoising, however, as the parameter
becomes too large, the fit with the original signal is lost. What is the limit as 𝜆
grows?

As opposed to linear least squares, there is no easy way to to solve NLS problems. However,
there are some dedicated algorithms for this problem, which we will explore later on in
this module.

A Case Study: Circle Fitting

Given𝑚 points a1, a2, . . . , a𝑚 ∈ ℝ𝑛, the circle fitting problem seeks to find a circle

𝐶 (x, 𝑟 ) = {y ∈ ℝ𝑛 : ∥y − x∥ = 𝑟 }

that best fits the𝑚 points.

We formulate a set of equations to match the center of the circle and its radius:

∥x − a𝑖 ∥ ≈ 𝑟, 𝑖 = 1, 2, . . . ,𝑚 .
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Figure 14: In the circle fitting problem,we look for a circle to match a set of measurements.

To avoid nondifferentiability, consider the squared version:

∥x − a𝑖 ∥2 ≈ 𝑟 2, 𝑖 = 1, 2, . . . ,𝑚 .

This leads to a Nonlinear Least Squares formulation:

min
x∈ℝ𝑛, 𝑟∈ℝ+

𝑚∑︁
𝑖=1

(
∥x − a𝑖 ∥2 − 𝑟 2)2

,

or expanding

min
x,𝑟

{
𝑚∑︁
𝑖=1

(
−2a⊤𝑖 x + ∥x∥2 − 𝑟 2 + ∥a𝑖 ∥2

)2 : x ∈ ℝ𝑛, 𝑟 ∈ ℝ
}

We will reduce this problem to a Linear Least Squares. Making the change of variables
𝑅 = ∥𝑥 ∥2 − 𝑟 2, the above problem reduces to

min
x∈ℝ𝑛,𝑅∈ℝ

{
𝑓 (x, 𝑅) ≡

𝑚∑︁
𝑖=1

(
−2a⊤𝑖 x + 𝑅 + ∥a𝑖 ∥2

)2 : ∥x∥2 ≥ 𝑅
}
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The constraint ∥x∥2 ≥ 𝑅 can be dropped, and therefore the problem is equivalent to the
LS problem

min
x,𝑅

{
𝑚∑︁
𝑖=1

(
−2a⊤𝑖 x + 𝑅 + ∥a𝑖 ∥2

)2 : x ∈ ℝ𝑛, 𝑅 ∈ ℝ
}
. (CF-LS)

Redundancy of the Constraint ∥x∥2 ≥ 𝑅. We will show that any optimal solution
(x̂, 𝑅) of eq. (CF-LS) automatically satisfies ∥x̂∥2 ≥ 𝑅. Otherwise, if ∥x̂∥2 < 𝑅, then

−2a⊤𝑖 x̂ + 𝑅 + ∥a𝑖 ∥2 > −2a⊤𝑖 x̂ + ∥x̂∥2 + ∥a𝑖 ∥2 = ∥x̂ − a𝑖 ∥2 ≥ 0, 𝑖 = 1, . . . ,𝑚 ,

thus contradicting the optimality of (x̂, 𝑅).
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Part IV.
The Gradient Descent Algorithm

Descent Directions Methods

Recall that our objective is to find an optimal solution of the problem

min {𝑓 (x) : x ∈ ℝ𝑛} .

We have seen that in some particular cases, such as the Linear Least Squares problem
from Week 3, it is possible to obtain a direct solution by solving the normal equations.
Unfortunately, this is not the case for an arbitrary nonlinear objective 𝑓 (x). We will study
the solution of this optimization problem by using iterative algorithms of the form

x𝑘+1 = x𝑘 + 𝑡𝑘d𝑘 , 𝑘 = 0, 1, . . . ,

where d𝑘 ∈ ℝ𝑛 is a direction and 𝑡𝑘 ∈ ℝ is called the stepsize. We will see that a careful
selection of d𝑘 and 𝑡𝑘 will generate a sequence {x𝑘}∞

𝑘=0 converging to a stationary point
x∗ such that ∇𝑓 (x∗) = 0 (a very good candidate for solving our original problem). A first
important concept is the one of descent direction.

Definition (Descent Direction). Let 𝑓 : ℝ𝑛 → ℝ be a continuously differentiable function
over ℝ𝑛 . A vector 0 ≠ d ∈ ℝ𝑛 is called a descent direction of 𝑓 at x if the directional
derivative 𝑓 ′(x; d) is negative, meaning that

𝑓 ′(x; d) = ∇𝑓 (x)⊤d < 0 .

The Descent Property of Descent Directions

Lemma. Let 𝑓 be a continuously differentiable function over ℝ𝑛, and let x ∈ ℝ𝑛 . Suppose
that d is a descent direction of 𝑓 at x. Then there exists 𝜀 > 0 such that

𝑓 (x + 𝑡d) < 𝑓 (x)

for any 𝑡 ∈ (0, 𝜀].

Proof. Since 𝑓 ′(x; d) < 0, it follows from the definition of the directional derivative that

lim
𝑡→0+

𝑓 (x + 𝑡d) − 𝑓 (x)
𝑡

= 𝑓 ′(x; d) < 0 .

Therefore, there exists 𝜀 > 0 such that
𝑓 (x + 𝑡d) − 𝑓 (x)

𝑡
< 0

for any 𝑡 ∈ (0, 𝜀], which readily implies the desired result. □
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Figure 15: Augustin-Louis Cauchy (1789-1857), French mathematician, physicist and engi-
neer. He made pioneering contributions to several branches of mathematics.
In his 1847 paper “ Méthode générale pour la résolution desde systèmes simul-
tanées” he presented the first formulation of the gradient descent method.

A first version of the descent direction algorithm is presented below.

Algorithm 1: Schematic Descent Direction Method
Initialization: pick x0 ∈ ℝ𝑛 arbitrarily.
General Step: for any 𝑘 = 0, 1, 2, . . . execute the following steps:

1 Pick a descent direction d𝑘 .
2 Find a stepsize 𝑡𝑘 satisfying 𝑓

(
x𝑘 + 𝑡𝑘d𝑘

)
< 𝑓

(
x𝑘

)
.

3 Set x𝑘+1 = x𝑘 + 𝑡𝑘d𝑘 .
4 If a stopping criteria is satisfied, then STOP and x𝑘+1 is the output.

Of course, many details are missing in the above schematic algorithm:

• What is the starting point?

• How to choose the descent direction?

• What stepsize should be taken?

• What is the stopping criteria?

Stepsize Selection Rules

Let’s assume for one second that a descent direction has been found. How do we choose
the stepsize? There are several options available.

• Constant stepsize: 𝑡𝑘 = 𝑡 for any 𝑘 .
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• Exact stepsize: 𝑡𝑘 is a minimizer3of 𝑓 along the ray x𝑘 + 𝑡d𝑘 :

𝑡𝑘 ∈ argmin
𝑡≥0

𝑓 (x𝑘 + 𝑡d𝑘)

• Backtracking (or Armijo rule): the method requires three parameters: 𝑠 > 0, 𝛼 ∈
(0, 1), and 𝛽 ∈ (0, 1). Here we start with an initial stepsize 𝑡𝑘 = 𝑠 . While

𝑓 (x𝑘) − 𝑓 (x𝑘 + 𝑡𝑘d𝑘) < −𝛼𝑡𝑘∇𝑓 (x𝑘)⊤d𝑘

set 𝑡𝑘 := 𝛽𝑡𝑘 , iterating until achieving the Sufficient Decrease Property

𝑓 (x𝑘) − 𝑓 (x𝑘 + 𝑡𝑘d𝑘) ≥ −𝛼𝑡𝑘∇𝑓 (x𝑘)⊤d𝑘 .

Finding the right 𝑡𝑘 is referred in the literature as line search.

Exercise: exact line search for quadratic functions. Find the exact stepsize when
𝑓 (x) is a quadratic function 𝑓 (x) = x⊤Ax + 2b⊤x + c where A is an 𝑛 ×𝑛 positive definite
matrix, b ∈ ℝ𝑛 and c ∈ ℝ. Let x ∈ ℝ𝑛 and let d ∈ ℝ𝑛 be a descent direction of 𝑓 at x. The
objective is to find a solution to

min
𝑡≥0

𝑓 (x + 𝑡d) .

Taking the Direction of Minus the Gradient

In the gradient method we make the choice d𝑘 = −∇𝑓
(
x𝑘

)
. This is a descent direction as

long as ∇𝑓
(
x𝑘

)
≠ 0 since

𝑓 ′(x𝑘 ;−∇𝑓 (x𝑘)) = −∇𝑓 (x𝑘)⊤∇𝑓 (x𝑘) = −∥∇𝑓 (x𝑘)∥2 < 0

In addition to being a descent direction, minus the gradient is also the steepest descent
direction.

Lemma. Let 𝑓 be a continuously differentiable function and let x ∈ ℝ𝑛 be a non-stationary
point (∇𝑓 (x) ≠ 0). Then an optimal solution of

min
d
{𝑓 ′(x; d) : ∥d∥ = 1}

is d = −∇𝑓 (x)/∥∇𝑓 (x)∥.

3 We call the operation of selecting the element that minimizes instead of just computing the minimum
value the argmin.
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Figure 16: The landscape is 𝑓 (x) and the balls are ready to move in the direction of
−∇𝑓 (x). What can you say about the points where the balls are expected to
end?

Proof. Since 𝑓 ′(x; d) = ∇𝑓 (x)⊤d, we write the problem as

min
d∈ℝ𝑛

{
∇𝑓 (x)⊤d : ∥d∥ = 1

}
By the Cauchy-Schwarz inequality we have

∇𝑓 (x)⊤d ≥ −∥∇𝑓 (x)∥ · ∥d∥ = −∥∇𝑓 (x)∥ .

Thus, −∥∇𝑓 (x)∥ is a lower bound on the optimal value of the directional derivative. On
the other hand, using the direction d = − ∇𝑓 (x)∥∇𝑓 (x)∥ we obtain that

𝑓 ′
(
x,− ∇𝑓 (x)∥∇𝑓 (x)∥

)
= −∇𝑓 (x)⊤

(
∇𝑓 (x)
∥∇𝑓 (x)∥

)
= −∥∇𝑓 (x)∥

and we thus come to the conclusion that the lower bound −∥∇𝑓 (x)∥ is attained at
d = − ∇𝑓 (x)∥∇𝑓 (x)∥ , which readily implies that this is an optimal solution for the descent
direction. □

Algorithm 2: The Gradient Method
Initialization: A tolerance parameter 𝜀 > 0 and x0 ∈ ℝ𝑛 .
General Step: for any 𝑘 = 0, 1, 2, . . . execute the following steps:

1 Pick a stepsize 𝑡𝑘 by a line search procedure on the function

𝑔(𝑡) = 𝑓 (x𝑘 − 𝑡∇𝑓 (x𝑘)) .

2 Set x𝑘+1 = x𝑘 − 𝑡𝑘∇𝑓
(
x𝑘

)
.

3 If


∇𝑓 (

x𝑘+1
)

 ≤ 𝜀, then STOP and x𝑘+1 is the output.
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Figure 17: At a given iteration, the current point x𝑘 and the descent direction − ∇𝑓 (x
𝑘 )

∥∇𝑓 (x𝑘 )∥
define a plane along which the next iterate x𝑘+1 is sought. The line search
procedure defines how far do we move in this direction. A constant stepsize
will move a fixed distance along the red line, whereas an exact stepsize will
look for the minimizer of the surface constrained to the plane.

Example. Solve

min𝑥2
1 + 2𝑥2

2

using a gradient descent with exact line search. Use the starting guess x0 = (2, 1), and a
stopping tolerance of 𝜀 = 10−5. The iteration converges in 13 steps, and the convergence
history is shown in Figure 18. After you try to code it by yourself, you can check the
MATLAB code at the end of this document.

The Zig-Zag Effect

An evident behavior of the gradient method as illustrated in Figure 18 is the “zig-zag”
effect, meaning that the direction found at the 𝑘-iterarion x𝑘+1 − x𝑘 is orthogonal to the
direction found at the (𝑘 + 1)-th iteration x𝑘+2 − x𝑘+1. We now establish this result.

Lemma. Let
{
x𝑘

}
𝑘>0 be the sequence generated by the gradient method with exact line

search for solving a problem of minimizing a continuously differentiable function 𝑓 . Then
for any 𝑘 = 0, 1, 2, . . .

(x𝑘+2 − x𝑘+1)⊤(x𝑘+1 − x𝑘) = 0 .

Proof. First, we write x𝑘+1−x𝑘 = −𝑡𝑘∇𝑓
(
x𝑘

)
, and x𝑘+2−x𝑘+1 = −𝑡𝑘+1∇𝑓

(
x𝑘+1

)
. Therefore,

we need to prove that ∇𝑓
(
x𝑘

)⊤ ∇𝑓 (
x𝑘+1

)
= 0. The exact line search is by definition

𝑡𝑘 ∈ argmin
𝑡≥0

{
𝑔(𝑡) ≡ 𝑓 (x𝑘 − 𝑡∇𝑓 (x𝑘))

}
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Figure 18: Gradient descent with exact line search for 𝑓 (x) = 𝑥2
1 + 2𝑥2

2 . After 13 iterations,
the method converges to the optimum (0, 0).

Hence,

𝑔′(𝑡𝑘) = 0 ,
−∇𝑓 (x𝑘)⊤∇𝑓 (x𝑘 − 𝑡𝑘∇𝑓 (x𝑘)) = 0 ,

−∇𝑓 (x𝑘)⊤∇𝑓 (x𝑘+1) = 0 .

□

Convergence of the Gradient Method

We begin this discussion with a computational example.

Example. Solve

min𝑥2
1 + 2𝑥2

2

using gradient descent with constant stepsize. Set x0 = (2, 1), 𝜀 = 10−5, and 𝑡 = 0.1. The
MATLAB code for this method can be found the end of the document. The iteration
sequence reads

iter_number = 1 norm_grad = 4.000000 fun_val = 3.280000
iter_number = 2 norm_grad = 2.937210 fun_val = 1.897600
...

...
...

iter_number = 3 norm_grad = 2.222791 fun_val = 1.141888
iter_number = 56 norm_grad = 0.000015 fun_val = 0.000000
iter_number = 57 norm_grad = 0.000012 fun_val = 0.000000
iter_number = 58 norm_grad = 0.000010 fun_val = 0.000000
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achieving convergence after 58 iterations. If we increase the stepsize parameter to 𝑡 = 10,
we observe the history below

iter_number = 1 norm_grad = 1783.488716 fun_val = 476806.000000
iter_number = 2 norm_grad = 656209.693339 fun_val = 56962873606.00
iter_number = 3 norm_grad = 256032703.004797 fun_val = 8318300807
...

...
...

iter_number = 119 norm_grad = NaN fun_val = NaN

In this case, the sequence diverges. This leads us to a very important question: how can
we choose the constant stepsize so that convergence is guaranteed?

Lipschitz Continuity of the Gradient

Definition (Lipschitz Gradient). Let 𝑓 be a continuously differentiable function over ℝ𝑛 .
We say that 𝑓 has a Lipschitz gradient if there exists 𝐿 ≥ 0 for which

∥∇𝑓 (x) − ∇𝑓 (y)∥ ≤ 𝐿∥x − y∥ ,

for any x, y ∈ ℝ𝑛 . L is called the Lipschitz constant.

Some relevant remarks:

• If ∇𝑓 is Lipschitz with constant 𝐿, then it is also Lipschitz with constant 𝐿̃ for all
𝐿̃ ≥ 𝐿.

• The class of functions with Lipschitz gradientwith constant𝐿 is denoted by𝐶1,1
𝐿
(ℝ𝑛)

or just 𝐶1,1
𝐿
. When the constant is not relevant, we simply denote the class by 𝐶1,1.

• Linear functions - Given a ∈ ℝ𝑛, the function 𝑓 (x) = 𝑎⊤𝑥 is in 𝐶1,1
0 .

• Quadratic functions - Let A be a symmetric 𝑛 × 𝑛 matrix, b ∈ ℝ𝑛 and 𝑐 ∈ ℝ.

Then the function 𝑓 (x) = x⊤Ax + 2b⊤x + 𝑐 is a𝐶1,1 function. The smallest Lipschitz
constant of ∇𝑓 is 2∥A∥2 (why?).

Theorem (Equivalence to Boundedness of the Hessian). Let 𝑓 be a twice continuously
differentiable function over ℝ𝑛 . Then the following two claims are equivalent:

1. 𝑓 ∈ 𝐶1,1
𝐿
(ℝ𝑛).

2.


∇2𝑓 (x)



 ≤ 𝐿 for any x ∈ ℝ𝑛 .
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Proof. ( 2) ⇒ (1). Suppose that


∇2𝑓 (x)



 ≤ 𝐿 for any x ∈ ℝ𝑛 . Then by the fundamental
theorem of calculus we have for all x, y ∈ ℝ𝑛

∇𝑓 (y) = ∇𝑓 (x) +
∫ 1

0
∇2𝑓 (x + 𝑡 (y − x)) (y − x)𝑑𝑡

= ∇𝑓 (x) +
(∫ 1

0
∇2𝑓 (x + 𝑡 (y − x))𝑑𝑡

)
· (y − x)

.

Thus,

∥∇𝑓 (y) − ∇𝑓 (x)∥ =




(∫ 1

0
∇2𝑓 (x + 𝑡 (y − x))𝑑𝑡

)
· (y − x)






≤





∫ 1

0
∇2𝑓 (x + 𝑡 (y − x))𝑑𝑡





 ∥y − x∥
≤

(∫ 1

0



∇2𝑓 (x + 𝑡 (y − x))


𝑑𝑡 ) ∥y − x∥

≤ 𝐿∥y − x∥

establishing the desired result 𝑓 ∈ 𝐶1,1
𝐿
.

Now we prove (1)⇒(2). Suppose now that 𝑓 ∈ 𝐶1,1
𝐿
. Then by the fundamental theorem of

calculus for any d ∈ ℝ𝑛 and 𝛼 > 0 we have

∇𝑓 (x + 𝛼d) − ∇𝑓 (x) =
∫ 𝑎

0
∇2𝑓 (x + 𝑡d)d𝑑𝑡

Thus, 



(∫ 𝛼

0
∇2𝑓 (x + 𝑡d)𝑑𝑡

)
d




 = ∥∇𝑓 (x + 𝛼d) − ∇𝑓 (x)∥ ≤ 𝛼𝐿∥d∥

Dividing by 𝛼 and taking the limit 𝛼 → 0+, we obtain

∇2𝑓 (x)d


 ≤ 𝐿∥d∥

implying that


∇2𝑓 (x)



 ≤ 𝐿. □

Example. Show that 𝑓 (x) =
√

1 + 𝑥2 ∈ 𝐶1,1
𝐿
.

Main Convergence Result

We now state an important result connecting functions in𝐶1,1
𝐿
(ℝ𝑛) and gradient descent.

Lemma (Sufficient decrease of the gradient method). Let 𝑓 ∈ 𝐶1,1
𝐿
(ℝ𝑛) . Let

{
x𝑘

}
𝑘≥0 be

the sequence generated by the gradient method for solving

min
x∈ℝ𝑛

𝑓 (x)

with one of the following stepsize strategies:
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• constant stepsize 𝑡 ∈
(
0, 2

𝐿

)
,

• exact line search,

• backtracking procedure with parameters 𝑠 ∈ ℝ++, 𝛼 ∈ (0, 1), and 𝛽 ∈ (0, 1).

Then

𝑓 (x𝑘) − 𝑓 (x𝑘+1) ≥ 𝑀



∇𝑓 (x𝑘)


2

where

𝑀 =


𝑡

(
1 − 𝑡𝐿

2

)
constant stepsize,

1
2𝐿 exact line search,

𝛼 min
{
𝑠,

2(1−𝛼)𝛽
𝐿

}
backtracking.

We will now show the convergence of the norms of the gradients


∇𝑓 (

x𝑘
)

 to zero.

Theorem (Convergence of the Gradient Method). Let
{
x𝑘

}
𝑘≥0 be the sequence generated

by the gradient descent method for solving

min
x∈ℝ𝑛

𝑓 (x)

with one of the following stepsize strategies:

• constant stepsize 𝑡 ∈
(
0, 2

𝐿

)
,

• exact line search,

• backtracking procedure with parameters 𝑠 > 0 and 𝛼, 𝛽 ∈ (0, 1).

Assume that

• 𝑓 ∈ 𝐶1,1
𝐿
(𝑅𝑛).

• 𝑓 is bounded below over ℝ𝑛 , that is, there exists𝑚 ∈ ℝ such that 𝑓 (x) > 𝑚 for all
x ∈ ℝ𝑛 .

Then:

1. for any 𝑘, 𝑓
(
x𝑘+1

)
< 𝑓

(
x𝑘

)
unless ∇𝑓

(
x𝑘

)
= 0.

2. ∇𝑓
(
x𝑘

)
→ 0 as 𝑘 →∞.

Proof. (1) By the sufficient decrease of the gradient method (previous lemma) we have
that

𝑓 (x𝑘) − 𝑓 (x𝑘+1) ≥ 𝑀



∇𝑓 (x𝑘)


2

≥ 0

for some constant𝑀 > 0, and hence the equality 𝑓
(
x𝑘

)
= 𝑓

(
x𝑘+1

)
can hold only when

∇𝑓
(
x𝑘

)
= 0.

(2) Since the sequence
{
𝑓

(
x𝑘

)}
𝑘≥0 is nonincreasing and bounded below, it converges.

Thus, in particular 𝑓
(
x𝑘

)
− 𝑓

(
x𝑘+1

)
→ 0 as 𝑘 →∞, which combined with the sufficient

decrease of the gradient method implies that


∇𝑓 (

x𝑘
)

→ 0 as 𝑘 →∞. □
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Example. Implement our good old example

min𝑥2
1 + 2𝑥2

2

using gradient descent with backtracking and parameters x0 = (2, 1), 𝑠 = 2, 𝛼 = 0.25, 𝛽 =

0.5, and 𝜀 = 10−5. Using the code at the end of the document you should see that it
converges in only two iterations! However, if you try to solve

min 0.01𝑥2
1 + 𝑥2

2

with the same method and parameters, it will take about 200 iterations to reach the
optimum (0, 0). Can we detect key properties of the objective function that imply fast/slow
convergence? We will see that in the quadratic case, a fundamental characterization is
given by the condition number of the associated quadratic form.

The Condition Number

We recall the definition of condition number.

Definition (Condition Number). Let A be an 𝑛 × 𝑛 positive definite matrix. Then the
condition number of A is defined by

𝜅 (A) = 𝜆max(A)
𝜆min(A)

where 𝜆max(A) and 𝜆min(A) are the largest and smaller eigenvalues, respectively.

Matrices (or quadratic functions) with large condition number are called ill-conditioned.
Matrices with small condition number are called well-conditioned. Among other things,
the condition number gives an idea of the error amplification when working with the
matrix A. For an ill-conditioned matrix, small perturbations in the matrix entries can
lead to large errors when solving a linear system, or computing A−1. We continue with a
technical lemma.

Lemma (Kantorovich Inequality). Let A be a positive definite 𝑛 × 𝑛 matrix. Then for any
0 ≠ x ∈ ℝ𝑛 the inequality

(x⊤x)2
(x⊤Ax) (x⊤A−1x) ≥

4𝜆max(A)𝜆min(A)
(𝜆max(A) + 𝜆min(A))2

holds.

We are now in position to state a precise result regarding the minimization of quadratic
functions via gradient descent and its rate of convergence based on the condition number
of the matrix A.
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Theorem (Gradient Method for Minimizing x⊤Ax). Let
{
x𝑘

}
𝑘≥0 be the sequence generated

by the gradient method with exact line search for solving the problem

min
x∈ℝ𝑛

x⊤Ax (A ≻ 0) ,

Then for any 𝑘 = 0, 1, . . .

𝑓 (x𝑘+1) ≤
(
𝑀 −𝑚
𝑀 +𝑚

)2
𝑓 (x𝑘) ,

where𝑀 = 𝜆max(A), and𝑚 = 𝜆min(A).

Proof. The gradient descent iteration with exact line search for a quadratic function reads
x𝑘+1 = x𝑘 − 𝑡𝑘d𝑘 , where 𝑡𝑘 = (d𝑘 )⊤d𝑘

2(d𝑘 )⊤Ad𝑘
, and d𝑘 = 2Ax𝑘 .

Plugging in the expression for 𝑡𝑘

𝑓 (x𝑘+1) = (𝑥𝑘)⊤A𝑥𝑘 − 1
4

(
(d𝑘)⊤d𝑘

)2

(d𝑘)⊤Ad𝑘

= (x𝑘)⊤Ax𝑘
(
1 − 1

4

(
(d𝑘)⊤d𝑘

)2(
(d𝑘)⊤Ad𝑘

) (
(x𝑘)⊤AA−1Ax𝑘

) )
=

(
1 −

(
(d𝑘)⊤d𝑘

)2(
(d𝑘)⊤Ad𝑘

) (
(d𝑘)⊤A−1d𝑘

) ) 𝑓 (x𝑘) .
Finally, using Kantorovich’s Inequality:

𝑓 (x𝑘+1) ≤
(
1 − 4𝑀𝑚
(𝑀 +𝑚)2

)
𝑓 (x𝑘) =

(
𝑀 −𝑚
𝑀 +𝑚

)2
𝑓 (x𝑘) =

(
𝜅 (A) − 1
𝜅 (A) + 1

)2
𝑓 (x𝑘)

□

From the expression above, we deduce that large condition number implies a large number
of iterations of the gradient method. A small condition number (slightly greater than 1)
implies a small number of iterations of the gradient method. For a non-quadratic function,
the asymptotic rate of convergence of x𝑘 to a stationary point x∗ is usually determined
by the condition number of ∇2𝑓 (x∗).

Example A severely ill-conditioned function is the so called Rosenbrock function:

min
{
𝑓 (𝑥1, 𝑥2) = 100

(
𝑥2 − 𝑥2

1
)2 + (1 − 𝑥1)2

}
The optimal solution to this problem is easily found as (𝑥1, 𝑥2) = (1, 1), with optimal value
0. The gradient is given by

∇𝑓 (x) =
(
−400𝑥1

(
𝑥2 − 𝑥2

1
)
− 2 (1 − 𝑥1)

200
(
𝑥2 − 𝑥2

1
) )

,
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and the Hessian

∇2𝑓 (x) =
(
−400𝑥2 + 1200𝑥2

1 + 2 −400𝑥1
−400𝑥1 200

)
.

Evaluating the Hessian at the optimum we obtain

∇2𝑓 (1, 1) =
(

802 −400
−400 200

)
,

with a high condition number: 2508. Solving the Rosenbrock problem with gradient
descent and backtracking stepsize selection and parameters x0 = (2, 5), 𝑠 = 2, 𝛼 =

0.25, 𝛽 = 0.5, 𝜀 = 10−5, leads to 6890(!!) iterations. Figure 19 depicts the slow convergence
due to poor conditioning of the Hessian around the optimum.

Figure 19: Gradient descent with backtracking line search for the Rosenbrock problem.
Convergence towards the optimum (1, 1) is achieved after several thousands
iterations. The method is extremely slow due to poor conditioning of the
Hessian around the optimum.

Scaled Gradient Method

A way to mitigate the slow convergence due to poor conditioning of the Hessian is to
formulate a rescaled version of the problem. Consider the minimization problem

min {𝑓 (x) : x ∈ ℝ𝑛}
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For a given nonsingular matrix S ∈ ℝ𝑛×𝑛, we make the linear change of variables x = Sy,
and obtain the equivalent problem

min {𝑔(y) ≡ 𝑓 (Sy) : y ∈ ℝ𝑛} .

Since ∇𝑔(y) = S⊤∇𝑓 (Sy) = S⊤∇𝑓 (x), the gradient method for the rescaled problem
reads

y𝑘+1 = y𝑘 − 𝑡𝑘S⊤∇𝑓 (Sy𝑘) .

Multiplying the latter equality by S from the left, and using the notation x𝑘 = Sy𝑘

x𝑘+1 = x𝑘 − 𝑡𝑘 SS⊤ ∇𝑓 (x𝑘)

Defining D = SS⊤, we obtain the scaled gradient method:

x𝑘+1 = x𝑘 − 𝑡𝑘D∇𝑓 (x𝑘) .

Note that D ≻ 0, so the direction −D∇𝑓
(
x𝑘

)
is a descent direction:

𝑓 ′(x𝑘 ;−D∇𝑓 (x𝑘)) = −∇𝑓 (x𝑘)⊤D∇𝑓 (x𝑘) < 0 .

We also allow different scaling matrices at each iteration.

Algorithm 3: Scaled Gradient Method
Initialization: A tolerance parameter 𝜀 > 0 and x0 ∈ ℝ𝑛 .
General Step: for any 𝑘 = 0, 1, 2, . . . execute the following steps:

1 Pick a scaling matrix D𝑘 ≻ 0
2 Pick a stepsize 𝑡𝑘 by a line search procedure on the function

𝑔(𝑡) = 𝑓
(
x𝑘 − 𝑡D𝑘∇𝑓

(
x𝑘

))
3 Set x𝑘+1 = x𝑘 − 𝑡𝑘D𝑘∇𝑓

(
x𝑘

)
.

4 If


∇𝑓 (

x𝑘+1
)

 ≤ 𝜀, then STOP and x𝑘+1 is the output.

Choosing the Scaling Matrix D𝑘 . The scaled gradient method with scaling matrix D
is equivalent to the gradient method employed on the function 𝑔(y) = 𝑓

(
D1/2y

)
, where

D1/2 is a matrix such that D1/2D1/2 = D. Note that the gradient and Hessian of 𝑔 are given
by

∇𝑔(y) = D1/2𝑓
(
D1/2y

)
= D1/2∇𝑓 (x)

∇2𝑔(y) = D1/2∇2𝑓
(
D1/2y

)
D1/2 = D1/2∇2𝑓 (x)D1/2
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The objective is usually to pickD𝑘 so as tomake (D𝑘)1/2∇2𝑓
(
x𝑘

)
(D𝑘)1/2 aswell-conditioned

as possible. A well known choice (Newton’s method) is to pick D𝑘 =
(
∇2𝑓

(
x𝑘

) )−1. An-
other alternative is to use a diagonal scaling: D𝑘 is picked to be diagonal. For example,(

D𝑘
)
𝑖𝑖
=

(
𝜕2𝑓

(
x𝑘

)
𝜕𝑥2
𝑖

)−1

Using diagonal scaling can be very effective when the decision variables are of different
magnitudes.

Example Revisit the Rosenbrock example (p. 12) using a suitable scaling.
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1 function [hist,x,fun_val]=gradient_method_quadratic(A,b,x0,epsilon);

2 % INPUT

3 % ======================

4 % A ....... the positive definite matrix associated with the ...

objective function

5 % b ....... a column vector associated with the linear part of ...

the objective function

6 % x0 ...... starting point of the method

7 % epsilon . tolerance parameter

8 % OUTPUT

9 % =======================

10 % hist.....convergence history of the iterations

11 % x ....... an optimal solution (up to a tolerance) of ...

min(x^{\top} A x+2 b^{\top} x)

12 % fun_val . the optimal function value up to a tolerance

13

14

15 x=x0;

16 iter=0;

17 grad=2*(A*x+b);

18 hist=x0;

19 while (norm(grad)>epsilon)

20 iter=iter+1;

21 t=norm(grad)^2/(2*grad'*A*grad);

22 x=x-t*grad;

23 grad=2*(A*x+b);

24 fun_val=x'*A*x+2*b'*x;

25 hist=[hist x];

26 fprintf('iter_number = %3d norm_grad = %2.6f fun_val = %2.6f ...

\n',iter,norm(grad),fun_val);

27 end
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1 function [hist,x,fun_val]=gradient_method_constant(f,g,x0,t,epsilon)

2 % Gradient method with constant stepsize

3 %

4 % INPUT

5 %=======================================

6 % f ......... objective function

7 % g ......... gradient of the objective function

8 % x0......... initial point

9 % t ......... constant stepsize

10 % epsilon ... tolerance parameter

11 % OUTPUT

12 %=======================================

13 % x ......... optimsl solution (up to a tolerance)

14 % of min f(x)

15 % fun_val ... optimal function value

16 x=x0;

17 grad=g(x);

18 iter=0;

19 hist=x0;

20 while (norm(grad)>epsilon)

21 iter=iter+1;

22 x=x-t*grad;

23 fun_val=f(x);

24 grad=g(x);

25 hist=[hist x];

26 fprintf('iter_number = %3d norm_grad = %2.6f fun_val = %2.6f ...

\n',iter,norm(grad),fun_val);

27 end
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1 function ...

[x,fun_val]=gradient_method_backtracking(f,g,x0,s,alpha,beta,epsilon)

2 % Gradient method with backtracking stepsize rule

3 %

4 % INPUT

5 %=======================================

6 % f ......... objective function

7 % g ......... gradient of the objective function

8 % x0......... initial point

9 % s ......... initial choice of stepsize

10 % alpha ..... tolerance parameter for the stepsize selection

11 % beta ...... the constant in which the stepsize is multiplied

12 % at each backtracking step (0<beta<1)

13 % epsilon ... tolerance parameter for stopping rule

14 % OUTPUT

15 %=======================================

16 % x ......... optimal solution (up to a tolerance)

17 % of min f(x)

18 % fun_val ... optimal function value

19 x=x0;

20 grad=g(x);

21 fun_val=f(x);

22 iter=0;

23 while (norm(grad)>epsilon)

24 iter=iter+1;

25 t=s;

26 while (fun_val-f(x-t*grad)<alpha*t*norm(grad)^2)

27 t=beta*t;

28 end

29 x=x-t*grad;

30 fun_val=f(x);

31 grad=g(x);

32 fprintf('iter_number = %3d norm_grad = %2.6f fun_val = %2.6f ...

\n',iter,norm(grad),fun_val);

33 end

The Gauss-Newton Method

We use the gradient method from last week to build an algorithm for solving nonlinear
least squares problem of the type:

(NLS): min
x∈ℝ𝑛

{
𝑔(x) ≡

𝑚∑︁
𝑖=1
(𝑓𝑖 (x) − 𝑐𝑖)2

}
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𝑓1, . . . , 𝑓𝑚 are continuously differentiable over ℝ𝑛 and 𝑐1, . . . , 𝑐𝑚 ∈ ℝ.

Denote:

𝐹 (x) =
©­­­­«
𝑓1(x) − 𝑐1
𝑓2(x) − 𝑐2

...

𝑓𝑚 (x) − 𝑐𝑚

ª®®®®¬
Then the problem becomes:

min
x∈ℝ𝑛
∥𝐹 (x)∥2

Figure 20: Sir Isaac Newton (1642–1727) the protagonist of this week, needs no introduc-
tion. On the left, he discovers Pink Floyd’s “The Dark Side of the Moon” album.
On the right, a recreation of a little domestic incident involving fire and his
notes on Optics.

The Gauss-Newton method is an algorithm for solving this particular problem, and it
reads as follows. Given the 𝑘 th iterate x𝑘 , the next iterate is chosen to minimize the sum
of squares of the linearized terms, that is,

x𝑘+1 = argmin
x∈ℝ𝑛

{
𝑚∑︁
𝑖=1

[
𝑓𝑖 (x𝑘) + ∇𝑓𝑖 (x𝑘)⊤(x − x𝑘) − 𝑐𝑖

]2
}

The general step actually consists of solving the linear LS problem

min



A𝑘x − b𝑘


2

where

A𝑘 =
©­­­­«
∇𝑓1

(
x𝑘

)⊤
∇𝑓2

(
x𝑘

)⊤
...

∇𝑓𝑚
(
x𝑘

)⊤
ª®®®®¬
= 𝐽 (x𝑘) ,
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is the Jacobian matrix, assumed to have full column rank, and

b𝑘 =
©­­­­«
∇𝑓1

(
x𝑘

)⊤ x𝑘 − 𝑓1 (
x𝑘

)
+ 𝑐1

∇𝑓2
(
x𝑘

)⊤ x𝑘 − 𝑓2 (
x𝑘

)
+ 𝑐2

...

∇𝑓𝑚
(
x𝑘

)⊤ x𝑘 − 𝑓𝑚 (
x𝑘

)
+ 𝑐𝑚

ª®®®®¬
= 𝐽 (x𝑘)x𝑘 − 𝐹 (x𝑘) .

The Gauss-Newton method can thus be written as:

x𝑘+1 =
(
𝐽 (x𝑘)⊤𝐽 (x𝑘)

)−1
𝐽 (x𝑘)⊤b𝑘 .

Note that the gradient of the objective function 𝑔(x) = ∥𝐹 (x)∥2 is

∇𝑔(x) = 2𝐽 (x)⊤𝐹 (x) .

The Gauss-Newton method can be rewritten as follows:

x𝑘+1 =
(
𝐽 (x𝑘)⊤𝐽 (x𝑘)

)−1
𝐽 (x𝑘)⊤

(
𝐽 (x𝑘)x𝑘 − 𝐹 (x𝑘)

)
= x𝑘 −

(
𝐽 (x𝑘)⊤𝐽 (x𝑘)

)−1
𝐽 (x𝑘)⊤𝐹 (x𝑘)

= x𝑘 − 1
2

(
𝐽 (x𝑘)⊤𝐽 (x𝑘)

)−1
∇𝑔(x𝑘)

that is, it is a scaled gradient method with a special choice of scaling matrix:

D𝑘 =
1
2

(
𝐽 (x𝑘)⊤𝐽 (x𝑘)

)−1
.

The Damped Gauss-Newton Method

The Gauss-Newton method does not incorporate a stepsize, which might cause it to
diverge. A well known variation of the method incorporating stepsizes is the damped
Gauss-Newton method.

Algorithm 4: The Damped Gauss-Newton Method
Initialization: A tolerance parameter 𝜀 > 0 and x0 ∈ ℝ𝑛 .
General Step: for any 𝑘 = 0, 1, 2, . . . execute the following steps:

1 Set d𝑘 = −
(
𝐽
(
x𝑘

)⊤
𝐽
(
x𝑘

) )−1
𝐽
(
x𝑘

)⊤ F
(
x𝑘

)
.

2 Set 𝑡𝑘 by a line search procedure on the function

ℎ(𝑡) = 𝑔(x𝑘 + 𝑡d𝑘) .

3 Set x𝑘+1 = x𝑘 + 𝑡𝑘d𝑘 .
4 If



∇𝑔 (
x𝑘+1

)

 ≤ 𝜀, then STOP and x𝑘+1 is the output.
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An Example of a Gradient Method: The Fermat-Weber
Problem and Weiszfeld’s Method

The Fermat-Weber problem is stated as follows. Given𝑚 points in ℝ𝑛 : a1, . . . , a𝑚 , also
called anchor points, and𝑚 weights𝜔1, 𝜔2, . . . , 𝜔𝑚 > 0, find a point x ∈ ℝ𝑛 that minimizes
the weighted distance of x to each of the points 𝜔1, 𝜔2, . . . , 𝜔𝑚 > 0, that is

min
x∈ℝ𝑛

{
𝑓 (x) ≡

𝑚∑︁
𝑖=1

𝜔𝑖 ∥x − a𝑖 ∥
}

Note that the objective function is not differentiable at the anchor points a1, . . . , a𝑚
(why?).

In terms of applications, this is one of the simplest instances of facility location problems.
In 1937, with only 16 years old, the Hungarian mathematician Endre Weiszfeld proposed
a method for solving this problem, unsurprisingly known asWeiszfeld’s Method. Under
the assumption that the optimum x is not an anchor point, we write the stationarity
condition

∇𝑓 (x) = 0 ,
𝑚∑︁
𝑖=1

𝜔𝑖
x − a𝑖
∥x − a𝑖 ∥

= 0 ,(
𝑚∑︁
𝑖=1

𝜔𝑖

∥x − a𝑖 ∥

)
x =

𝑚∑︁
𝑖=1

𝜔𝑖a𝑖
∥x − a𝑖 ∥

.

The stationarity condition can be written as a fixed point x = 𝑇 (x), where 𝑇 is the
operator

𝑇 (x) ≡ 1∑𝑚
𝑖=1

𝜔𝑖

∥x−a𝑖 ∥

𝑚∑︁
𝑖=1

𝜔𝑖a𝑖
∥x − a𝑖 ∥

.

Weiszfeld’s method is the fixed point iteration:

x𝑘+1 = 𝑇 (x𝑘) ,

which can be interpreted as a gradient method since

x𝑘+1 =
1∑𝑚

𝑖=1
𝜔𝑖

∥x𝑘−a𝑖 ∥

𝑚∑︁
𝑖=1

𝜔𝑖a𝑖

x𝑘 − a𝑖


= x𝑘 − 1∑𝑚

𝑖=1
1

∥x𝑘−a𝑖 ∥

𝑚∑︁
𝑖=1

𝜔𝑖
x𝑘 − a𝑖

x𝑘 − a𝑖



= x𝑘 − 1∑𝑚
𝑖=1

𝜔𝑖

∥x𝑘−a𝑖 ∥
∇𝑓 (x𝑘) .
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Therefore, it corresponds to a gradient method with a special choice of stepsize:

𝑡𝑘 =
1∑𝑚

𝑖=1
𝜔𝑖

∥x𝑘−a𝑖 ∥

Newton’s Method (Un-assessed)

We now discuss a different class of algorithms for solving the problem

min {𝑓 (x) : x ∈ ℝ𝑛} .

Assuming that 𝑓 is twice continuously differentiable over ℝ𝑛 , looking for the optimum
begins with the search of a stationary point x∗ such that ∇𝑓 (x∗) = 0. This can be framed
as finding a root (zero) for 𝑔(x) ≡ ∇𝑓 (x). A classical algorithm for finding the zeros of a
function is Newton’s method. For 𝑔 : ℝ→ ℝ it reads

x𝑘+1 = x𝑘 − 𝑔(x
𝑘)

𝑔′(x𝑘)
.

We will utilise this idea for minimizing a function in several variables. In particular, going
back to 𝑓 (x) and assuming it is twice continuously differentiable over ℝ𝑛 , we generate a
sequence {x𝑘}∞

𝑘=1 converging to a stationary point of 𝑓 (x) through the iteration

x𝑘+1 = argmin
x∈ℝ𝑛

{
𝑓 (x𝑘) + ∇𝑓 (x𝑘)⊤(x − x𝑘) + 1

2 (x − x
𝑘)⊤∇2𝑓 (x𝑘) (x − x𝑘)

}
.

This expression is interpreted as follows. Given a current value x𝑘 , we built a quadratic
approximation of 𝑓 (x) around x𝑘 (recall the quadratic approximation theorem), and find
the minimizer of this parabolic approximation. In the case the minimizer exists, this
is the next point of our sequence x𝑘+1, where we move and repeat. This minimization
problem not well-defined in general. However, if the Hessian is positive definite at x𝑘 ,
∇2𝑓

(
x𝑘

)
≻ 0, then the update reads

x𝑘+1 = x𝑘 − (∇2𝑓 (x𝑘))−1∇𝑓 (x𝑘)

The vector
−(∇2𝑓 (x𝑘))−1∇𝑓 (x𝑘)

is called Newton’s direction. This algorithm is called Pure Newton’s Method and it is
summarized below.

Algorithm 5: Pure Newton’s Method
Initialization: A tolerance parameter 𝜀 > 0 and x0 ∈ ℝ𝑛 .
General Step: for any 𝑘 = 0, 1, 2, . . . execute the following steps:

1 Compute the Newton direction d𝑘 , which is the solution to the linear system

∇2𝑓 (x𝑘)d𝑘 = −∇𝑓 (x𝑘) .

2 Set x𝑘+1 = x𝑘 + d𝑘 .
3 if



∇𝑓 (
x𝑘+1

)

 ≤ 𝜀, then STOP and x𝑘+1 is the output.

64



Convergence of Newton’s Method

At the very least, Newton’s method requires that ∇2𝑓 (x) ≻ 0 for every x ∈ ℝ𝑛, which
in particular implies that there exists a unique optimal solution x∗. However, this is not
enough to guarantee convergence.

Example. Analyse what happens when 𝑓 (𝑥) =
√

1 + 𝑥2.

A lot of assumptions are required to be made in order to guarantee convergence of the
method. However, Newton’s method does have one very attractive feature. Under certain
assumptions one can prove local quadratic rate of convergence, which means that near
the optimal solution the errors 𝑒𝑘 =



x𝑘 − x∗

 satisfy an inequality 𝑒𝑘+1 ≤ 𝑀 (𝑒𝑘)2 for
some positive𝑀 > 0. This property essentially means that the number of accuracy digits
is doubled at each iteration. This is in contrast to the gradient method in which the
convergence theorems are rather independent in the starting point, but only "relatively"
slow linear convergence is assured.

Theorem (Quadratic Local Convergence of Newton’s Method). Let 𝑓 be a twice continu-
ously differentiable function defined over ℝ𝑛 . Assume that

• there exists𝑚 > 0 for which ∇2𝑓 (x) ⪰ 𝑚I, for any x ∈ ℝ𝑛 ,

• there exists 𝐿 > 0 for which


∇2𝑓 (x) − ∇2𝑓 (y)



 ≤ 𝐿∥x − y∥ for any x, y ∈ ℝ𝑛 .

Let
{
x𝑘

}
𝑘≥0 be the sequence generated by Newton’s method and let x∗ be the unique mini-

mizer of 𝑓 over ℝ𝑛 . Then for any 𝑘 = 0, 1, . . . the inequality


x𝑘+1 − x∗


 ≤ 𝐿

2𝑚




x𝑘 − x∗


2

holds. In addition, if


x0 − x∗



 ≤ 𝑚
𝐿
, then:


x𝑘 − x∗


 ≤ 2𝑚

𝐿

(
1
4

)2𝑘

, 𝑘 = 0, 1, 2, . . .

Proof. We prove the first part of the result. Let 𝑘 be a nonnegative integer. Then

x𝑘+1 − x∗ =x𝑘 − (∇2𝑓 (x𝑘))−1∇𝑓 (x𝑘) − x∗

=x𝑘 − x∗ + (∇2𝑓 (x𝑘))−1(∇𝑓 (x∗) − ∇𝑓 (x𝑘))

=x𝑘 − x∗ + (∇2𝑓 (x𝑘))−1
∫ 1

0

[
∇2𝑓 (x𝑘 + 𝑡 (x∗ − x𝑘))

]
(x∗ − x𝑘)𝑑𝑡

=(∇2𝑓 (x𝑘))−1
∫ 1

0

[
∇2𝑓 (x𝑘 + 𝑡 (x∗ − x𝑘)) − ∇2𝑓 (x𝑘)

]
(x∗ − x𝑘)𝑑𝑡

Combining the latter equality with the fact that ∇2𝑓 (x𝑘) ⪰ 𝑚I, implies that


(∇2𝑓 (x𝑘))−1



 ≤ 1

𝑚
,
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Hence,


x𝑘+1 − x∗


 ≤ 


(∇2𝑓 (x𝑘))−1



 



∫ 1

0

[
∇2𝑓 (x𝑘 + 𝑡 (x∗ − x𝑘)) − ∇2𝑓 (x𝑘)

]
(x∗ − x𝑘)𝑑𝑡






≤




(∇2𝑓 (x𝑘))−1



 ∫ 1

0




[∇2𝑓 (x𝑘 + 𝑡 (x∗ − x𝑘)) − ∇2𝑓 (x𝑘)
]
(x∗ − x𝑘)




𝑑𝑡
≤




(∇2𝑓 (x𝑘))−1



 ∫ 1

0




∇2𝑓 (x𝑘 + 𝑡 (x∗ − x𝑘)) − ∇2𝑓 (x𝑘)



 · 


x∗ − x𝑘


𝑑𝑡

≤ 𝐿

𝑚

∫ 1

0
𝑡




x𝑘 − x∗


2
𝑑𝑡 =

𝐿

2𝑚




x𝑘 − x∗


2
.

The second part of the theorem can be shown by induction (try it!). □

Numerical Example. Consider the minimization problem

min 100𝑥4 + 0.01𝑦4 .

Compare Newton’s method against a gradient descent with backtracking. Repeat for

min
√︃
𝑥2

1 + 1 +
√︃
𝑥2

2 + 1 .

Note that ins this case, the Hessian of the function is

∇2𝑓 (x) = ©­«
1

(𝑥2
1 +1)3/2

0

0 1
(𝑥2

2+1)3/2
ª®¬ ≻ 0

but there does not exists an 𝑚 > 0 for which ∇2𝑓 (𝑥) ⪰ 𝑚I. In this case using pure’s
Newton method will diverge. An alternative is to use a damped version of Newton’s
method, using backtracking, as follows.

Algorithm 6: Damped Newton’s Method
Initialization: A tolerance parameter 𝜀 > 0 and x0 ∈ ℝ𝑛 . (𝛼, 𝛽) parameters for

the backtracking procedure (𝛼 ∈ (0, 1), 𝛽 ∈ (0, 1)).
General Step: for any 𝑘 = 0, 1, 2, . . . execute the following steps:

1 Compute the Newton direction d𝑘 , which is the solution to the linear system

∇2𝑓 (x𝑘)d𝑘 = −∇𝑓 (x𝑘).

2 Set 𝑡𝑘 = 1. while
(
𝑓

(
x𝑘

)
− 𝑓

(
x𝑘 + 𝑡𝑘d𝑘

)
< −𝛼𝑡𝑘∇𝑓

(
x𝑘

)⊤ d𝑘 ) do
3 set 𝑡𝑘 := 𝛽𝑡𝑘 .
4 Set x𝑘+1 = x𝑘 + 𝑡𝑘d𝑘 .
5 If



∇𝑓 (
x𝑘+1

)

 ≤ 𝜀, then STOP and x𝑘+1 is the output.

Repeat the last numerical example using dampedNewton’smethod starting from (10, 10).
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1 function x=pure_newton(f,g,h,x0,epsilon)

2 % Pure Newton's method

3 %

4 % INPUT

5 % ==============

6 % f .......... objective function.

7 % g .......... gradient of the objective function

8 % h .......... Hessian of the function

9 % x0........... initial point

10 % epsilon ..... tolerance

11 % OUTPUT

12 % ==============

13 % x - solution obtained by Newton's method (up to some tolerance)

14

15 if (nargin<5)

16 epsilon=1e-5;

17 end

18

19 x=x0;

20 gval=g(x);

21 hval=h(x);

22 iter=0;

23 while ((norm(gval)>epsilon)&&(iter<10000))

24 iter=iter+1;

25 x=x-hval\gval;

26 fprintf('iter= %2d f(x)=%10.10f\n',iter,f(x))

27 gval=g(x);

28 hval=h(x);

29 end

30

31 if (iter==10000)

32 fprintf('did not converge')

33 end
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1 function x=newton_backtracking(f,g,h,x0,alpha,beta,epsilon)

2 % Newton's method with backtracking

3 %

4 % INPUT

5 %=======================================

6 % f ......... objective function

7 % g ......... gradient of the objective function

8 % h ......... hessian of the objective function

9 % x0......... initial point

10 % alpha ..... tolerance parameter for the stepsize selection strategy

11 % beta ...... the proportion in which the stepsize is multiplied

12 % at each backtracking step (0<beta<1)

13 % epsilon ... tolerance parameter for stopping rule

14 % OUTPUT

15 %=======================================

16 % x ......... optimal solution (up to a tolerance)

17 % of min f(x)

18 % fun_val ... optimal function value

19

20 x=x0;

21 gval=g(x);

22 hval=h(x);

23 d=hval\gval;

24 iter=0;

25 while ((norm(gval)>epsilon)&&(iter<10000))

26 iter=iter+1;

27 t=1;

28 while(f(x-t*d)>f(x)-alpha*t*gval'*d)

29 t=beta*t;

30 end

31 x=x-t*d;

32 fprintf('iter= %2d f(x)=%10.10f\n',iter,f(x))

33 gval=g(x);

34 hval=h(x);

35 d=hval\gval;

36 end

37

38 if (iter==10000)

39 fprintf('did not converge\n')

40 end
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Part V.
Stochastic Gradient Descent

The Kaczmarz Algorithm

We begin our discussion by studying a classical algorithm proposed by the Polish math-
ematician Stefan Kaczmarz in 1937, and which was later re-discovered in the 1970s in
image processing. This technique was implemented in the very first medical scanners.
The Kaczmarz algorithm solves the linear system

Ax = b

by iterating projections along the 𝑖 − 𝑡ℎ for of the matrix A, denoted by a⊤𝑖 :

x𝑘+1 = x𝑘 +
𝑏𝑖 − a⊤𝑖 x𝑘

∥a𝑖 ∥2
a𝑖 . (Kaczmarz)

Note that this algorithm does not require to compute A−1! In the original Kaczmarz
algorithm, the 𝑖−th row that is chosen at the 𝑘−th iteration of the algorithm is cycled
periodically through all the rows of the matrix A, i.e.

𝑖 = mod (𝑘,𝑚) + 1 ,

where𝑚 is the number of rows of A. Provided that the system is consistent, that is, there
exists at least one solution of the system, the iteration x𝑘 converges to the minimum
norm solution of the problem, assuming that x0 = 0. The convergence analysis of this
algorithm remained an open problem until probabilistic methods were introduced by
2009. Nowadays, we can show that the Kaczmarz algorithm converges exponential (and
independently of the number of rows) if at the 𝑘−th iteration, the 𝑖−th row is chosen
randomly. This algorithm is known as Randomized Kaczmarz Algorithm. We can sample
uniformly among the rows, or with a probability that is proportional to the squared row
norm ∥a𝑖 ∥2, known as importance sampling. Figure 214 shows a comparison between
cycling (standard Kaczmarz), uniform (simple randomized Kaczmarz), and importance
sampling (randomized Kaczmarz) among the rows of a 300 by 100 linear system. The
plot shows the evolution of the least squares error, ∥Ax𝑘 − b∥, against the number of
iterations (projections) for each algorithm. For every variant of the Kaczmarz algorithm,
the method converges to the solution of Ax = b, however the method converges faster if
a randomized row selection is selected instead of a deterministic cycling. For large-scale
systems, avoiding the inversion of A is desirable, so this method can be applied in this
case. We recall that solving the linear system Ax = b can be cast as the optimization

4 Taken from Strohmer, Thomas; Vershynin, Roman (2009), "A randomized Kaczmarz algorithm for linear
systems with exponential convergence", Journal of Fourier Analysis and Applications, 15 (2): 262–278,
arXiv:math/0702226
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Figure 21: Iteration of the Kaczmarz algorithm for a 300 by 100 linear system of equations,
under three different sampling procedures for the rows of A.

problem

min
x

1
2𝑚 ∥Ax − b∥

2
2 =

1
2𝑚

𝑚∑︁
𝑖=1
(a⊤𝑖 x − 𝑏𝑖)2 ,

for which a gradient descent method can be constructed as

x𝑘+1 = x𝑘 − 𝑡

𝑚
A⊤(Ax − b) ,

and comparing against (Kaczmarz) we can interpret it as a gradient descent where at
each iteration, instead of computing the full gradient of

1
2𝑚

𝑚∑︁
𝑖=1
(a⊤𝑖 x − 𝑏𝑖)2 ,

we sample a single element of the cost and work with the gradient of

1
2𝑚 (a

⊤
𝑖 x − 𝑏𝑖)2 .

Note that in the case of a uniform sampling among the rows, we can write

1
2𝑚

𝑚∑︁
𝑖=1
(a⊤𝑖 x − 𝑏𝑖)2 =

1
2𝔼𝑖 [(a

⊤
𝑖 x − 𝑏𝑖)2] ,
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where the expected value is among a uniform distribution when choosing the vector
[a⊤𝑖 |b𝑖] uniformly from the rows of the augmented matrix [A |b]. The generalization of
this idea for nonlinear regression problems is what we will discuss in the next section as
stochastic gradient descent.

Stochastic Gradient Descent

Stochastic Gradient Descent (SGD) is a fundamental algorithm in machine learning. It is
naturally meant for solving nonlinear regression/estimation problems where the cost is
of the type

min
x

1
𝑚

𝑚∑︁
𝑖=1

𝑄𝑖 (x) . (3)

A natural setting for such an optimization framework arises in nonlinear regression
problems.

Nonlinear regression example. Consider the nonlinear model in 𝜃 ∈ ℝ

𝑓 (𝜃 ; x) = 𝑥1𝑒
𝑥2𝜃 cos(𝑥3𝜃 + 𝑥4) ,

with parameters x ∈ ℝ4 for which we want to find the optimal value x∗ minimizing the
norm of the ℓ2-error with respect to𝑚 observations of the true model

𝑓𝑖 := 𝑓 (𝜃𝑖) , 𝑖 = 1, . . . ,𝑚 .

We formulate this problem as a nonlinear least squares problem

min
x
𝑔(x) := 1

𝑚

𝑚∑︁
𝑖=1
(𝑓 (𝜃𝑖 ; x) − 𝑓𝑖)2 . (NLS)

Note that the 1
𝑚
scaling does not affect the minimizer. Setting

𝑄𝑖 (x) = (𝑓 (𝜃𝑖 ; x) − 𝑓𝑖)2

we can see how nonlinear regression problems lead to costs or loss functions similar to
eq. (3). In general, while setting a gradient descent iteration for this problem

x𝑘+1 = x𝑘 − 𝑡𝑘∇𝑔(x𝑘) = x𝑘 − 𝑡
𝑘

𝑚

𝑚∑︁
𝑖=1
∇𝑄𝑖 (x𝑘)

is straightforward (following exactly what we discussed in the previous week), when
the number of observations𝑚 is large5, and the parameter space is high-dimensional
(x ∈ ℝ𝑛, 𝑛 >>> 1), the computation of

∑𝑚
𝑖=1 ∇𝑄𝑖 (x𝑘) is overwhelmingly expensive. In the

5 as in a big data framework -think about image datasets, Spotify songs-
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spirit of the Kaczmarz algorithm, stochastic gradient descent circumvents this limitation.
Stochastic Gradient Descent dates back to 1951 to the paper by Robbins and Munro “A
stochastic approximation method”, and instead of computing the gradient with all𝑚 points,
only a single data point is randomly selected and used. At the next iteration, another
randomly selected point is used to compute the gradient and update the solution

x𝑘+1 = x𝑘 − 𝑡𝑘∇𝑄𝑖 (x𝑘) ,

where the index 𝑖 is sampled in each gradient iteration. In machine learning applications,
the parameter 𝑡𝑘 is known as the learning rate. Note that if the samples are drawn
uniformly, then

𝑔(x) := 1
𝑚

𝑚∑︁
𝑖=1

𝑄𝑖 (x) = 𝔼𝑖 [𝑄𝑖 (x)] .

and that a random sample constitutes and unbiased estimator of ∇𝑔(x). The convergence
of SGD is stated in the following theorem.

Theorem (Convergence of SGD). Assume:

• The cost 𝑔(x) is such that

∥∇𝑔(x) − ∇𝑔(y)∥ ≤ 𝐿∥x − y∥ , and ∇2𝑔(x) ⪰ 𝜇I .

• The sample gradient ∇𝑄𝑖 (x𝑘) is an unbiased estimate of ∇𝑔(x𝑘).

• For all x,
𝔼𝑖 [∥𝑄𝑖 (x)∥2] ≤ 𝜎2 + 𝑐 ∥∇𝑔(x)∥2 .

Then, if 𝑡𝑘 ≡ 𝑡 ≤ 1
𝐿𝑐
, then SGD achieves

𝔼[𝑔(x𝑘) − 𝑔(x∗)] ≤ 𝑡𝐿𝜎
2

2𝜇 + (1 − 𝑡𝜇)
𝑘 (𝑔(x0) − 𝑔(x∗)) .

The result above implies:

1. Fast (linear) convergence during the first iterations.

2. Convergence to a neighbourhood of x∗, without further progress.

3. If gradient computation is noiseless, that is 𝜎 = 0, then linear convergence to
optimal points.

4. A smaller stepsize 𝑡 yield better converging points.

The algorithm may require multiple passes through all the data to converge, but each
step is now easy to evaluate versus the full computation of the gradient. If instead of
a single point, a different subset of points is sampled at each iteration, then we have a
batch gradient descent algorithm:

x𝑘+1 = x𝑘 − 𝑡𝑘∇𝑔(x𝑘) = x𝑘 − 𝑡𝑘

|𝐾 |
∑︁
𝑖∈𝐾
∇𝑄𝑖 (x𝑘) ,

where 𝐾 denotes a set of 𝑝 randomly selected datapoints.
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Revisiting the Nonlinear Regression Example

If we go back to the model

𝑓 (𝜃 ; x) = 𝑥1𝑒
𝑥2𝜃 cos(𝑥3𝜃 + 𝑥4) ,

during week 5 we explored the Gauss-Newton method for nonlinear regression. We shall
modify this setting and implement SGD. Results shown in Figure 22 show the different
behaviours observed for different learning rates. Notice the large number of iterations
required.

Model:

1 function [val]=model(t,x)

2 val= x(1).*exp(x(2).*t).*cos(x(3).*t+x(4)); %%model

Gradient of the model with respect to x:

1 function [val]=modelgrad(t,x)

2 val(1,1)=exp(x(2).*t).*cos(x(3).*t+x(4));

3 val(2,1)=x(1).*exp(x(2).*t).*t.*cos(x(3).*t+x(4));

4 val(3,1)=-x(1).*exp(x(2).*t).*sin(x(3).*t+x(4)).*t;

5 val(4,1)=-x(1).*exp(x(2).*t).*sin(x(3).*t+x(4));

Cost function:

1 function [val]=g1(x,tm,fn)

2 m=length(tm);

3 val=norm(model(tm,x)-fn)^2/m;

Gradient of the cost function:

1 function[val]=gradg1(x,tm,fn)

2 m=length(tm);

3 ind=randi([1 m]); %% sampling among the dataset

4 val=2*(model(tm(ind),x)-fn(ind))*modelgrad(tm(ind),x);

Main:

1 clear all

2

3 xt=[1;2;pi;0]; %% true parameters

4 tm=[-1:0.001:1]'; %% measurements of the independent variable
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5 randn('seed',666);

6 ft=model(tm,xt);%% true model measurements

7 m=length(tm);

8 maxiter=10^4;

9 x0=[1;1;1;1];

10 xm=x0;

11 t=0.01; %% learning rate

12 hist=[g1(xm,tm,fn)];

13 for i=1:maxiter

14 xp=xm-t*gradg1(xm,tm,ft); %%the random sampling is inside gradg1

15 hist=[hist g1(xp,tm,ft)];

16 xm=xp;

17 end

Figure 22: Convergence of the SGD iteration for different learning rates.
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Part VI.
Convex Sets and Functions

Convex Sets

We begin discussing convexity by defining what a convex set is.

Definition (Convex Set). A set 𝐶 ⊆ ℝ𝑛 is called convex if for any x, y ∈ 𝐶 and 𝜆 ∈ [0, 1]
the point 𝜆x + (1 − 𝜆)y belongs to 𝐶 .

In other words, the above definition is equivalent to saying that for any x, y ∈ 𝐶 , the line
segment [x, y] is also in 𝐶 .

Figure 23: Examples of convex and nonconvex sets.

Very Important Convex Sets

• A line in ℝ𝑛 is a set of the form

𝐿 = {z + 𝑡d : 𝑡 ∈ ℝ} .

where z, d ∈ ℝ𝑛 and d ≠ 0.

• [x, y], (x, y) for x, y ∈ ℝ𝑛 (x ≠ y), ∅, and ℝ𝑛 .

• A hyperplane is a set of the form

𝐻 =
{
x ∈ ℝ𝑛 : a⊤x = 𝑏

}
(a ∈ ℝ𝑛\{0}, 𝑏 ∈ ℝ) .

• The associated half-space is the set

𝐻− =
{
x ∈ ℝ𝑛 : a⊤x ≤ 𝑏

}
.

Both hyperplanes and half-spaces are convex sets.
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• The open ball

𝐵(c, 𝑟 ) = {x ∈ ℝ𝑛 : ∥x − c∥ < 𝑟 } ,

and the closed ball

𝐵 [c, 𝑟 ] = {x ∈ ℝ𝑛 : ∥x − c∥ ≤ 𝑟 } ,

are convex. Note that the norm is an arbitrary norm defined over ℝ𝑛 .

Figure 24: Different unit balls ∥x∥𝑝 ≤ 1 in ℝ2.

A relevant result in optimization is the convexity of ellipsoids. An ellipsoid is a set of the
form

𝐸 =
{
x ∈ ℝ𝑛 : x⊤Qx + 2b⊤x + 𝑐 ≤ 0

}
,

where Q ∈ ℝ𝑛×𝑛 is positive semidefinite, b ∈ ℝ𝑛 and 𝑐 ∈ ℝ.

Lemma. 𝐸 is convex.

Proof. Write 𝐸 as 𝐸 = {x ∈ ℝ𝑛 : 𝑓 (x) ≤ 0} where 𝑓 (x) ≡ x⊤Qx + 2b⊤x + 𝑐 . Then, take
x, y ∈ 𝐸 and 𝜆 ∈ [0, 1], and 𝑓 (x) ≤ 0, 𝑓 (y) ≤ 0. The vector 𝑧 = 𝜆x + (1 − 𝜆)y satisfies

z⊤Qz = 𝜆2x⊤Qx + (1 − 𝜆)2y⊤Qy + 2𝜆(1 − 𝜆)x⊤Qy ,
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and using Cauchy-Schwartz it follows that

x⊤Qy ≤



Q1/2x




 · 


Q1/2y



 = √︁

x⊤Qx
√︁
y⊤Qy

≤ 1
2

(
x⊤Qx + y⊤Qy

)
,

which implies that
z⊤Qz ≤ 𝜆x⊤Qx + (1 − 𝜆)y⊤Qy .

Finally,

𝑓 (z) = z⊤Qz + 2b⊤z + 𝑐
≤ 𝜆x⊤Qx + (1 − 𝜆)y⊤Qy + 2𝜆b⊤x + 2(1 − 𝜆)b⊤y + 𝑐
= 𝜆

(
x⊤Qx + 2b⊤x + 𝑐

)
+ (1 − 𝜆)

(
y⊤Qy + 2b⊤y + 𝑐

)
= 𝜆𝑓 (x) + (1 − 𝜆) 𝑓 (y) ≤ 0

establishing the desired result that z ∈ 𝐸. □

Algebraic Operations with Convex Sets

Lemma (Intersection of convex sets is convex). Let 𝐶𝑖 ⊆ ℝ𝑛 be a convex set for any 𝑖 ∈ 𝐼
where 𝐼 is an index set (possibly infinite). Then the set

⋂
𝑖∈𝐼 𝐶𝑖 is convex.

A direct consequence of the above is that convex polytopes of the form

𝑃 = {x ∈ ℝ𝑛 : Ax ≤ b} ,

where A ∈ ℝ𝑚×𝑛 and b ∈ ℝ𝑚 are convex since they are generated as the intersection of
𝑚 half-spaces a⊤𝑖 x ≤ 𝑏𝑖 .

Some important algebraic properties of convex sets are summarized in the following
result:

Theorem. 1. Let 𝐶1,𝐶2, . . . ,𝐶𝑘 ⊆ ℝ𝑛 be convex sets and let 𝜇1, 𝜇2, . . . , 𝜇𝑘 ∈ ℝ. Then
the set 𝜇1𝐶1 + 𝜇2𝐶2 + . . . + 𝜇𝑘𝐶𝑘 is convex.

2. Let 𝐶𝑖 ⊆ ℝ𝑘𝑖 , 𝑖 = 1, . . . ,𝑚 be convex sets. Then the cartesian product

𝐶1 ×𝐶2 × · · · ×𝐶𝑚 = {(x1, x2, . . . , x𝑚) : x𝑖 ∈ 𝐶𝑖, 𝑖 = 1, 2, . . . ,𝑚}

is convex.

3. Let𝑀 ⊆ ℝ𝑛 be a convex set and let A ∈ ℝ𝑚×𝑛 . Then the set

A(𝑀) = {Ax : x ∈ 𝑀}

is convex.

4. Let 𝐷 ⊆ ℝ𝑚 be convex and let A ∈ ℝ𝑚×𝑛 . Then the set

A−1(𝐷) = {x ∈ ℝ𝑛 : Ax ∈ 𝐷}

is convex.
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The Convex Hull

Definition (Convex Combinations). Given𝑚 points x1, x2, . . . , x𝑚 ∈ ℝ𝑛, a convex com-
bination of these 𝑚 points is a vector of the form 𝜆1x1 + 𝜆2x2 + · · · + . . . + 𝜆𝑚x𝑚, where
𝜆1, 𝜆2, . . . , 𝜆𝑚 are nonnegative numbers satisfying 𝜆1 + 𝜆2 + . . . + 𝜆𝑚 = 1.

A convex set is defined by the property that any convex combination of two points from
the set is also in the set. We will now show that a convex combination of any number of
points from a convex set is in the set.

Theorem. Let𝐶 ⊆ ℝ𝑛 be a convex set and let x1, x2, . . . , x𝑚 ∈ 𝐶 . Then for any 𝝀 ∈ Δ𝑚, the
relation

∑𝑚
𝑖=1 𝜆𝑖x𝑖 ∈ 𝐶 holds.

Proof. Proof by induction on𝑚. For𝑚 = 1 the result is obvious. The induction hypothesis
is that for any𝑚 vectors x1, x2, . . . , x𝑚 ∈ 𝐶 and any 𝝀 ∈ Δ𝑚, the vector

∑𝑚
𝑖=1 𝜆𝑖x𝑖 belongs

to 𝐶 . We will now prove the theorem for𝑚 + 1 vectors. Suppose that x1, x2, . . . , x𝑚+1 ∈ 𝐶
and that 𝝀 ∈ Δ𝑚+1. We will show that z ≡ ∑𝑚+1

𝑖=1 𝜆𝑖x𝑖 ∈ 𝐶 . For this, if 𝜆𝑚+1 = 1, then
z = x𝑚+1 ∈ 𝐶 and the result obviously follows. Otherwise, if 𝜆𝑚+1 < 1, then

z =
𝑚∑︁
𝑖=1

𝜆𝑖x𝑖 + 𝜆𝑚+1x𝑚+1

= (1 − 𝜆𝑚+1)
𝑚∑︁
𝑖=1

𝜆𝑖

1 − 𝜆𝑚+1
x𝑖 + 𝜆𝑚+1x𝑚+1 .

Since
∑𝑚
𝑖=1

𝜆𝑖
1−𝜆𝑚+1 =

1−𝜆𝑚+1
1−𝜆𝑚+1 = 1, it follows that v =

∑𝑚
𝑖=1

𝜆𝑖
1−𝜆𝑚+1x𝑖 is a convex combination of

𝑚 points from 𝐶, and hence by the induction hypotheses we have that v ∈ 𝐶. Thus, by
the definition of a convex set, z = (1 − 𝜆𝑚+1) v+ 𝜆𝑚+1x𝑚+1 ∈ 𝐶 . □

Definition (The Convex Hull). Let 𝑆 ⊆ ℝ𝑛 . The convex hull of 𝑆 , denoted by conv(𝑆), is
the set comprising all the convex combinations of vectors from 𝑆 :

conv(𝑆) ≡
{

𝑘∑︁
𝑖=1

𝜆𝑖x𝑖 : x1, x2, . . . , x𝑘 ∈ 𝑆,𝝀 ∈ Δ𝑘

}
The convex hull conv(𝑆) is "smallest" convex set containing 𝑆 , in the sense that if another
convex set 𝑇 contains 𝑆 , then conv(𝑆) ⊂ 𝑇 .

The followingwell-known result, called the Carethéodory theorem, states that any element
in the convex hull of a subset of a given set 𝑆 ⊂ ℝ𝑛 can be expressed as a convex
combination of no more than 𝑛 + 1 vectors from 𝑆 .

Theorem (Carathéodory). Let𝑆 ⊆ ℝ𝑛 and letx ∈ conv(𝑆). Then, there existx1, x2, . . . , x𝑛+1 ∈
𝑆 such that x ∈ conv ({x1, x2, . . . , x𝑛+1}) , that is, there exist 𝜆 ∈ Δ𝑛+1 such that

x =

𝑛+1∑︁
𝑖=1

𝜆𝑖x𝑖
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Figure 25: The convex hull of a non-convex set.

We present this proof as it provides a construction mechanism.

Proof. Let x ∈ conv(𝑆). Then, there exist vectors x1, x2, . . . , x𝑘 ∈ 𝑆 and 𝝀 ∈ Δ𝑘 such that

x =

𝑘∑︁
𝑖=1

𝜆𝑖x𝑖 .

We can assume that 𝜆𝑖 > 0 for all 𝑖 = 1, 2, . . . , 𝑘 . If 𝑘 ≤ 𝑛+1, the result is proven. Otherwise,
if 𝑘 ≥ 𝑛 + 2, then the vectors x2 − x1, x3 − x1, . . . , x𝑘 − x1, being more than 𝑛 vectors in ℝ𝑛 ,
are necessarily linearly dependent implying that there exist 𝜇2, 𝜇3, . . . , 𝜇𝑘 not all zeros
such that

𝑘∑︁
𝑖=2

𝜇𝑖 (x𝑖 − x1) = 0 .

Defining 𝜇1 = −
∑𝑘
𝑖=2 𝜇𝑖, we obtain that

𝑘∑︁
𝑖=1

𝜇𝑖x𝑖 = 0 .

Note that not all of the coefficients 𝜇1, 𝜇2, . . . , 𝜇𝑘 are zeros and
∑𝑘
𝑖=1 𝜇𝑖 = 0. There exists

an index 𝑖 for which 𝜇𝑖 < 0. Let 𝛼 ∈ ℝ+. Then,

x =

𝑘∑︁
𝑖=1

𝜆𝑖x𝑖 =
𝑘∑︁
𝑖=1

𝜆𝑖x𝑖 + 𝛼
𝑘∑︁
𝑖=1

𝜇𝑖x𝑖 =
𝑘∑︁
𝑖=1
(𝜆𝑖 + 𝛼𝜇𝑖) x𝑖 .

We have
∑𝑘
𝑖=1 (𝜆𝑖 + 𝛼𝜇𝑖) = 1, so the equation above is a convex combination representation

if and only if

𝜆𝑖 + 𝛼𝜇𝑖 ≥ 0 for all 𝑖 = 1, . . . , 𝑘
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but since 𝜆𝑖 > 0 for all 𝑖, it follows that these inequalities are satisfied for all 𝛼 ∈ [0, 𝜀]
where 𝜀 = min𝑖:𝜇𝑖<0

{
−𝜆𝑖
𝜇𝑖

}
. If we substitute 𝛼 = 𝜀, then the inequalities still hold, but

𝜆 𝑗 + 𝜀𝜇 𝑗 = 0 for 𝑗 ∈ argmin
𝑖:𝜇𝑖<0

{
−𝜆𝑖
𝜇𝑖

}
. This means that we found a representation of x as

a convex combination of 𝑘 − 1 (or less) vectors. This process can be carried on until a
representation of x as a convex combination of no more than 𝑛 + 1 vectors is derived. □

Example For 𝑛 = 2, consider the four vectors

x1 =

(
1
1

)
, x2 =

(
1
2

)
, x3 =

(
2
1

)
, x4 =

(
2
2

)
and let x ∈ conv ({x1, x2, x3, x4}) be given by

x =
1
8x1 +

1
4x2 +

1
2x3 +

1
8x4 =

( 13
811
8

)
Find a representation of x as a convex combination of no more than 3 vectors.

Definition (Extreme Point). Let 𝑆 ⊆ ℝ𝑛 be a convex set. A point x ∈ 𝑆 is called an extreme
point of 𝑆 if there do not exist x1, x2 ∈ 𝑆 (x1 ≠ x2) and 𝜆 ∈ (0, 1), such that x = 𝜆x1+(1−𝜆)x2.
The set of extreme point is denoted by ext(𝑆).

For example, the set of extreme points of a convex polytope consists of all its vertices.

Figure 26: The extreme points of this triangle are given by its vertices x1, x2, x3. The point
x4 is not an extreme point.

Theorem (The Krein-Milman Theorem). Let 𝑆 ⊆ ℝ𝑛 be a compact convex set. Then

𝑆 = conv(ext(𝑆)) .
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Convex Functions

We begin by giving a definition of convex function.

Definition (Convex Function). A function 𝑓 : 𝐶 → ℝ defined on a convex set 𝐶 ⊆ ℝ𝑛 is
called convex (or convex over 𝐶 ) if

𝑓 (𝜆x + (1 − 𝜆)y) ≤ 𝜆𝑓 (x) + (1 − 𝜆) 𝑓 (y) for any x, y ∈ 𝐶, 𝜆 ∈ [0, 1]

Convexity, Strict Convexity and Concavity

In case where no domain is specified, we naturally assume that 𝑓 is defined over the
entire space ℝ𝑛 .

Definition (Strict Convexity). A function 𝑓 : 𝐶 → ℝ defined on a convex set 𝐶 ⊆ ℝ𝑛 is
called strictly convex if

𝑓 (𝜆x + (1 − 𝜆)y) < 𝜆𝑓 (x) + (1 − 𝜆) 𝑓 (y) for any x ≠ y ∈ 𝐶, 𝜆 ∈ (0, 1)

Definition (Concavity). A function is called concave if −𝑓 is convex. Similarly, 𝑓 is called
strictly concave if −𝑓 is strictly convex. We can also define concavity directly: a function 𝑓
is concave if and only if for any x, y ∈ 𝐶 and 𝜆 ∈ [0, 1]

𝑓 (𝜆x + (1 − 𝜆)y) ≥ 𝜆𝑓 (x) + (1 − 𝜆) 𝑓 (y)

Examples of Convex Functions

• Affine Functions. 𝑓 (x) = 𝑎⊤x + 𝑏, where 𝑎 ∈ ℝ𝑛 and 𝑏 ∈ ℝ. Take x, y ∈ ℝ𝑛 and
𝜆 ∈ [0, 1]. Then

𝑓 (𝜆x + (1 − 𝜆)y) = a⊤(𝜆x + (1 − 𝜆)y) + 𝑏
= 𝜆

(
a⊤x

)
+ (1 − 𝜆)

(
a⊤y

)
+ 𝜆𝑏 + (1 − 𝜆)𝑏

= 𝜆
(
a⊤x + 𝑏

)
+ (1 − 𝜆)

(
a⊤y + 𝑏

)
= 𝜆𝑓 (x) + (1 − 𝜆) 𝑓 (y) .

• Norms. 𝑔(x) = ∥x∥, take x, y ∈ ℝ𝑛 and 𝜆 ∈ [0, 1]. Then

𝑔(𝜆x + (1 − 𝜆)y) = ∥𝜆x + (1 − 𝜆)y∥
≤ ∥𝜆x∥ + ∥(1 − 𝜆)y∥
= 𝜆∥x∥ + (1 − 𝜆)∥y∥
= 𝜆𝑔(x) + (1 − 𝜆)𝑔(y) .

We now state a fundamental result for convex functions.
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Theorem (Jensen’s Inequality). Let 𝑓 : 𝐶 → ℝ be a convex function where 𝐶 ⊆ ℝ𝑛 is a
convex set. Then, for any x1, x2, . . . , x𝑘 ∈ 𝐶 and 𝝀 ∈ Δ𝑘 , the following inequality holds:

𝑓

(
𝑘∑︁
𝑖=1

𝜆𝑖x𝑖

)
≤

𝑘∑︁
𝑖=1

𝜆𝑖 𝑓 (x𝑖) .

An important set associated with convex functions is the epigraph.

Definition (epigraph). Let 𝑓 : ℝ𝑛 → ℝ. Then the epigraph set epi(𝑓 ) ⊆ ℝ𝑛+1 is defined by

epi(𝑓 ) =
{(

x
𝑡

)
: 𝑓 (x) ≤ 𝑡

}
.

An example of an epigraph is shown in Figure 27.

epi(f)

f

Figure 27: The epigraph of a one-dimensional function.

The definition of the epigraph allows us to connect the notions of convex sets and convex
functions through the following theorem.

Theorem. Let 𝑓 : ℝ𝑛 → ℝ. Then the function 𝑓 is convex if and only if its epigraph is a
convex set.

First-order Characterization of Convex Functions

Convex functions are not necessarily differentiable (think about 𝑓 (𝑥) = |𝑥 |), but in case
they are, we can generalize first and a second-order optimality conditions for functions
such as those from Week 3.

Theorem (The Gradient Inequality). Let 𝑓 : 𝐶 → ℝ be a continuously differentiable
function defined on a convex set 𝐶 ⊆ ℝ𝑛 . Then 𝑓 is convex over 𝐶 if and only if

𝑓 (x) + ∇𝑓 (x)⊤(y − x) ≤ 𝑓 (y) for any x, y ∈ 𝐶 .

An analogous result holds for strictly convex functions (with a strict inequality).
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Proof. Suppose first that 𝑓 is convex. Let x, y ∈ 𝐶 and 𝜆 ∈ (0, 1] . If x = y, then the
inequality trivially holds. We will therefore assume that x ≠ y. The

𝑓 (x + 𝜆(y − x)) − 𝑓 (x)
𝜆

≤ 𝑓 (y) − 𝑓 (x) .

Taking 𝜆 → 0+, we obtain

𝑓 ′(x; y − x) ≤ 𝑓 (y) − 𝑓 (x) .

Since 𝑓 is continuously differentiable, 𝑓 ′(x; y − x) = ∇𝑓 (x)⊤(y − x), and the inequality
follows.

To prove the reverse direction, assume that that the gradient inequality holds. Let z,w ∈ 𝐶,
and let 𝜆 ∈ (0, 1). We will show that 𝑓 (𝜆z + (1 − 𝜆)w) ≤ 𝜆𝑓 (z) + (1 − 𝜆) 𝑓 (w), Let
u = 𝜆z + (1 − 𝜆)w ∈ 𝐶 . Then

z − u =
u − (1 − 𝜆)w

𝜆
− u = −1 − 𝜆

𝜆
(w − u) .

We have

𝑓 (u) + ∇𝑓 (u)⊤(z − u) ≤ 𝑓 (z) ,

𝑓 (u) − 𝜆

1 − 𝜆∇𝑓 (u)
⊤(z − u) ≤ 𝑓 (w) .

Thus,

𝑓 (u) ≤ 𝜆𝑓 (z) + (1 − 𝜆) 𝑓 (w)

□

Figure 28: For a convex function 𝑓 , the tangent plane at every point is always below 𝑓 .
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Convexity + Stationarity ⇒ Global Optimality! A direct result of the gradient
inequality is that the first order optimality condition ∇𝑓 (x∗) = 0 is sufficient for global
optimality.

Theorem (Stationarity Implies Global Optimality). Let 𝑓 be a continuously differentiable
function which is convex over a convex set 𝐶 ⊆ ℝ𝑛 . Suppose that ∇𝑓 (x∗) = 0 for some
x∗ ∈ 𝐶 . Then x∗ is the global minimizer of 𝑓 over 𝐶 .

We now revisit optimality conditions for quadratic functions.

Theorem (Convexity of Quadratic Functions with Positive Semidefinite Matrices). Let
𝑓 : ℝ𝑛 → ℝ be the quadratic function given by 𝑓 (x) = x⊤Ax + 2b⊤x + 𝑐 where A ∈ ℝ𝑛×𝑛

is symmetric, b ∈ ℝ𝑛 and 𝑐 ∈ ℝ. Then 𝑓 is (strictly) convex if and only if A ⪰ 0(A ≻ 0).

Proof. The convexity of 𝑓 is equivalent to

𝑓 (y) ≥ 𝑓 (x) + ∇𝑓 (x)⊤(y − x) for any x, y ∈ ℝ𝑛 .

This is the same as stating that

y⊤Ay + 2b⊤y + 𝑐 ≥ x⊤Ax + 2b⊤x + 𝑐 + 2(Ax + b)⊤(y − x) ,

for any x, y ∈ ℝ𝑛 , from where it follows that

(y − x)⊤A(y − x) ≥ 0 ,

for any x, y ∈ ℝ𝑛 . This is equivalent to the inequality d⊤Ad ≥ 0 for any d ∈ ℝ𝑛 , which is
the same as A ⪰ 0. Similar arguments show that strict convexity is equivalent to

d⊤Ad > 0 for any 0 ≠ d ∈ ℝ𝑛 ,

namely to A ≻ 0. □

Theorem (Monotonicity of the Gradient). Suppose that 𝑓 is a continuously differentiable
function over a convex set 𝐶 ⊆ ℝ𝑛 . Then 𝑓 is convex over 𝐶 if and only if

(∇𝑓 (x) − ∇𝑓 (y))⊤(x − y) ≥ 0 for any x, y ∈ 𝐶 .

Second-order Characterization of Convex Functions

We can now extend our link between convexity and optimality conditions to second-order
characterizations.

Theorem (Second-Order Characterization of Convexity). Let 𝑓 be a twice continuously
differentiable function over an open convex set 𝐶 ⊆ ℝ𝑛 . Then 𝑓 is convex over 𝐶 if and only
if ∇2𝑓 (x) ⪰ 0 for any x ∈ 𝐶 .
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Example. Convexity of the log-sum-exp function:

𝑓 (x) = log (𝑒𝑥1 + 𝑒𝑥2 + . . . + 𝑒𝑥𝑛 ) , x ∈ ℝ𝑛 .

The gradient is given by:

𝜕𝑓

𝜕𝑥𝑖
(x) = 𝑒𝑥𝑖∑𝑛

𝑗=1 𝑒
𝑥 𝑗
, 𝑖 = 1, 2, . . . , 𝑛 .

Therefore, the Hessian is computed as

𝜕2𝑓

𝜕𝑥𝑖𝜕𝑥 𝑗
(x) =


− 𝑒𝑥𝑖 𝑒

𝑥 𝑗

(∑𝑛
𝑗=1 𝑒

𝑥 𝑗 )2 , 𝑖 ≠ 𝑗

− 𝑒𝑥𝑖 𝑒
𝑥 𝑗

(∑𝑛
𝑗=1 𝑒

𝑥 𝑗 )2 +
𝑒𝑥𝑖∑𝑛
𝑗=1 𝑒

𝑥 𝑗 , 𝑖 = 𝑗
.

We can thus write the Hessian matrix as

∇2𝑓 (x) = diag(w) −ww⊤, with w =

(
𝑒𝑥𝑖∑𝑛
𝑗=1 𝑒

𝑥 𝑗

)𝑛
𝑖=1

∈ Δ𝑛 .

For any v ∈ ℝ𝑛:

v⊤∇2𝑓 (x)v =

𝑛∑︁
𝑖=1
𝑤𝑖𝑣

2
𝑖 −

(
v⊤w

)2 ≥ 0 ,

since defining 𝑠𝑖 =
√
𝑤𝑖𝑣𝑖, 𝑡𝑖 =

√
𝑤𝑖, we have(

v⊤w
)2

=
(
s⊤t

)2 ≤ ∥s∥2∥t∥2 =
(
𝑛∑︁
𝑖=1
𝑤𝑖𝑣

2
𝑖

) (
𝑛∑︁
𝑖=1
𝑤𝑖

)
=

𝑛∑︁
𝑖=1
𝑤𝑖𝑣

2
𝑖 .

Thus, ∇2𝑓 (x) ⪰ 0 and hence 𝑓 is convex over ℝ𝑛 .

Example Show the convexity of the quad-over-lin function

𝑓 (𝑥1, 𝑥2) =
𝑥2

1
𝑥2

defined over ℝ ×ℝ++ = {(𝑥1, 𝑥2) : 𝑥2 > 0}.

Further Results for Convex Functions

Operations Preserving Convexity

• Let 𝑓 be a convex function defined over a convex set 𝐶 ⊆ ℝ𝑛 and let 𝛼 ≥ 0. Then
𝛼 𝑓 is a convex function over 𝐶 .

• Let 𝑓1, 𝑓2, . . . , 𝑓𝑝 be convex functions over a convex set 𝐶 ⊆ ℝ𝑛. Then the sum
function 𝑓1 + 𝑓2 + . . . + 𝑓𝑝 is convex over 𝐶 .
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• Let 𝑓 be a convex function defined on a convex set 𝐶 ⊆ ℝ𝑛. Let A ∈ ℝ𝑛×𝑚 and
b ∈ ℝ𝑛 . Then the function 𝑔 defined by

𝑔(y) = 𝑓 (Ay + b)

is convex over the convex set 𝐷 = {y ∈ ℝ𝑚 : Ay + b ∈ 𝐶}.

• Let 𝑓 : 𝐶 → ℝ be a convex function defined over the convex set 𝐶 ⊆ ℝ𝑛. Let
𝑔 : 𝐼 → ℝ be a one-dimensional nondecreasing convex function over the interval
𝐼 ⊆ ℝ. Assume that the image of 𝐶 under 𝑓 is contained in 𝐼 : 𝑓 (𝐶) ⊆ 𝐼 . Then the
composition of 𝑔 with 𝑓 defined by

ℎ(x) ≡ 𝑔(𝑓 (x))

is convex over 𝐶 .

Several Examples of Convex Functions Using these Properties

• The generalized quad-over-lin function

𝑔(x) = ∥Ax + b∥
2

c⊤x + 𝑑
(
A ∈ ℝ𝑚×𝑛, b ∈ ℝ𝑚, c ∈ ℝ𝑛, 𝑑 ∈ ℝ

)
is convex over 𝐷 = {x ∈ ℝ𝑛 : c⊤x + 𝑑 > 0}.

• 𝑓 (𝑥1, 𝑥2) = − log (𝑥1𝑥2), over ℝ2
++.

• 𝑓 (𝑥1, 𝑥2) = 𝑥2
1 + 2𝑥1𝑥2 + 3𝑥2

2 + 2𝑥1 − 3𝑥2 + 𝑒𝑥1 .

• ℎ(x) = 𝑒 ∥x∥2 .

Theorem (Point-Wise Maximum of Convex Functions). Let 𝑓1, 𝑓2, . . . , 𝑓𝑝 : 𝐶 → ℝ be 𝑝
convex functions over the convex set 𝐶 ⊆ ℝ𝑛 . Then the maximum function

𝑓 (x) ≡ max
𝑖=1,2,...,𝑝

{𝑓𝑖 (x)}

is convex over 𝐶 .

Examples

• 𝑓 (x) = max {𝑥1, 𝑥2, . . . , 𝑥𝑛} is convex.

• For a given vector x = (𝑥1, 𝑥2, . . . , 𝑥𝑛)⊤ ∈ ℝ𝑛, let 𝑥 [𝑖] denote the 𝑖 -th largest value
in x. For any 𝑘 ∈ {1, 2, . . . , 𝑛} the function

ℎ𝑘 (x) = 𝑥 [1] + 𝑥 [2] + . . . + 𝑥 [𝑘]
is convex.

Theorem (Preservation of Convexity Under Partial Minimization). Let 𝑓 : 𝐶 ×𝐷 → ℝ be
a convex function defined over the set𝐶 ×𝐷 where𝐶 ⊆ ℝ𝑚 and 𝐷 ⊆ ℝ𝑛 are convex sets. Let

𝑔(x) = min
y∈𝐷

𝑓 (x, y), x ∈ 𝐶

where we assume that the minimum is finite. Then 𝑔 is convex over 𝐶 .
86



Example. The distance function from a convex set 𝑑𝐶 (x) ≡ infy∈𝐶 ∥x − y∥ is convex.

Level Sets of Convex Functions

Let us start with the definition of a level set.

Definition (level sets). Let 𝑓 : 𝑆 → ℝ be a functions defined over a set 𝑆 ⊆ ℝ𝑛 . Then the
level set of 𝑓 with level 𝛼 is given by

Lev(𝑓 , 𝛼) = {x ∈ 𝑆 : 𝑓 (x) ≤ 𝛼} .

An example of a level set of a one-dimensional function 𝑓 at level𝛼 is shown in Figure 29.

f
α

I1 I2

Lev(f, α) = I1 ∪ I2

Figure 29: Example of a level set of a one-dimensional function 𝑓 at level 𝛼 .

In what follows, we present a fundamental property of convex functions with respect to
their level sets.

Theorem (convexity of level sets of convex functions). Let 𝑓 : 𝐶 → ℝ be a convex function
defined over a convex set 𝐶 ⊆ ℝ𝑛 . Then for any 𝛼 ∈ ℝ the level set Lev(𝑓 , 𝛼) is convex.

The previous theorem states that all convex functions have all their levels sets convex.
However, the opposite is not true. In fact, there exists nonconvex functions whose level
sets are all convex: for example, consider the function 𝑓 (x) =

√︁
|x|.

Four Important Theorems for Convex Functions

We now state four important results for convex functions.

Theorem (Continuity of Convex Functions). Let 𝑓 : 𝐶 → ℝ be a convex function defined
over a convex set 𝐶 ⊆ ℝ𝑛 . Let x0 ∈ int(𝐶) . Then there exist 𝜀 > 0 and 𝐿 > 0 such that
𝐵 [x0, 𝜀] ⊆ 𝐶 and

|𝑓 (x) − 𝑓 (x0) | ≤ 𝐿 ∥x − x0∥ for any x ∈ 𝐵 [x0, 𝜀]
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Theorem (Existence of Directional Derivatives of Convex Functions). Let 𝑓 : 𝐶 → ℝ

be a convex function over the convex set 𝐶 ⊆ ℝ𝑛 . Let x ∈ int(𝐶). Then for any d ≠ 0, the
directional derivative 𝑓 ′(x; d) exists.

The last two theorems relate to the problem of maximizing a non-constant convex
function over a convex set.

Theorem (No Maximum Inside the Convex Set). Let 𝑓 : 𝐶 → ℝ be convex and non-
constant over the nonempty convex set 𝐶 ⊆ ℝ𝑛 . Then 𝑓 does not attain a maximum at a
point in 𝑖𝑛𝑡 (𝐶).

Finally, we state that maximum of convex function over compact convex sets can be
found at the extreme points of the set.

Theorem (Maximum of a Convex Function Over a Compact Convex Set). Let 𝑓 : 𝐶 → ℝ

be convex over the nonempty convex and compact set 𝐶 ⊆ ℝ𝑛 . Then there exists at least one
maximizer of 𝑓 over 𝐶 that is an extreme point of 𝐶 .

Proof. Let x∗ be a maximizer of 𝑓 over 𝐶 . If x∗ is an extreme point of 𝐶 , then the result
is established. Otherwise, by Krein-Milman, 𝐶 = conv(ext(𝐶)) implies the existence of
x1, x2, . . . , x𝑘 ∈ ext(𝐶) such that

x∗ =
𝑘∑︁
𝑖=1

𝜆𝑖x𝑖

By the convexity of 𝑓 ,

𝑓 (x∗) ≤
𝑘∑︁
𝑖=1

𝜆𝑖 𝑓 (x𝑖)

or equivalently

𝑘∑︁
𝑖=1

𝜆𝑖 (𝑓 (x𝑖) − 𝑓 (x∗)) ≥ 0 .

Since x∗ is a maximizer of 𝑓 over𝐶 , we have 𝑓 (x𝑖) ≤ 𝑓 (x∗) for all 𝑖 = 1, . . . , 𝑘 . This implies
that 𝑓 (x𝑖) = 𝑓 (x∗). Consequently, the extreme points x1, . . . , x𝑘 are all maximizers of 𝑓
over 𝐶 . □
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Part VII.
Convex Optimization

Convex Optimization Problems

A convex optimization problem (or just a convex problem) is a problem consisting of
minimizing a convex function 𝑓 (x) over a convex set 𝐶:

min 𝑓 (x)
s.t. x ∈ 𝐶 (CVX)

A functional form of a convex problem can written as

min 𝑓 (x)
s.t. 𝑔𝑖 (x) ≤ 0, 𝑖 = 1, 2, . . . ,𝑚

ℎ 𝑗 (x) = 0, 𝑗 = 1, 2, . . . , 𝑝 ,

where 𝑓 , 𝑔1, . . . , 𝑔𝑚 : ℝ𝑛 → ℝ are convex functions, and ℎ1, ℎ2, . . . , ℎ𝑝 : ℝ𝑚 → ℝ are
affine functions. The functional form does fit into the general formulation (CVX). A
very important feature of convex optimization problems is that local minima are global
minima!

Theorem (Local minima are global in CVX.). Let 𝑓 : 𝐶 → ℝ be a convex function defined
on the convex set 𝐶 ⊆ ℝ𝑛 . Let x∗ ∈ 𝐶 be a local minimum of 𝑓 over 𝐶 . Then 𝑥∗ is a global
minimum of 𝑓 over 𝐶 .

Proof. Assume x∗ is a local minimum of 𝑓 over 𝐶 . This implies that there exists 𝑟 > 0
such that 𝑓 (x) ≥ 𝑓 (x∗) for any x ∈ 𝐶 ∩ 𝐵 [x∗, 𝑟 ]. Let x∗ ≠ y ∈ 𝐶 . We will show that
𝑓 (y) ≥ 𝑓 (x∗). Let 𝜆 ∈ (0, 1) be such that x∗+𝜆 (y − x∗) ∈ 𝐵 [x∗, 𝑟 ]. Since x∗+𝜆 (y − x∗) ∈
𝐵 [x∗, 𝑟 ] , it follows that 𝑓 (x∗) ≤ 𝑓 (x∗ + 𝜆 (y − x∗)) and hence by Jensen’s inequality:

𝑓 (x∗) ≤ 𝑓 (x∗ + 𝜆 (y − x∗)) ≤ (1 − 𝜆) 𝑓 (x∗) + 𝜆𝑓 (y) .

Thus, the desired inequality 𝑓 (x∗) ≤ 𝑓 (y) follows. □

A small variation of the proof of the last theorem yields the following.

Theorem. Let 𝑓 : 𝐶 → ℝ be a strictly convex function defined on the convex set 𝐶 . Let
𝑥∗ ∈ 𝐶 be a local minimum of 𝑓 over 𝐶 . Then 𝑥∗ is a strict global minimum of 𝑓 over 𝐶 .

Another important and easily deduced property of convex problems is that set of optimal
solutions is also convex.
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Theorem. Let 𝑓 : 𝐶 → ℝ be a convex function defined over the convex set 𝐶 ⊆ ℝ𝑛 . Then
the set of optimal solutions of the problem

min{𝑓 (x) : x ∈ 𝐶}

is convex. If, in addition, 𝑓 is strictly convex over 𝐶 , then there exists at most one optimal
solution of the problem.

Examples:

• A Convex Problem:
min −2𝑥1 + 𝑥2
s.t. 𝑥2

1 + 𝑥2
2 ≤ 3

• A Nonconvex Problem:
min 𝑥2

1 − 𝑥2
s.t. 𝑥2

1 + 𝑥2
2 = 3

• Linear Programming

min c⊤x
(LP) : s.t. Ax ≤ b

Bx = g

(LP) is a convex optimization problem (constraints and objective function are linear
/ affine and hence convex). It is also equivalent to a problem of maximizing a convex
(linear) function subject to a convex constraints set. Hence, if the feasible set is
compact and nonempty, then there exists at least one optimal solution which is an
extreme point, or equivalently, a basic feasible solution.

• Convex Quadratic Problems consist of minimizing a convex quadratic function
subject to affine constraints. The general form is

min x⊤Qx + 2b⊤x
s.t. Ax ≤ c

Q ∈ ℝ𝑛×𝑛 is positive semidefinite, b ∈ ℝ𝑛,A ∈ ℝ𝑚×𝑛, c ∈ ℝ𝑚 .

Optimization over a Convex Set and Stationarity

We will consider the constrained optimization problem given by

min
x
{𝑓 (x) : x ∈ 𝐶} , (P)

where 𝐶 is a closed convex subset of ℝ𝑛 , and 𝑓 is continuously differentiable over 𝐶 , not
necessarily convex. To characterize optimality in the presence of convex constraints, we
define the concept of stationarity.
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Definition (Stationarity). Let 𝑓 be a continuously differentiable function over a closed and
convex set 𝐶 . Then x∗ is called a stationary point of (P) if

∇𝑓 (x∗)⊤ (x − x∗) ≥ 0 , for any x ∈ 𝐶 .

Theorem (Stationarity as a Necessary Optimality Condition). Let 𝑓 be a continuously
differentiable function over a nonempty closed convex set 𝐶 , and let x∗ be a local minimum
of (P). Then x∗ is a stationary point of (P).

Proof. Let x∗ be a local minimum of (P), and assume in contradiction that x∗ is not a
stationary point of (P). This implies that there exists x ∈ 𝐶 such that

∇𝑓 (x∗)⊤ (x − x∗) < 0 .

Thus, 𝑓 ′ (x∗; d) < 0, where d = x − x∗. Therefore, there exists 𝜀 ∈ (0, 1) such that
𝑓 (x∗ + 𝑡d) < 𝑓 (x∗) , ∀𝑡 ∈ (0, 𝜀). Finally, since x∗ + 𝑡d = (1 − 𝑡)x∗ + 𝑡x ∈ 𝐶 , ∀𝑡 ∈ (0, 𝜀),
we conclude that x∗ is not a local optimum point of (P). Contradiction. □

Examples of Stationarity Conditions

• For 𝐶 = ℝ𝑛 , x∗ is a stationary point of (P) iff

∇𝑓 (x∗)⊤ (x − x∗) ≥ 0 ∀x ∈ ℝ𝑛 .

We will show that the above condition is equivalent to ∇𝑓 (x∗) = 0, Indeed, if
∇𝑓 (x∗) = 0, then obviously the inequality is satisfied. In the other direction,
suppose that the inequality holds. Plugging x = x∗ − ∇𝑓 (x∗) in the above implies

− ∥∇𝑓 (x∗)∥2 ≥ 0 .

Thus, ∇𝑓 (x∗) = 0.

• For 𝐶 = ℝ𝑛
+, x∗ is a stationary point iif

∇𝑓 (x∗)⊤ (x − x∗) ≥ 0 ∀x ∈ ℝ𝑛
+ .

This is equivalent to say ∇𝑓 (x∗)⊤ x−∇𝑓 (x∗)⊤ x∗ ≥ 0 for all x ≥ 0. Or equivalently,
∇𝑓 (x∗) ≥ 0 and ∇𝑓 (x∗)⊤ x∗ ≤ 0. The latter is equivalent to claim that

∇𝑓 (x∗) ≥ 0 and 𝑥∗𝑖
𝜕𝑓

𝜕𝑥𝑖
(x∗) = 0, 𝑖 = 1, 2, . . . , 𝑛 ,

which we summarize as

𝜕𝑓

𝜕𝑥𝑖
(x∗)

{
= 0 𝑥∗𝑖 > 0
≥ 0 𝑥∗𝑖 = 0
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Some important stationarity conditions are summarized in the table below:

Feasible Set Explicit Stationarity Condition
ℝ𝑛 ∇𝑓 (x∗) = 0

ℝ𝑛
+

𝜕𝑓

𝜕𝑥𝑖
(x∗)

{
= 0 𝑥∗𝑖 > 0
≥ 0 𝑥∗𝑖 = 0

{x ∈ ℝ𝑛 : e⊤x = 1} 𝜕𝑓

𝜕𝑥1
(x∗) = . . . = 𝜕𝑓

𝜕𝑥𝑛
(x∗)

𝐵 [0, 1] ∇𝑓 (x∗) = 0 or ∥x∗∥ = 1 and ∃𝜆 ≤ 0 : ∇𝑓 (x∗) = 𝜆x∗

For convex problems, stationarity is a necessary and sufficient condition.

Theorem (Stationarity in Convex Optimization). Let 𝑓 be a continuously differentiable
convex function over a nonempty closed and convex set 𝐶 ⊆ ℝ𝑛 . Then x∗ is a stationary
point of (P) iff x∗ is an optimal solution of (P).

Proof. If x∗ is an optimal solution of (P), then we already showed that it is a stationary
point of (P). Assume that x∗ is a stationary point of (P). Let x ∈ 𝐶 . Then

𝑓 (x) ≥ 𝑓 (x∗) + ∇𝑓 (x∗)⊤ (x − x∗) ≥ 𝑓 (x∗)

establishing the optimality of x∗. □

The Orthogonal Projection Operator

Definition (Orthogonal Projection). Given a nonempty closed convex set𝐶 , the orthogonal
projection operator 𝑃𝐶 : ℝ𝑛 → 𝐶 is defined by

𝑃𝐶 (x) = argmin
{
∥y − x∥2 : y ∈ 𝐶

}
.

We state two important results concerning orthogonal projections.

Theorem (The First Projection Theorem). Let 𝐶 ⊆ ℝ𝑛 be a nonempty closed and convex
set. Then for any x ∈ ℝ𝑛, the orthogonal projection 𝑃𝐶 (x) exists and is unique.

Theorem (The Second Projection Theorem). Let 𝐶 be a nonempty closed convex set and
let x ∈ ℝ𝑛 . Then z = 𝑃𝐶 (x) if and only if

(x − z)⊤(y − z) ≤ 0 , for any y ∈ 𝐶
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Examples of Orthogonal Projections:

• For 𝐶 = ℝ𝑛
+,

𝑃ℝ𝑛
+ (x) = [x]+

where [v]+ = (max {𝑣1, 0} ,max {𝑣2, 0} , . . . ,max {𝑣𝑛, 0})⊤.

• A box is a subset of ℝ𝑛 of the form

𝐵 = [ℓ1, 𝑢1] × [ℓ2, 𝑢2] × · · · × [ℓ𝑛, 𝑢𝑛] = {x ∈ ℝ𝑛 : ℓ𝑖 ≤ 𝑥𝑖 ≤ 𝑢𝑖} ,

where ℓ𝑖 ≤ 𝑢𝑖 for all 𝑖 = 1, 2, . . . , 𝑛. For this set

[𝑃𝐵 (x)]𝑖 =

𝑢𝑖 𝑥𝑖 ≥ 𝑢𝑖
𝑥𝑖 ℓ𝑖 < 𝑥𝑖 < 𝑢𝑖
ℓ𝑖 𝑥𝑖 ≤ ℓ𝑖

• For the closed ball in ℝ𝑛 , 𝐶 = 𝐵 [0, 𝑟 ], it holds

𝑃𝐵 [0,𝑟 ] =

{
x ∥x∥ ≤ 𝑟
𝑟 x
∥x∥ ∥x∥ > 𝑟

A very important result in convex optimization is the representation of stationarity using
the orthogonal projection operator.

Theorem (Representation of Stationarity via the Orthogonal Projection Operator). Let
𝑓 be a continuously differentiable function over the nonempty closed convex set 𝐶 , and let
𝑠 > 0. Then x∗ is a stationary point of (P) if and only if

x∗ = 𝑃𝐶 (x∗ − 𝑠∇𝑓 (x∗)) .

Proof. By the second projection theorem, x∗ = 𝑃𝐶 (x∗ − 𝑠∇𝑓 (x∗)) iff

(x∗ − 𝑠∇𝑓 (x∗) − x∗)⊤ (x − x∗) ≤ 0 for any x ∈ 𝐶 ,

which is equivalent to

∇𝑓 (x∗)⊤ (x − x∗) ≥ 0 for any x ∈ 𝐶 ,

namely, the definition of stationarity. □
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The Gradient Projection Method

It is convenient to define the gradient mapping as

𝐺𝐿 (x) = 𝐿
[
x − 𝑃𝐶

(
x − 1

𝐿
∇𝑓 (x)

)]
,

where 𝐿 > 0. In the unconstrained case 𝐺𝐿 (x) = ∇𝑓 (x). Otherwise, 𝐺𝐿 (x) = 0 if and
only if x is a stationary point of (P). This means that we can consider ∥𝐺𝐿 (x)∥2 to be
optimality measure. We use the orthogonal projection operator to introduce a gradient
descent type algorithm for solving convex optimization problems.

Algorithm 7: The Gradient Projection Method
Initialization: A tolerance parameter 𝜀 > 0 and x0 ∈ 𝐶 .
General Step: for any 𝑘 = 0, 1, 2, . . . execute the following steps:

1 Pick a stepsize 𝑡𝑘 by a line search procedure.
2 Set x𝑘+1 = 𝑃𝐶

(
x𝑘 − 𝑡𝑘∇𝑓

(
x𝑘

) )
.

3 If


x𝑘 − x𝑘+1

 ≤ 𝜀, then STOP and x𝑘+1 is the output.

There are several strategies for choosing the stepsizes 𝑡𝑘 . When 𝑓 ∈ 𝐶1,1
𝐿
, we can choose

𝑡𝑘 to be constant and equal to 1
𝐿
. An alternative is to include backtracking.

Algorithm 8: The Gradient Projection Method with Backtracking
Initialization: A tolerance parameter 𝜀 > 0 and x0 ∈ 𝐶 . Parameters 𝑠 > 0, 𝛼 ∈ (0, 1),

and 𝛽 ∈ (0, 1).
General Step: for any 𝑘 = 0, 1, 2, . . . execute the following steps:

1 Pick 𝑡𝑘 = 𝑠 .

2 While 𝑓 (x𝑘) − 𝑓 (𝑃𝐶 (x𝑘 − 𝑡𝑘∇𝑓 (x𝑘))) < 𝛼𝑡𝑘



𝐺 1

𝑡𝑘
(x𝑘)




2
, set 𝑡𝑘 := 𝛽𝑡𝑘 .

3 Set x𝑘+1 = 𝑃𝐶
(
x𝑘 − 𝑡𝑘∇𝑓

(
x𝑘

) )
.

4 If


x𝑘 − x𝑘+1

 ≤ 𝜀, then STOP and x𝑘+1 is the output.

Theorem (Convergence of the Gradient Projection Method). Let
{
x𝑘

}
be the sequence

generated by the gradient projection method for solving problem (P) with either a constant
stepsize 𝑡 ∈

(
0, 2

𝐿

)
, where 𝐿 is a Lipschitz constant of ∇𝑓 or a backtracking stepsize strategy.

Assume that 𝑓 is bounded below. Then:

1. The sequence
{
𝑓

(
x𝑘

)}
is nonincreasing.

2. 𝐺𝑑
(
x𝑘

)
→ 0 as 𝑘 →∞, where

𝑑 =

{
1/𝑡 constant stepsize
1/𝑠 backtracking.
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Part VIII.
Optimality Conditions

Separation Theorem

To begin our study of optimality conditions for linearly constrained problems we need
first some technical results, known as Alternative and Separation Theorems.

A hyperplane

𝐻 =
{
x ∈ ℝ𝑛 : a⊤x = 𝑏

}
(a ∈ ℝ𝑛\{0}, 𝑏 ∈ ℝ)

is said to strictly separate a point y ∉ 𝑆 from 𝑆 if

a⊤y > 𝑏 ,

and

a⊤x ≤ 𝑏 for all y ∈ 𝑆 .

Theorem (Separation of a Point from a Closed andConvex Set). Let𝐶 ⊆ ℝ𝑛 be a nonempty
closed and convex set, and let y ∉ 𝐶 . Then there exists p ∈ ℝ𝑛\{0} and 𝛼 ∈ ℝ such that
p⊤y > 𝛼 and p⊤x ≤ 𝛼 for all x ∈ 𝐶 .

Proof. By the second orthogonal projection theorem, the vector x = 𝑃𝐶 (y) ∈ 𝐶 satisfies

(y − x)⊤(x − x) ≤ 0 for all x ∈ 𝐶 ,

which is the same as

(y − x)⊤x ≤ (y − x)⊤x for all x ∈ 𝐶 .

Denote p = y − x ≠ 0 and 𝛼 = (y − x)⊤x. Then,

p⊤x ≤ 𝛼 for all x ∈ 𝐶 .

On the other hand, we have

p⊤y = (y − x)⊤y = (y − x)⊤(y − x) + (y − x)⊤x = ∥y − x∥2 + 𝛼 > 𝛼 .

□

Lemma (Farkas’ Lemma - an Alternative Theorem). Let c ∈ ℝ𝑛 and A ∈ ℝ𝑚×𝑛 . Then
exactly one of the following systems has a solution:

I. Ax ≤ 0, c⊤x > 0.
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II. A⊤y = c, y ≥ 0.

An alternative formulation is the following:

Lemma (Farkas’ Lemma - Second Formulation). Let c ∈ ℝ𝑛 and A ∈ ℝ𝑚×𝑛 . Then the
following two claims are equivalent:

(A) The implication Ax ≤ 0⇒ c⊤x ≤ 0 holds true.

(B) There exists y ∈ ℝ𝑚+ such that A⊤y = c.

Proof. Suppose that system (B) is feasible. Then, there exists y ∈ ℝ𝑚+ such that A⊤y = c.
To see that the implication (A) holds, suppose that Ax ≤ 0 for some x ∈ ℝ𝑛 . Multiplying
this inequality from the left by y⊤ we obtain:

y⊤Ax ≤ 0 ,

and hence,

c⊤x ≤ 0 .

Now, suppose that the implication (A) is satisfied, and let us show that the system (B) is
feasible. Suppose in contradiction that system (B) is infeasible. Consider the following
closed and convex set

𝑆 =
{
x ∈ ℝ𝑛 : x = A⊤y for some y ∈ ℝ𝑚+

}
.

Note that c ∉ 𝑆 . By the separation theorem, there exists p ∈ ℝ𝑛\{0} and 𝛼 ∈ ℝ such that
p⊤c > 𝛼 and

p⊤x ≤ 𝛼 for all x ∈ 𝑆 .

0 ∈ 𝑆 implies that 𝛼 ≥ 0⇒ p⊤c > 0, and the inequality above is equivalent to

p⊤A⊤y ≤ 𝛼 for all y ≥ 0

or to

(Ap)⊤y ≤ 𝛼 for all y ≥ 0 .

Therefore,Ap ≤ 0, which is a contradiction to the assertion that implication (A) holds. □

Example. What does this mean for A =

(
1 5
−1 2

)
, c =

(
−1
9

)
?

Theorem (Gordan’s Alternative Theorem). Let A ∈ ℝ𝑚×𝑛 . Then exactly one of the follow-
ing two systems has a solution:

I. Ax < 0.

II. p ≠ 0,A⊤p = 0, p ≥ 0.
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KKT Conditions for Linearly Constrained Problems

The Karush-Kuhn-Tucker (or KKT) conditions are a set of fundamental charaterizations
of the solution of convex optimization problems. Here we study some variants for the
linearly constrained case.

Theorem (KKT conditions for Linearly Constrained Problems - Necessary Optimality
Conditions). Consider the minimization problem{

min 𝑓 (x)
subject to a⊤𝑖 x ≤ 𝑏𝑖, 𝑖 = 1, 2, . . . ,𝑚

(LCP)

where 𝑓 is continuously differentiable over ℝ𝑛 , a1, a2, . . . , a𝑚 ℝ𝑛, 𝑏1, 𝑏2, . . . , 𝑏𝑚 ∈ ℝ and let
x∗ be a local minimum point of (LCP). Then, there exist 𝜆1, 𝜆2, . . . , 𝜆𝑚 ≥ 0 such that

∇𝑓 (x∗) +
𝑚∑︁
𝑖=1

𝜆𝑖a𝑖 = 0 ,

and

𝜆𝑖
(
a⊤𝑖 x

∗ − 𝑏𝑖
)
= 0, 𝑖 = 1, 2, . . . ,𝑚 .

Proof. If x∗ is a local minimum, this implies x∗ is a stationary point, meaning

∇𝑓 (x∗)⊤ (x − x∗) ≥ 0

for every x ∈ ℝ𝑛 satisfying a⊤𝑖 x ≤ 𝑏𝑖 for any 𝑖 = 1, 2, . . . ,𝑚. Now, denote the set of active
constraints by

𝐼 (x∗) =
{
𝑖 : a⊤𝑖 x∗ = 𝑏𝑖

}
.

Making the change of variables y = x − x∗, we have ∇𝑓 (x∗)⊤ y ≥ 0 for any y ∈ ℝ𝑚

satisfying
a⊤𝑖 (y + x∗) ≤ 𝑏𝑖, 𝑖 = 1, 2, . . . ,𝑚 .

Or equivalently ∇𝑓 (x∗)⊤ y ≥ 0 for any y satisfying

a⊤𝑖 y ≤ 0 𝑖 ∈ 𝐼 (x∗)
a⊤𝑖 y ≤ 𝑏𝑖 − a⊤𝑖 x∗ 𝑖 ∉ 𝐼 (x∗) .

The second set of inequalities can be removed, that is, we will prove that

a⊤𝑖 y ≤ 0 for all 𝑖 ∈ 𝐼 (x∗) ⇒ ∇𝑓 (x∗)⊤ y ≥ 0 .

For this, suppose that y satisfies a⊤𝑖 y ≤ 0 for all 𝑖 ∈ 𝐼 (x∗). Since 𝑏𝑖 − a⊤𝑖 x∗ > 0 for all
𝑖 ∉ 𝐼 (x∗), it follows that there exists a small enough 𝛼 > 0 for which a⊤𝑖 (𝛼y) ≤ 𝑏𝑖 − a⊤𝑖 x∗.
Thus, since in addition a⊤𝑖 (𝛼y) ≤ 0 for any 𝑖 ∈ 𝐼 (x∗), it follows by the stationarity
condition that ∇𝑓 (x∗)⊤ y ≥ 0. Therefore, we have shown a⊤𝑖 y ≤ 0 for all 𝑖 ∈ 𝐼 (x∗)
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implies that ∇𝑓 (x∗)⊤ y ≥ 0. Now, by Farkas’ lemma, there exists 𝜆𝑖 ≥ 0, 𝑖 ∈ 𝐼 (x∗) such
that

−∇𝑓 (x∗) =
∑︁

𝑖∈𝐼 (𝑥∗)
𝜆𝑖a𝑖 .

Finally, defining 𝜆𝑖 = 0 for all 𝑖 ∉ 𝐼 (x∗) we get that 𝜆𝑖
(
a⊤𝑖 x

∗ − 𝑏𝑖
)
= 0 for all 𝑖 ∈

{1, 2, . . . ,𝑚} and

∇𝑓 (x∗) +
𝑚∑︁
𝑖=1

𝜆𝑖a𝑖 = 0 .

□

The previous theorem can be improved to necessary and sufficient conditions when 𝑓 is
convex.

Theorem (KKT Conditions for Convex Linearly Constrained Problems - Necessary and
Sufficient Optimality Conditions). Consider the minimization problem (LCP) where in
addition 𝑓 is a convex continuously differentiable function over ℝ𝑛 , and let x∗ be a feasible
solution. Then x∗ is an optimal solution if and only if there exist 𝜆1, 𝜆2, . . . , 𝜆𝑚 ≥ 0 such that

∇𝑓 (x∗) +
𝑚∑︁
𝑖=1

𝜆𝑖a𝑖 = 0

and

𝜆𝑖
(
a⊤𝑖 x

∗ − 𝑏𝑖
)
= 0, 𝑖 = 1, 2, . . . ,𝑚

Proof. Necessity was already proven. For sufficiency,suppose that x∗ is a feasible solution
of (LCP) satisfying the optimality conditions. Let x be a feasible solution of (LCP). Define
the function

ℎ(x) = 𝑓 (x) +
𝑚∑︁
𝑖=1

𝜆𝑖
(
a⊤𝑖 x − 𝑏𝑖

)
.

The condition ∇ℎ (x∗) = 0 implies that x∗ is a minimizer of ℎ over ℝ𝑛 . From here, it
follows that

𝑓 (x∗) = 𝑓 (x∗) +
𝑚∑︁
𝑖=1

𝜆𝑖
(
a⊤𝑖 x

∗ − 𝑏𝑖
)
≤ 𝑓 (x) +

𝑚∑︁
𝑖=1

𝜆𝑖
(
a⊤𝑖 x − 𝑏𝑖

)
≤ 𝑓 (x) ,

that is, x∗ is a minimizer of 𝑓 . □

We conclude by stating the KKT conditions associated to linear problems with equality
and inequality constraints.
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Theorem (KKT conditions for Linearly Constrained Problems). Consider the minimization
problem 

min 𝑓 (x)
subject to a⊤𝑖 x ≤ 𝑏𝑖, 𝑖 = 1, 2, . . . ,𝑚

c⊤𝑗 x = 𝑑 𝑗 , 𝑗 = 1, 2, . . . , 𝑝
(LCPI)

where 𝑓 is continuously differential, a𝑖, c 𝑗 ∈ ℝ𝑛, 𝑏𝑖, 𝑑 𝑗 ∈ ℝ.

(i) (necessity of the KKT conditions) If 𝑥∗ is a local minimum of (LCPI) then there exist
𝜆1, 𝜆2, . . . , 𝜆𝑚 ≥ 0 and 𝜇1, 𝜇2, . . . , 𝜇𝑝 ∈ ℝ such that

∇𝑓 (x∗) +
𝑚∑︁
𝑖=1

𝜆𝑖a𝑖 +
𝑝∑︁
𝑗=1

𝜇 𝑗c 𝑗 = 0

𝜆𝑖
(
a⊤𝑖 x

∗ − 𝑏𝑖
)
= 0, 𝑖 = 1, 2, . . . ,𝑚 .

(ii) (sufficiency in the convex case) If 𝑓 is convex over ℝ𝑛 and x∗ is a feasible solution of
(LCPI) for which there exist 𝜆1, . . . , 𝜆𝑚 ≥ 0 and 𝜇1, . . . , 𝜇𝑝 ∈ ℝ such that the conditions
are satisfied, then x∗ is an optimal solution of (LCPI).

Examples: Solve the problem

min 1
2
(
𝑥2

1 + 𝑥2
2 + 𝑥2

3
)

s.t. 𝑥1 + 𝑥2 + 𝑥3 = 3 .

Orthogonal projections

Using KKT conditions, show the following results!

Orthogonal Projection onto Affine Spaces

Let 𝐶 be the affine space 𝐶 = {x ∈ ℝ𝑛 : Ax = b}, where A ∈ ℝ𝑚×𝑛 and b ∈ ℝ𝑚 . Then,

𝑃𝐶 (y) = y − A⊤
(
AA⊤

)−1 (Ay − b) .

Orthogonal Projection onto Hyperplanes

Consider the hyperplane

𝐻 =
{
x ∈ ℝ𝑛 : a⊤x = 𝑏

}
(0 ≠ a ∈ ℝ𝑛, 𝑏 ∈ ℝ) .

Then by the projection on an affine space result (above):

𝑃𝐻 (y) = y − a
(
a⊤a

)−1 (
a⊤y − 𝑏

)
= y − a⊤y − 𝑏

∥a∥2 a .
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Lemma (distance of a point from a hyperplane). Let 𝐻 = {x ∈ ℝ𝑛 : a⊤x = 𝑏} , where
0 ≠ a ∈ ℝ𝑛 and 𝑏 ∈ ℝ. Then

𝑑 (y, 𝐻 ) = |a
⊤y − 𝑏 |
∥a∥

Proof.

𝑑 (y, 𝐻 ) = ∥y − 𝑃𝐻 (y)∥ =




y − (

y − a⊤y − 𝑏
∥a∥2 a

)



 = |a⊤y − 𝑏 |∥a∥
□

Similarly, it follows the computation of the orthogonal projection onto half-spaces.

Lemma. Let 𝐻− = {x ∈ ℝ𝑛 : a⊤x ≤ 𝑏} where 0 ≠ a ∈ ℝ𝑛 and 𝑏 ∈ ℝ. Then

𝑃𝐻− (x) = x − [a
⊤x − 𝑏]+
∥a∥2 a .

KKT conditions for nonlinear problems

Now, we extend the notion of KKT conditions to the general nonlinear case. We will start
by giving an alternative notion of necessary optimality conditions in terms of feasible
descent directions, which we introduce in what follows. Consider the problem

min 𝑓 (x) s.t. x ∈ 𝐶 (G)

with 𝐶 ⊂ ℝ𝑛 convex and 𝑓 a continuously differentiable function over 𝐶 . A vector d ≠ 0
is called a feasible descent direction at x ∈ 𝐶 if

i) ∇𝑓 (x)⊤d < 0, and

ii) there exists 𝜀 > 0 such that x + 𝑡d ∈ 𝐶 for all 𝑡 ∈ [0, 𝜀].

Using the notion of feasible descent directions, we reformulate the necessary optimality
conditions as given in the following Lemma.

Lemma. If x∗ is a local optimal solution of (G); then, there are no feasible descent directions
at x∗.

Now, we will extend this result to problems of the type.{
min 𝑓 (x)

subject to 𝑔𝑖 (x) ≤ 0, 𝑖 = 1, 2, . . . ,𝑚
(NLP)

We introduce the notion of active constraints. We say the 𝑖-th constraint is active at x̃
if 𝑔𝑖 (x̃) = 0, i.e., when the constraints are satisfies as equalities. Moreover, the set

𝐼 (x̃) = {𝑖 = {1, . . . ,𝑚} : 𝑔𝑖 (x̃) = 0}

is called the set of active constraints at x̃.
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Lemma. Let x∗ be a local minimum of (NLP), where 𝑓 and 𝑔1, . . . , 𝑔𝑚 are continuously
differentiable functions over ℝ𝑛 . Let 𝐼 (x∗) be the set of active constraints at x∗. Then, there
does not exists a vector 𝑑 ∈ ℝ𝑛 such that

i) ∇𝑓 (x∗)⊤d < 0, and

ii) ∇𝑔𝑖 (x∗)⊤d < 0, for all 𝑖 ∈ 𝐼 (x∗).

The previous theorem shows that a necessary optimality condition for local optimality
is the infeasibility of certain system of strict inequalities. More treatable assumptions
over the constraints can be imposed to guarantee the infeasibilty of previous system,
and they are commonly referred to in the literature as constraint qualifications. In the
next section, we will show one constraint qualification which works in particular in the
convex case.

KKT conditions for nonlinear convex problems

KKT conditions can be extended to study nonlinear constraints. Unfortunately, the amount
of detail required for this goes beyond the scope of our module. However, under con-
vexity assumptions, we can state results regarding necessary and sufficient optimality
conditions.

Theorem (Sufficiency of the KKT conditions for convex optimization problems). Let x∗
be a feasible solution of 

min 𝑓 (x)
subject to 𝑔𝑖 (x) ≤ 0, 𝑖 = 1, 2, . . . ,𝑚

ℎ 𝑗 (x) = 0, 𝑗 = 1, 2, . . . , 𝑝 ,
(NLP)

where 𝑓 , 𝑔1, . . . , 𝑔𝑚 are continuously differentiable convex functions over ℝ𝑛 and ℎ1, . . . , ℎ𝑝
are affine functions. Suppose that there exist multipliers 𝜆1, . . . , 𝜆𝑚 ≥ 0 and 𝜇1, . . . , 𝜇𝑝 ∈ ℝ
such that

∇𝑓 (x∗) +
𝑚∑︁
𝑖=1

𝜆𝑖∇𝑔𝑖 (x∗) +
𝑝∑︁
𝑗=1

𝜇 𝑗∇ℎ 𝑗 (x∗) = 0 , (4)

𝜆𝑖𝑔𝑖 (x∗) = 0 , 𝑖 = 1, 2 . . . ,𝑚 . (5)

Then x∗ is an optimal solution of (NLP).

A more refined result is stated for necessity of KKT conditions, that is, whether optimal
solutions do satisfy the KKT system.
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Theorem (necessity of the KKT conditions under the generalized Slater’s condition). Let
x∗ be an optimal solution of the problem

min 𝑓 (x)
subject to 𝑔𝑖 (x) ≤ 0, 𝑖 = 1, 2, . . . ,𝑚

ℎ 𝑗 (x) ≤ 0, 𝑗 = 1, 2, . . . , 𝑝 ,
𝑠𝑘 (x) = 0, 𝑘 = 1, 2, . . . , 𝑞 ,

(NLP2)

where 𝑓 , 𝑔1, . . . , 𝑔𝑚 are continuously differentiable convex functions overℝ𝑛 andℎ1, . . . , ℎ𝑝, 𝑠1 . . . , 𝑠𝑘
are affine functions. Suppose that there exists a point x̂ satisfying the generalized Slater’s
condition

𝑔𝑖 (x̂) < 0, 𝑖 = 1, 2, . . . ,𝑚 (6)
ℎ 𝑗 (x̂) ≤ 0, 𝑗 = 1, 2, . . . , 𝑝 , (7)
𝑠𝑘 (x̂) = 0, 𝑘 = 1, 2, . . . , 𝑞 . (8)

Then, the exist multipliers 𝜆1, . . . , 𝜆𝑚, 𝜂1, . . . , 𝜂𝑝, ≥ 0 and 𝜇1, . . . , 𝜇𝑞 ∈ ℝ such that

∇𝑓 (x∗) +
𝑚∑︁
𝑖=1

𝜆𝑖∇𝑔𝑖 (x∗) +
𝑝∑︁
𝑗=1
𝜂 𝑗∇ℎ 𝑗 (x∗) +

𝑞∑︁
𝑘=1

𝜇𝑘∇𝑠𝑘 (x∗) = 0 , (9)

𝜆𝑖𝑔𝑖 (x∗) = 0 , 𝑖 = 1, 2 . . . ,𝑚 , (10)
𝜂 𝑗ℎ 𝑗 (x∗) = 0 , 𝑖 = 1, 2 . . . , 𝑝 . (11)

102



Part IX.
Duality

The Primal and Dual Problems

Consider the problem

𝑓 ∗ := min 𝑓 (x)
s.t. 𝑔𝑖 (x) ≤ 0, 𝑖 = 1, 2, . . . ,𝑚

ℎ 𝑗 (x) = 0, 𝑗 = 1, 2, . . . , 𝑝,
x ∈ 𝑋 ,

(Primal)

where 𝑓 , 𝑔𝑖, ℎ 𝑗 (𝑖 = 1, 2, . . . ,𝑚, 𝑗 = 1, 2, . . . , 𝑝) are functions defined on the set 𝑋 ⊆ ℝ𝑛 .
This is the “usual” optimization problem, and we will refer to it as the primal problem.
As discussed in last week, the Lagrangian associated to this problem is

𝐿(x,𝝀, 𝝁) = 𝑓 (x) +
𝑚∑︁
𝑖=1

𝜆𝑖𝑔𝑖 (x) +
𝑝∑︁
𝑗=1

𝜇 𝑗ℎ 𝑗 (x)
(
x ∈ 𝑋,𝝀 ∈ ℝ𝑚+ , 𝝁 ∈ ℝ𝑝

)
.

The dual objective function 𝑞 : ℝ𝑚+ ×ℝ𝑝 → ℝ ∪ {−∞} is defined to be

𝑞(𝝀, 𝝁) = min
x∈𝑋

𝐿(x,𝝀, 𝝁)

The domain of the dual objective function is

dom(𝑞) =
{
(𝝀, 𝝁) ∈ ℝ𝑚+ ×ℝ𝑝 : 𝑞(𝝀, 𝝁) > −∞

}
.

The dual problem is given by

𝑞∗ := max 𝑞(𝝀, 𝝁)
s.t. (𝝀, 𝝁) ∈ dom(𝑞)

(Dual)

In many optimization problems it is useful to study the properties of the dual problem,
and even resorting to solving the dual problem instead. This is an open-ended question
that we shall explore in this week, trying to understand when and why is this good
idea, and illustrating with some relevant examples. We begin by stating some relevant
properties of the dual problem.

Theorem. Consider the primal problem (Primal)with 𝑓 , 𝑔𝑖, ℎ 𝑗 (𝑖 = 1, 2, . . . ,𝑚, 𝑗 = 1, 2, . . . , 𝑝)
being functions defined on the set 𝑋 ⊆ ℝ𝑛, and let 𝑞 be the dual function defined in (Dual).
Then:

a) dom(𝑞) is a convex set.

b) 𝑞 is a concave function over dom(𝑞).
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Proof. (a) Take
(
𝝀1, 𝝁1

)
,
(
𝝀2, 𝝁2

)
∈ dom(𝑞) and 𝛼 ∈ [0, 1] . Then

min
x∈𝑋

𝐿
(
x,𝝀1, 𝝁1

)
> −∞ ,

min
x∈𝑋

𝐿
(
x,𝝀2, 𝝁2

)
> −∞ .

Therefore, since the Lagrangian 𝐿(x,𝝀, 𝝁) is affine w.r.t. 𝝀, 𝝁

𝑞
(
𝛼𝝀1 + (1 − 𝛼)𝝀2, 𝛼𝝁1 + (1 − 𝛼)𝝁2

)
= min

x∈𝑋
𝐿

(
x, 𝛼𝝀1 + (1 − 𝛼)𝝀2, 𝛼𝝁1 + (1 − 𝛼)𝝁2

)
= min

x∈𝑋

{
𝛼𝐿

(
x,𝝀1, 𝝁1

)
+ (1 − 𝛼)𝐿

(
x,𝝀2, 𝝁2

)}
≥ 𝛼 min

x∈𝑋
𝐿

(
x,𝝀, 𝝁1

)
+ (1 − 𝛼)min

x∈𝑋
𝐿

(
x,𝝀2, 𝝁2

)
= 𝛼𝑞

(
𝝀1, 𝝁1

)
+ (1 − 𝛼)𝑞

(
𝝀2, 𝝁2

)
> −∞

Hence, 𝛼
(
𝝀1, 𝝁1

)
+ (1 − 𝛼)

(
𝝀2, 𝝁2

)
∈ dom(𝑞), and the convexity of dom(𝑞) is established.

(b) 𝐿(x,𝝀, 𝝁) is an affine function w.r.t. (𝝀, 𝝁). In particular, it is a concave function w.r.t.
(𝝀, 𝝁). Hence, since 𝑞 is the minimum of concave functions, it must be concave. □

Weak and Strong Duality

A first important consequence for optimization is the week duality theorem, which
establishes a lower bound for the primal optimal value with respect to the dual optimal
value.

Theorem (Weak Duality Theorem). Consider the primal problem (Primal) and its dual
problem (Dual). Then

𝑞∗ ≤ 𝑓 ∗

where 𝑓 ∗, 𝑞∗ are the primal and dual optimal values respectively.

Proof. The feasible set of the primal problem is

𝑆 =
{
x ∈ 𝑋 : 𝑔𝑖 (x) ≤ 0, ℎ 𝑗 (x) = 0, 𝑖 = 1, 2, . . . ,𝑚, 𝑗 = 1, 2, . . . , 𝑝

}
.

Then for any (𝝀, 𝝁) ∈ dom(𝑞) we have

𝑞(𝝀, 𝝁) = min
x∈𝑋

𝐿(x,𝝀, 𝝁) ≤ min
x∈𝑆

𝐿(x,𝝀, 𝝁)

= min
x∈𝑆

{
𝑓 (x) +

𝑚∑︁
𝑖=1

𝜆𝑖𝑔𝑖 (x) +
𝑝∑︁
𝑗=1

𝜇 𝑗ℎ 𝑗 (x)
}

≤ min
x∈𝑆

𝑓 (x) = 𝑓 ∗ .

Taking the maximum over (𝝀, 𝝁) ∈ dom(𝑞), the result follows. □

104



Example:

min 𝑥2
1 − 3𝑥2

2
s.t. 𝑥1 = 𝑥

3
2

While the weak duality theorem is useful to obtain a lower bound for the optimal value
of the primal problem, a more powerful result can be proven known as strong duality.
For this, we need to cast a nonlinear variant of Farkas’ Lemma, which we briefly state.

Theorem (Supporting Hyperplane Theorem). Let 𝐶 ⊆ ℝ𝑛 be a convex set and let y ∉ 𝐶 .
Then there exists 0 ≠ p ∈ ℝ𝑛 such that

p𝑇x ≤ p𝑇y for any x ∈ 𝐶 .

Theorem (Separation of Two Convex Sets). Let 𝐶1,𝐶2 ⊆ ℝ𝑛 be two nonempty convex sets
such that 𝐶1 ∩𝐶2 = ∅. Then there exists 0 ≠ p ∈ ℝ𝑛 for which

p𝑇x ≤ p𝑇y for any x ∈ 𝐶1, y ∈ 𝐶2 .

Theorem (Nonlinear Farkas Lemma). Let 𝑋 ⊆ ℝ𝑛 be a convex set and let 𝑓 , 𝑔1, 𝑔2, . . . , 𝑔𝑚
be convex functions over 𝑋 . Assume that there exists 𝑥 ∈ 𝑋 such that

𝑔1(x̂) < 0, 𝑔2(x̂) < 0, . . . , 𝑔𝑚 (x̂) < 0 .

Let 𝑐 ∈ ℝ. Then the following two claims are equivalent:

a) The following implication holds:

x ∈ 𝑋,𝑔𝑖 (x) ≤ 0, 𝑖 = 1, 2, . . . ,𝑚 ⇒ 𝑓 (x) ≥ 𝑐 .

b) There exist 𝜆1, 𝜆2, . . . , 𝜆𝑚 ≥ 0 such that

min
𝑥∈𝑋

{
𝑓 (𝑥) +

𝑚∑︁
𝑖=1

𝜆𝑖𝑔𝑖 (𝑥)
}
≥ 𝑐 .

With these technical results, we are in position to state the strong duality result.

Theorem (Strong Duality of Convex Problems with Inequality Constraints). Consider
the optimization problem

𝑓 ∗ = min 𝑓 (x)
s.t. 𝑔𝑖 (x) ≤ 0, 𝑖 = 1, 2, . . . ,𝑚,

x ∈ 𝑋

where 𝑋 is a convex set and 𝑓 , 𝑔𝑖, 𝑖 = 1, 2, . . . ,𝑚 are convex functions over 𝑋 . Suppose that
there exists x̂ ∈ 𝑋 for which 𝑔𝑖 (x̂) < 0, 𝑖 = 1, 2, . . . ,𝑚. If this problem has a finite optimal
value, then
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a) the optimal value of the dual problem is attained.

b) the primal and dual problems have the same optimal value, 𝑓 ∗ = 𝑞∗.

Proof. Since 𝑓 ∗ > −∞ is the optimal value of the primal problem, it follows that the
following implication holds:

x ∈ 𝑋,𝑔𝑖 (x) ≤ 0, 𝑖 = 1, 2, . . . ,𝑚 ⇒ 𝑓 (x) ≥ 𝑓 ∗ .

By the nonlinear Farkas Lemma, there exists 𝜆̃1, 𝜆̃2, . . . , 𝜆̃𝑚 ≥ 0 such that

𝑞(𝜆̃) = min
x∈𝑋

{
𝑓 (x) +

𝑚∑︁
𝑗=1
𝜆̃ 𝑗𝑔 𝑗 (x)

}
≥ 𝑓 ∗ .

By the weak duality theorem,

𝑞∗ ≥ 𝑞(𝝀̃) ≥ 𝑓 ∗ ≥ 𝑞∗ .

Hence, 𝑓 ∗ = 𝑞∗ and 𝝀̃ is an optimal solution of the dual problem. □

The result above indicates that under the convexity assumptions of the theorem, it is
possible to obtain the solution of the primal problem by solving its dual.

Example:

min 𝑥2
1 − 𝑥2

s.t. 𝑥2
2 ≤ 0 .

Theorem (Complementary Slackness Conditions). Consider the optimization problem

𝑓 ∗ := min {𝑓 (x) : 𝑔𝑖 (x) ≤ 0, 𝑖 = 1, 2, . . . ,𝑚, x ∈ 𝑋 } ,

and assume that 𝑓 ∗ = 𝑞∗ where 𝑞∗ is the optimal value of the dual problem. Let x∗,𝝀∗ be
feasible solutions of the primal and dual problems. Then x∗,𝝀∗ are optimal solutions of the
primal and dual problems iff

x∗ ∈ argmin
x∈𝑋

𝐿 (x,𝝀∗)

𝜆∗𝑖 𝑔𝑖 (x∗) = 0, 𝑖 = 1, 2, . . . ,𝑚

Proof. We have

𝑞 (𝜆∗) = min
x∈𝑋

𝐿 (x, 𝜆∗) ≤ 𝐿 (x∗, 𝜆∗) = 𝑓 (x∗) +
𝑚∑︁
𝑖=1

𝜆∗𝑖 𝑔𝑖 (x∗) ≤ 𝑓 (x∗) .

By strong duality,x∗,𝝀∗ are optimal iff 𝑓 (x∗) = 𝑞 (𝝀∗). This is equivalent tomin
x∈𝑋

𝐿 (x,𝝀∗) =
𝐿 (x∗,𝝀∗), and ∑𝑚

𝑖=1 𝜆
∗
𝑖 𝑔𝑖 (x∗) = 0, which in turn is equivalent to the slackness conditions

in the theorem. □
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We conclude these results with a more general duality theorem including convex affine
inequality and equality contraints.

Theorem (General Strong Duality Theorem). Consider the optimization problem

𝑓 ∗ = min 𝑓 (x)
s.t. 𝑔𝑖 (x) ≤ 0, 𝑖 = 1, 2, . . . ,𝑚
ℎ 𝑗 (x) ≤ 0, 𝑗 = 1, 2, . . . , 𝑝
𝑠𝑘 (x) = 0, 𝑘 = 1, 2, . . . , 𝑞

x ∈ 𝑋 ,

where 𝑋 is a convex set and 𝑓 , 𝑔𝑖, 𝑖 = 1, 2, . . . ,𝑚 are convex functions over 𝑋 . The functions
ℎ 𝑗 , 𝑠𝑘 are affine functions. Suppose that there exists x̂ ∈ int(𝑋 ) for which 𝑔𝑖 (x̂) < 0, ℎ 𝑗 (x̂) ≤
0, and 𝑠𝑘 (x̂) = 0. Then if the problem has a finite optimal value, then the optimal value of
the dual problem

𝑞∗ = max{𝑞(𝝀,𝜼, 𝝁) : (𝝀,𝜼, 𝝁) ∈ dom(𝑞)}

where

𝑞(𝝀,𝜼, 𝝁) = min
x∈𝑋

[
𝑓 (x) +

𝑚∑︁
𝑖=1

𝜆𝑖𝑔𝑖 (x) +
𝑝∑︁
𝑗=1
𝜂 𝑗ℎ 𝑗 (x) +

𝑞∑︁
𝑘=1

𝜇𝑘𝑠𝑘 (x)
]

is attained, and 𝑓 ∗ = 𝑞∗.

Example. Consider the problem

min𝑥3
1 + 𝑥3

2
𝑥1 + 𝑥2 ≥ 1
𝑥1, 𝑥2 ≥ 0 .

We will show that a problem can have different dual formulations with different duality
gaps. It depends on our choice of𝑋 . Through the usual KKT conditions, we can easily find
that

( 1
2 ,

1
2
)
is the optimal solution of the primal problem with an optimal value 𝑓 ∗ = 1

4 . A
first dual problem is constructed by taking𝑋 = {(𝑥1, 𝑥2) : 𝑥1, 𝑥2 ≥ 0}. The primal problem
is min

{
𝑥3

1 + 𝑥3
2 : 𝑥1 + 𝑥2 ≥ 1, (𝑥1, 𝑥2) ∈ 𝑋

}
. Strong duality holds for the problem and hence

in particular 𝑞∗ = 1
4 . A second dual is constructed by taking 𝑋 = ℝ2. In this case, the

objective function is not convex, implying that strong duality is not necessarily satisfied.
In this case, the Lagrangian is given by

𝐿 (𝑥1, 𝑥2, 𝜆, 𝜂1, 𝜂2) = 𝑥3
1 + 𝑥3

2 − 𝜆 (𝑥1 + 𝑥2 − 1) − 𝜂1𝑥1 − 𝜂2𝑥2 .

In this case, 𝑞 (𝜆, 𝜂1, 𝜂2) = −∞ for all (𝜆, 𝜂1, 𝜂2) ⇒ 𝑞∗ = −∞, and the duality gap is infinite.
It is important to make a good choice of𝑋 to obtain useful information about the solution
of the primal problem.
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Three Important Examples of Duality Use

Linear Programming

Consider the linear programming problem
min c𝑇x
s.t. Ax ≤ b,

where c ∈ ℝ𝑛,A ∈ ℝ𝑚×𝑛 and b ∈ ℝ𝑚 . We assume that the problem is feasible, implying
that strong duality holds. The Lagrangian is given by

𝐿(x,𝝀) = c𝑇x + 𝝀𝑇 (Ax − b) =
(
c + A𝑇𝝀

)𝑇
x − b𝑇𝝀 ,

and the dual objective function is

𝑞(𝝀) = min
x∈ℝ𝑛

𝐿(x,𝝀) = min
x∈ℝ𝑛

(
c + A𝑇𝜆

)𝑇
x − b𝑇𝝀 =

{
−b𝑇𝝀 c + A𝑇𝝀 = 0
−∞ else.

Therefore, the dual problem is formulated as
max −b𝑇𝝀
s.t. A𝑇𝝀 = −c

𝝀 ≥ 0 .

Strictly ConvexQuadratic Programming

Consider the strictly convex quadratic programming problem
min x𝑇Qx + 2f𝑇x
s.t. Ax ≤ b ,

where Q ∈ ℝ𝑛×𝑛 positive definite, f ∈ ℝ𝑛,A ∈ ℝ𝑚×𝑛 , and b ∈ ℝ𝑚 . The Lagrangian (recall
𝝀 ∈ ℝ𝑚+ ) is given by:

𝐿(x,𝝀) = x𝑇Qx + 2f𝑇x + 2𝝀𝑇 (Ax − b) = x𝑇Qx + 2
(
A𝑇𝝀 + f

)𝑇
x − 2b𝑇𝝀 .

The minimizer of the Lagrangian is attained at x∗ = −Q−1 (
f + A𝑇𝝀

)
. With this, we work

over the dual objective,
𝑞(𝝀) = 𝐿 (x∗,𝝀)

=

(
f + A𝑇𝝀

)𝑇
Q−1QQ−1

(
f + A𝑇𝝀

)
− 2

(
f + A𝑇𝝀

)𝑇
Q−1

(
f + A𝑇𝝀

)
− 2b𝑇𝝀

= −
(
f + A𝑇𝝀

)𝑇
Q−1

(
f + A𝑇𝝀

)
− 2b𝑇𝝀

= −𝝀𝑇AQ−1A𝑇𝝀 − 2f𝑇Q−1A𝑇𝝀 − f𝑇Q−1f − 2b𝑇𝝀

= −𝝀𝑇AQ−1A𝑇𝝀 − 2
(
AQ−1f + b

)𝑇
𝝀 − f𝑇Q−1f .

While this might look complicated, the resulting dual problem max{𝑞(𝝀) : 𝝀 ≥ 0} it is in
fact another convex optimization problem, with a simpler feasible set than the primal
problem.
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Computing the Orthogonal Projection onto the Unit Simplex

Given a vector y ∈ ℝ𝑛, we would like to compute the orthogonal projection of the vector
y onto Δ𝑛 . The corresponding optimization problem is

min ∥x − y∥2
s.t. e𝑇x = 1

x ≥ 0 .

We will associate a Lagrange multiplier 𝜆 ∈ ℝ to the linear equality constraint e𝑇x = 1
and obtain the Lagrangian function

𝐿(x, 𝜆) = ∥x − y∥2 + 2𝜆
(
e𝑇x − 1

)
= ∥x∥2 − 2(y − 𝜆e)𝑇x + ∥y∥2 − 2𝜆

=

𝑛∑︁
𝑗=1

(
𝑥2
𝑗 − 2

(
𝑦 𝑗 − 𝜆

)
𝑥 𝑗

)
+ ∥y∥2 − 2𝜆 .

The arising problem is therefore separable with respect to the variables 𝑥 𝑗 and hence the
optimal 𝑥 𝑗 is the solution to the one-dimensional problem

min
𝑥 𝑗≥0

[
𝑥2
𝑗 − 2

(
𝑦 𝑗 − 𝜆

)
𝑥 𝑗

]
The optimal solution to the above problem is given by

𝑥 𝑗 =

{
𝑦 𝑗 − 𝜆, 𝑦 𝑗 ≥ 𝜆
0 else =

[
𝑦 𝑗 − 𝜆

]
+

and the optimal value is −
[
𝑦 𝑗 − 𝜆

]2
+ . The dual problem is therefore

max
𝜆∈ℝ

{
𝑔(𝜆) ≡ −

𝑛∑︁
𝑗=1

[
𝑦 𝑗 − 𝜆

]2
+ − 2𝜆 + ∥y∥2

}
By the basic properties of dual problems, the dual objective function is concave. In order
to actually solve the dual problem, we note that

lim
𝜆→∞

𝑔(𝜆) = lim
𝜆→∞

𝑔(𝜆) = −∞

Therefore, since −𝑔 is a coercive and differentiable function, it follows that there exists
an optimal solution to the dual problem attained at a point 𝜆 in which

𝑔′(𝜆) = 0 ,

meaning that

𝑛∑︁
𝑗=1

[
𝑦 𝑗 − 𝜆

]
+ = 1 .
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The function 𝑏 (𝜆) = ∑𝑛
𝑗=1

[
𝑦 𝑗 − 𝜆

]
+ − 1 is a nonincreasing function over ℝ and is in fact

strictly decreasing over
(
−∞,max 𝑗 𝑦 𝑗

]
. In addition, by denoting 𝑦max = max 𝑗=1,2,...,𝑛 𝑦 𝑗 ,

and 𝑦min = min 𝑗=1,2,...,𝑛 𝑦 𝑗 , we have

ℎ (𝑦max) = −1

𝑏

(
𝑦min −

2
𝑛

)
=

𝑛∑︁
𝑗=1

𝑦 𝑗 − 𝑛𝑦min + 2 − 1 > 0 ,

andwe can therefore invoke a bisection procedure to find the unique root 𝜆 of the function
ℎ over the interval

[
𝑦min − 2

𝑛
, 𝑦max

]
and then define 𝑃Δ𝑛

(y) = [y − 𝜆e]+.
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Part X.
Optimal Control

What is Mathematical Control Theory?

Mathematical control theory is the area of applied mathematics that deals with the
analysis, design, and computation of control systems. Controlling a system means to
influence its behavior to achieve a desired goal. This simple idea underpins all our
technology. Engines, autopilot systems, satellites, computer networks, and chemical
reactors are just a handful of systems that exist thanks to control mechanisms. From a
mathematical viewpoint, control theory is at the interface of many areas including:

• Dynamical Systems (ODEs and PDEs)

• Optimization, Calculus of Variations, and Operations Research

• Game Theory

• Computational Mathematics

• Data Science

Moreover, many fundamentals aspects of mathematical control theory make extensive
use of real and complex analysis, algebra, and geometry. A colourful 2020 panorama of
control theory is presented in Figure 30.

Before embarking in our journey, we must understand the central object of study in
control theory. Given a dynamical system

¤x(𝑡) = f (𝑡, x(𝑡)) , x(0) = x0 ∈ ℝ𝑛 , (12)

mathematicians are often concerned about well-posedness (existence, uniqueness, contin-
uous dependence with initial conditions) and characterization of equilibria. There exists
the expectation that, from a given initial condition and without external intervention,
the state variable of the system x(𝑡) will evolve and exhibit a certain behavior as in
the motion of the planets, or even our atmosphere before we started messing with it.
This is radically different in the control realm. We will make extensive use of the
knowledge we have of the system dynamics, however, we will introduce an external
forcing represented by a control variable u(𝑡) in ℝ𝑚 , leading to a control system

¤x(𝑡) = f (𝑡, x(𝑡), u(𝑡)) . (13)

The control paradigm is to synthesize a control law u(𝑡) to enforce a desired objective,
which can include:

• the stabilization of unstable dynamics (mechanics, chemical reactors),

• the rejection/mitigation of external disturbances (active noise cancelling),
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Figure 30: Control Theory Map by Brian Douglas, https://engineeringmedia.com/. In
dynamic optimization , we move around the upper/middle left part of the
map, including optimal control, model predictive control, and reinforcement
learning.

• the tracking of a reference trajectory (autopilots, satellites),

• accelerating the convergence towards stable equilibria (molecular dynamics).

A quintessential example: the pendulum. This problem is present in every single
control book. Consider the dynamics of a rigid pendulum of unit length and a ball of
mass𝑚 given by

𝑚 ¥𝜃 (𝑡) +𝑚𝑔 sin𝜃 (𝑡) = u(𝑡) , (14)

where the state of the system is determined by the pendulum angle and angular velocity
denoted by 𝜃 (𝑡) and ¤𝜃 (𝑡), respectively. The control action u(𝑡) is a motor placed at the
pivot, as depicted in Figure 31. Setting 𝑥1 = 𝜃 and 𝑥2 = ¤𝜃 , we write the dynamics (14) as a
first-order system (assumming𝑚 = 𝑔 = 1.)

¤x(𝑡) = 𝑑

𝑑𝑡

[
𝑥1(𝑡)
𝑥2(𝑡)

]
=

[
𝑥2(𝑡)

− sin(𝑥1(𝑡)) + u(𝑡)

]
, (15)
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If we study the uncontrolled dynamics, we can see that the vertical position at rest
𝜃 = 𝜋 , ¤𝜃 = 0 is an equilibrium of the system, however, any small perturbation from this
state will result in unstable motion. A more realistic model would include a dissipation
effect which would cause all the initial states, except for 𝜃 = 𝜋 , ¤𝜃 = 0, to converge to
𝜃 = ¤𝜃 = 0. In this case, we can state as a control objective, our desire to steer a given
configuration at 𝑡 = 0 towards the vertical stationary position in minimum time, or to
compensate external disturbances to stabilize around this reference configuration. A
common idea in control theory is to assume the initial state close enough to the reference
configuration and linearize the system. In this case,

𝜃 ≈ 𝜋 ⇒ sin𝜃 = −(𝜃 − 𝜋) + 𝑜 (𝜃 − 𝜋) (16)

and the dynamics are approximated by

¥𝜙 (𝑡) − 𝜙 (𝑡) = u(𝑡) , (17)

where the new state 𝜙 (𝑡) is the departure angle from the position 𝜃 = 𝜋 . As you can

Figure 31: A rigid pendulum is controlled through the action of an engine u(𝑡) acting at
the pivot. The control objective is steering the state of the system, given by
the pendulum angle and its velocity (𝜃 (𝑡) and ¤𝜃 (𝑡), respectively), towards a
reference configuration.

see in the control map, there exists a big splitting in the control theory realm between
linear and nonlinear synthesis methods. Here, we will work with the nonlinear dynamics
directly, avoiding any kind of linearization.

In this case, it is possible to synthesize a control law simply by having a close look at
the dynamics. If the pendulum is at the left of the vertical position, say 𝜙 = 𝜃 − 𝜋 > 0 ,
then we wish to push 𝜙 to the right, and the opposite happens when 𝜙 < 0. Therefore,
we can prescribe a linear feedback control, proportional to the angle, given by

u(𝑡) = u(𝜙 (𝑡)) = −𝛼𝜙 (𝑡). (18)

The implementation of such a control law would require the tuning a suitable parameter
𝛼 and some observation mechanism to, at every time 𝑡 , recover the angle 𝜙 (𝑡) to provide
the law u(𝑡). Regardless of the implementation, we can always do an stability analysis by
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studying the closed-loop, that is, the dynamics resulting from applying the feedback
law. In our case, they read

¥𝜙 (𝑡) − 𝜙 (𝑡) = −𝛼𝜙 (𝑡) . (19)

This sort of linear stability analysis allows us to understand whether such a control law
is a suitable mechanism to stabilize the dynamics around the equilibrium.

Exercise. Do this linear stability analysis. You should arrive to the conclusion that this
is a bad idea no matter what value of 𝛼 you choose. This leads to consider feedback laws
that also include the velocity,

u(𝑡) = −𝛼𝜙 (𝑡) − 𝛽 ¤𝜙 (𝑡) , (20)

and to determine that if 𝛽2 > 4(𝛼 − 1), then convergence to the vertical position can be
achieved without oscillations. All this analysis strongly relies on using the linearized
version of the dynamics, therefore this control law is only expected to work locally, that
is for small perturbations from the reference position.

What is Optimal Control?

While the previous approach can be applied in some specific examples, it strongly relies
on the physics of the problem or some further structural assumptions. The construction
of suitable feedback control signals is rarely that evident. In optimal control, we express
our control goal by means of an objective function to be optimized, i.e., as a dynamic
optimization problem such as

min
u(·)∈U

∫ 𝑇

0
𝐿(x(𝑠), u(𝑠)) 𝑑𝑠 + Φ(x(𝑇 ))

subject to
¤x(𝑡) = f (𝑡, x(𝑡), u(𝑡)) ,
x(0) = x0 .

Here, the control signal lives in a space ofadmissible controls U, representing the
control constraints of our problem. The running cost 𝐿(x, u) is a running cost, expressing
our wish to achieve an objective with a certain control budget. Finally, Φ(x(𝑇 )) is a final
time penalty, encoding the fact that when our optimization finishes at time 𝑡 = 𝑇 , we
expect to find the system in the reference position. Here, the time horizon can be fixed
(𝑇 or +∞) or variable, i.e. treated as an additional optimization variable. Going back to
our pendulum example, some suitable choice could be:

• U := 𝐿∞( [0, +∞[;𝑈 ), where𝑈 is a compact subset of ℝ.

• 𝐿(x, u) := ∥x − x̄∥2 + 𝛾2 ∥u∥
2, where x̄ is the vertical position and 𝛾 > 0.

• Φ(x) = ∥x − x̄∥4, i.e. some stronger penalization of the objective.
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• The horizon could be fixed 𝑇 , +∞ or minimized (minimum arrival time to the
vertical position).

The formulation above can be seen as an optimization problem with a dynamical con-
straint (hence the dynamic optimization name). At least formally, it is possible to proceed
as in a constrained optimization framework, using Lagrangemultipliers for the constraints
and deriving first and second-order optimality conditions. We will focus on the study
of optimal control problems of this type, with an emphasis on characterizing optimal
solutions.

Open and Closed-loop Control, and Learning

The control theory map in Figure 30 does not capture a very relevant aspect dividing
synthesis methods in optimal control theory. If we think about the pendulum example, it
is somehow natural for humans to think in terms of feedback laws. If you look at Figure
32, you will see the Chavo trying to balance a broom with his foot. For us, it comes
as a very natural act to compensate the deviation angle and its velocity based on our
current perception of the state of the system. This is a feedback mechanism at its purest,
also known as closed-loop control. Our control synthesis is directly expressed as a
function of the current state, and the initial condition becomes irrelevant. On the other
hand, our formalization of the balancing problem as a dynamic optimization problem
requires a rigid setting under which the optimal control will be computed. In particular,
the initial condition x0 has been fixed. For a different initial condition, we cast a different
optimization problem, and we assume the optimal control signal will be plugged into the
system from 0 to 𝑇 in a perfect way. We call this design a open-loop control. This is
theoretically and computationally sound, but

• is it reasonable to think that we will be able to execute the control signal without
any error or external perturbation?

• is it really necessary to determine an optimal action for every possible initial state
of the system?

The ultimate answer to these questions, is the synthesis of an optimal feedback map,
perhaps the most challenging problem in optimal control theory. The computation of
optimal feedback maps is a problem of formidable computational complexity. The current
understanding of the subject leads to the fascinating topic of reinforcement learning.
Somehow, the way we learn to balance a broom is through extensive trial and error
where our attempts are driven by our objective of optimizing a performance measure.
This information is used to improve the construction of a feedback map, which becomes
harder and harder to optimize.

Why Optimal Control?

In the previous chapter we have discussed some essential aspects of control theory, and
we have seen examples of control design based on physical considerations. We have
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Figure 32: El Chavo del Ocho, a former student of Optimization applying deep reinforce-
ment learning techniques to balance a broom. Note how his graceful stance
allows him to smoothly compensate external disturbances in real time.

proposed the use of optimization-based controllers as suitable synthesis strategy. Is this
really the case? In fact, it is estimated that about 90% of industrial control systems currently
operating in industry do not use any kind of optimal control design.The majority of the
control systems correspond to PID controllers, which use simple design principles similar
to those discussed in the previous section. That is, a linear feedback proportional to the
state x, its derivative ¤x, and an integral term. Tuning the influence of these terms is an
art of its own, and strongly relies on experts’ knowledge6 On the other hand, data-driven
methods like reinforcement learning (RL) exhibit and unparalleled degree of automation,
however this comes at the expense of huge sampling sets and a very inefficient use of
data in general. Here, we will study the use of optimal control theory as a compromise or
trade-off between data efficiency and automation level. On the one hand, we will assume
the dynamical system we want to control can be represented as a dynamical system for
which the governing equations are known, as opposed to a pure RL framework. On the
other hand, we will avoid further parametrizations of the control action as in the simplest
ad-hoc designs. Instead, we will cast the control synthesis as a dynamic optimization
problem, for which we will derive optimality conditions to be numerically realized by a
computer. In summary, we will use as much theory as possible,pushing the introduction
of computational methods for the synthesis until the very end of our design process.

6 In this context, experts’ knowledge is the opposite of blind automation, as a the amount of information that
can be extracted from a single sample is large compared to random sampling in, for example, stochastic
gradient descent.
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Figure 33: In a graph displaying automation level against data efficiency, the use of model-
based optimization and control techniques represents a trade-off between
ad-hoc designs and data-intensive synthesis methods such as reinforcement
learning.

The Optimal Control Formulation

Our starting point is the control of a nonlinear dynamical system of the form

¤x(𝑡) = f (𝑡, x(𝑡), u(𝑡)) , x(𝑡0) = x0 ∈ ℝ𝑛 , 𝑡0 ≤ 𝑡 ≤ 𝑡 𝑓 , (21)

over a time frame [𝑡0, 𝑡 𝑓 ], and where the initial condition x0 is known. This system is
manipulated through the action of an external control signal u(𝑡) to be computed. We
aim characterizing the design of such a signal by means of calculus of variations and
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optimization methods. For this, we write a cost functional expressing our control goals

J (x, u) := Φ(x(𝑡 𝑓 ), 𝑡 𝑓 ) +
𝑡𝑓∫

𝑡0

𝐿(x(𝑡), u(𝑡)) 𝑑𝑡 (22)

by means of a running cost 𝐿(x(𝑡), u(𝑡)) and a terminal penalty Φ(x(𝑡 𝑓 ), 𝑡 𝑓 ). We cast the
control synthesis as a nonlinear optimization problem

min
u(·)
J (x(·), u(·)) , subject to the dynamics (21). (23)

We need to understand what is the true nature of the optimization problem above. A first
observation is that including the nonlinear system (21) as a constraint generates a dynamic
optimization problem, which is considerably different to standard static optimization
problems7. A second observation, which will be used for the construction of numerical
techniques, is to understand that for a fixed initial condition x0, the controlled trajectory
x(·) can be uniquely determined from the control signal, that is x = x(u(·)), expressing
the cost as J (u(·)), known in the literature as a reduced objective. In the following,
we will discuss two methods to characterize the synthesis of the signal u∗(·) based on
the solution of the dynamic optimization problem (23).

Using Calculus of Variations

It is possible to compute the optimal solution of problem (23) by using the Euler-Lagrange
equations from calculus of variations. If you are not familiar with this technique, it is safe
to skip to the next section on Pontryagin’s Maximum Principle and attempt the example
of this section using this technique.

Formally, we adjoin the nonlinear constraints through a time-dependent Lagrange multi-
plier p(𝑡) leading to

J̄ := Φ(x(𝑡 𝑓 ), 𝑡 𝑓 ) +
𝑡𝑓∫

𝑡0

𝐿(x(𝑡), u(𝑡)) + p⊤(𝑡) {f (𝑡, x(𝑡), u(𝑡)) − ¤x(𝑡)} 𝑑𝑡 . (24)

At this point, it is useful to define the Hamiltonian

H(𝑡, x(𝑡), u(𝑡), p(𝑡)) := 𝐿(𝑡, x(𝑡), u(𝑡)) + p⊤f (𝑡, x(𝑡), u(𝑡)) . (25)

Integration by parts of the term p⊤ ¤x in the Lagrangian (24) yields

J̄ := Φ(x(𝑡 𝑓 ), 𝑡 𝑓 ) − p⊤(𝑡 𝑓 )x(𝑡 𝑓 ) + p⊤(𝑡0)x(𝑡0) +
𝑡𝑓∫

𝑡0

𝐻 (𝑡, x(𝑡), u(𝑡), p(𝑡)) + ¤p⊤x(𝑡) 𝑑𝑡 .

(26)
7 Although a natural approach for its numerical treatment would be to discretize the dynamics and treat
(23) as a large scale nonlinear optimization problem.
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Now, we compute the variation 𝛿 J̄ due to variations in 𝛿x and 𝛿u obtaining

𝛿 J̄ =

[(
𝜕Φ

𝜕x
− p⊤

)
𝛿x

]
𝑡=𝑡𝑓

+
[
p⊤𝛿x

]
𝑡=𝑡0
+

𝑡𝑓∫
𝑡0

[(
𝜕H
𝜕x
+ ¤p⊤

)
𝛿x + 𝜕H

𝜕u
𝛿u

]
𝑑𝑡 . (27)

Finding a stationary point of this functional by imposing 𝛿 J̄ = 0 over arbitrary variations
𝛿x and 𝛿u leads to the conditions

p⊤ =
𝜕Φ

𝜕x
, at 𝑡 = 𝑡 𝑓 , (28)

−¤p⊤ =
𝜕H
𝜕x

, for 𝑡0 ≤ 𝑡 ≤ 𝑡 𝑓 , (29)

𝜕H
𝜕u

= 0 , at every 𝑡0 ≤ 𝑡 ≤ 𝑡 𝑓 . (30)

Let’s analyse the structure of the optimality system. Our first intention was to compute
the optimal control u, however we have introduced an additional adjoint variable p.
The optimality conditions tell us that the adjoint equation is in turn governed by the
backward dynamical system (29) with terminal condition (28). This system is closed
by the optimality condition (30) that must be satisfied at all times. In principle, the
complete system provides a set of forward dynamics for x (the state equation with initial
condition), backward dynamics for p, and a final static relation to compute u. However,
these equations are fully coupled in a forward-backward structure, and need to be solved
simultaneously in order to synthesize u(·). In general, a problem of this type does not
have a closed-form solution and we must resort to the use of computational methods for
its realization. In the following we discuss a simple example where optimality conditions
can be solved explicitly.

A simple one-dimensional problem. Consider the linear scalar system

¤x = 𝑎x + 𝑏u , x(𝑡0) = x0 ∈ ℝ ,

where 𝑎 and 𝑏 are constants, and the cost is given by

J =
1
2

𝑡𝑓∫
𝑡0

u2 𝑑𝑡 + 1
2𝑐x(𝑡 𝑓 )

2 , 𝑐 > 0 .

In this case it is easy to see that 𝐿(x, u) = 1
2u

2 and that Φ(x(𝑡 𝑓 )) = 1
2𝑐x(𝑡 𝑓 )

2. Therefore,
the optimality system reads

¤x(𝑡) = 𝑎x(𝑡) + 𝑏u(𝑡) ,
x(𝑡0) = x0 ,

−¤p(𝑡) = 𝑎p(𝑡) ,
p(𝑡 𝑓 ) = 𝑐x(𝑡 𝑓 ) ,

0 = u(𝑡) + 𝑏p(𝑡) , for all 𝑡 .
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From the equations for p we can integrate and find

p(𝑡) = 𝑐x(𝑡 𝑓 )𝑒𝑎(𝑡𝑓 −𝑡) ⇒ u(𝑡) = −𝑏p(𝑡) = −𝑏𝑐x(𝑡 𝑓 )𝑒𝑎(𝑡𝑓 −𝑡) ,

which using the forward equation leads to

x(𝑡) = x(𝑡0)𝑒𝑎(𝑡−𝑡0) +
𝑏2𝑐

2𝑎 x(𝑡 𝑓 )
[
𝑒𝑎(𝑡𝑓 −𝑡) − 𝑒𝑎(𝑡+𝑡𝑓 −2𝑡0)

]
.

Evaluating this expression at 𝑡 = 𝑡 𝑓 allows to determine x(𝑡 𝑓 ),

x(𝑡 𝑓 ) =
2𝑎x(𝑡0)𝑒𝑎(𝑡𝑓 −𝑡0)

2𝑎 − 𝑏2𝑐 (1 − 𝑒2𝑎(𝑡𝑓 −𝑡0))

obtaining the optimal control u∗(𝑡) and the optimal state x∗(𝑡)

u∗(𝑡) = − 2𝑎𝑏𝑐x(𝑡0)𝑒𝑎(2𝑡𝑓 −𝑡0−𝑡)

2𝑎 − 𝑏2𝑐 (1 − 𝑒2𝑎(𝑡𝑓 −𝑡0))
(31)

x(𝑡) = x(𝑡0)𝑒𝑎(𝑡−𝑡0) +
𝑏2𝑐x(𝑡0)𝑒𝑎(𝑡𝑓 −𝑡0)

2𝑎 − 𝑏2𝑐 (1 − 𝑒2𝑎(𝑡𝑓 −𝑡0))

[
𝑒𝑎(𝑡𝑓 −𝑡) − 𝑒𝑎(𝑡+𝑡𝑓 −2𝑡0)

]
. (32)

It is possible to analyse the influence of the cost function in the trajectories. For example,
in the case 𝑐 →∞, which means a strong penalty on the terminal state, we can see that
from the optimal trajectory

lim
𝑐→∞

x∗(𝑡 𝑓 ) = 0 ,

regardless of 𝑡 𝑓 .

Pontryagin’s Maximum Principle

The derivation of optimality conditions through Euler-Lagrange equations dates back to
1750, approximately. A refined version of this result derived about 200 years later in the
middle of the Cold War in the Soviet side, where there was a growing interest in control
theory driven by ballistic applications. This result is known as Pontryagin’s Maximum
Principle (or PMP), and characterizes optimality conditions for a problem of the type

¤x(𝑡) = f (𝑡, x(𝑡), u(𝑡)) , x(𝑡0) = x0 ∈ ℝ𝑛 , u ∈ U ⊂ ℝ𝑚 , 𝑡0 ≤ 𝑡 ≤ 𝑡 𝑓 , (33)

with a cost functional, also known as the Bolza problem8

J (x, u) := Φ(x(𝑡 𝑓 ), 𝑡 𝑓 ) +
𝑡𝑓∫

𝑡0

𝐿(x(𝑡), u(𝑡)) 𝑑𝑡 (34)

8 There exists a formulation called the Mayer problem where the J := J (x(𝑡𝑓 ), u), solely depending
on the terminal state. Both formulations are equivalent by augmenting with an auxiliary state ¤z(𝑡) =
𝐿(x(𝑡), u(𝑡)).
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Figure 34: Lev Pontryagin (1908-1988), Soviet mathematician and one of the central figures
of modern optimal control theory. He lost his eyesight when he was 14, and he
also made remarkable contributions to algebraic and differential topology.

and terminal constraints

Ψ(x(𝑡 𝑓 )) = 0 , Ψ : ℝ𝑛 → ℝ𝑞 . (35)

There are three important differences from the first optimal control formulation we have
discussed earlier. From now on, the terminal time 𝑡 𝑓 is allowed to be free, and we express
a set of 𝑞 terminal constraint for the final state through Ψ(x(𝑡 𝑓 )). However, the most
remarkable difference in the PMP formulation, is the existence of a space of admissible
controlsU where we restrict our optimal control signal. Recalling Hamiltonian

H(𝑡, x(𝑡), u(𝑡), p(𝑡)) := 𝐿(𝑡, x(𝑡), u(𝑡)) + p⊤f (𝑡, x(𝑡), u(𝑡)) , (36)

the optimality conditions now read

¤x(𝑡) = 𝜕H
𝜕p

,

−¤p(𝑡) = 𝜕H
𝜕x

,

x(𝑡0) = x0 ,

Ψ(x(𝑡 𝑓 )) = 0 ,

p(𝑡 𝑓 ) =
[
𝜕Φ

𝜕x
+ 𝜈⊤ 𝜕Ψ

𝜕x

]
𝑡=𝑡𝑓

,[
𝜕Φ

𝜕𝑡
+ p⊤f + 𝐿

]
𝑡=𝑡𝑓

= 0 ,

H(𝑡, x∗, u∗(𝑡), p∗(𝑡)) ≤ H (𝑡, x∗, u(𝑡), p∗(𝑡)) , for all u ∈ U

(PMP)

The last condition states that the optimal control is the minimizer of the Hamiltonian
ceteris paribus. In the smooth, unconstrained control case, this is equivalent to the previous

121



condition 𝜕H
𝜕u = 0, but since we include the constraint u ∈ U, this condition must be

realized as
u∗ ∈ argmin

w∈U
H(𝑡, x∗,w, p∗) .

We conclude with a simple linear example illustrating the differences arising in the
constrained control case.

Bang-bang control of linear systems. We study a time-optimal control problem for
linear dynamics. Consider the control system

¤x = Ax + Bu

where A ∈ ℝ𝑛×𝑛 , B ∈ ℝ𝑛 and the control variable is constrained to |u| ≤ 1. Our objective
is to minimize the time 𝑡 𝑓 to reach the origin departing from x(0) = x0, that is x(𝑡 𝑓 ) = 0.
The cost functional and the terminal constraint are chosen as

J :=

𝑡𝑓∫
0

1𝑑𝑡 , Ψ(x(𝑡 𝑓 )) = x(𝑡 𝑓 ) .

We begin by assembling the Hamiltonian

H = 1 + p⊤(Ax + Bu) ,

and the optimality conditions read

¤x =
𝜕H
𝜕p

= Ax + Bu ,

−¤p =
𝜕H
𝜕x

= A⊤p ,

u = argmin
|w|≤1

{p⊤Bw} = − sgn(p⊤B) ,

from where we can infer that the optimal control will always take values in the boundary
of the control set, i.e. u∗(𝑡) = {−1, 1}. In the upcoming section we will discuss how to
realize the synthesis of optimal controllers via PMP in a more general way by resorting
to computational optimization and numerical analysis tools.

The Linear-Quadratic Case

A very important instance class of control problems can be formulated assuming linear
dynamics of the form

¤x(𝑡) = Ax(𝑡) + Bu(𝑡) , x ∈ ℝ𝑛 , u ∈ ℝ𝑚 ,

where A ∈ ℝ𝑛×𝑛 ,B ∈ ℝ𝑚×𝑛 , and the cost function is quadratic

J (x, u) = 1
2

∫ 𝑇

0

[
x⊤Qx + u⊤Ru

]
𝑑𝑡 + 1

2x(𝑇 )
⊤Sx(𝑇 ) , x(0) = x0 .
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We further assume that the matrices Q ∈ ℝ𝑛×𝑛 , R ∈ ℝ𝑚×𝑚 , and S ∈ ℝ𝑛×𝑛 are symmetric,
Q and S, are positive semi-definite and R is positive definite (do you have an intuition
about this condition?). We assume the control spaceU is the class of all measurable and
a.e. bounded controls, and the horizon 𝑇 is fixed. The Hamiltonian is given by

H =
1
2

[
x⊤Qx + u⊤Ru

]
+ p⊤(Ax + Bu) ,

and the optimality conditions read

¤x =
𝜕H
𝜕p

= Ax + Bu , x(0) = x0 (37)

−¤p =
𝜕H
𝜕x

= Qx + A⊤p , p(𝑇 ) = Sx(𝑇 ) , (38)

u = argmin
w

{ 1
2w
⊤Rw + p⊤Bw} = −R−1B⊤p . (39)

To solve this optimality system we can plug the optimal control expression (39) back to
the forward eq. (37), leading to

¤x = Ax − BR−1B⊤p ,
−¤p = Qx + A⊤p ,

x(0) = x0 ,

p(𝑇 ) = Sx(𝑇 ) .

(TPBVP)

These type of problems are known as two-point boundary value problems (TPBVP), and
in general, are difficult to solve due to the nonlinear coupling between the variables. Note
that the terminal state x(𝑇 ) determines the terminal condition for the backward adjoint
equation by p(𝑇 ) = Sx(𝑇 ). The literature offer different alternatives for the computational
solution of this optimality system, most notably:

1. Solving the TPBVP using some type of multiple-shooting method. You can check
MATLAB’s bvp4c, which is comprehensive package for the solution of TPBVP
arising in control and elsewhere.

2. Discretizing the forward-backward dynamics (x(·), p(·)) ≈ {x𝑘 , p𝑘}𝑁𝑇

𝑘=0, and solve a
large-scale nonlinear system N(x𝑘 , p𝑘) = 0 using a Newton-type method.

3. Write a reduced cost J (x, u) = J (x(u), u) and apply gradient descent for u.
Computing ∇uJ (x(u), u) can be done using the adjoint equation (38) and the
optimality condition (39).

However, in the linear quadratic case we can follow a different approach, known in the
literature as the Linear Quadratic Regulator (LQR). Since the dynamics are linear, we
can assume that the adjoint is expressed as p(𝑡) = Π(𝑡)x(𝑡), where Π(𝑡) ∈ ℝ𝑛×𝑛 and
symmetric. Substituting in the adjoint this leads to

−¤p = −( ¤Πx + Π ¤x) = − ¤Πx − Π(Ax − BR−1B⊤p) = Qx + A⊤p ,
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which is a relation to be satisfied for all x, and hence it is equivalent to the Differential
Riccati Equation

− ¤Π = ΠA + A⊤Π − ΠBR−1B⊤Π + Q , Π(𝑇 ) = S . (DRE)

This is a matrix differential equation, and a first numerical naive treatment is to use a
numerical integrator componentwise for 𝑛2 entries (it can be halved by symmetry), which
can become very costly for large scale dynamics. More sophisticated approaches exploit
low-rank properties of the matrices involved. Once the solution Π(𝑡) has been computed,
the optimal control can be recovered as

u(𝑡) = −R−1B⊤p(𝑡) = −R−1B⊤Π(𝑡)x(𝑡) .

However, appreciating the true nature of the optimal control u(𝑡) = −R−1B⊤Π(𝑡)x(𝑡), we
observe it corresponds to an optimal linear feedback map of x, which is computed
regardless of the initial state x0. In the linear-quadratic case, the use of the PMP leads to
an optimal feedback control.

The Algebraic Riccati Equation

Let us recall that for a finite horizon problem with linear dynamics and quadratic cost
function, the optimal control law is obtained by solving the Differential Riccati Matrix
Equation

− ¤Π = ΠA + A⊤Π − ΠBR−1B⊤Π + Q , Π(𝑇 ) = S . (DRE)

Once the solution Π(𝑡) has been computed, the optimal control is given by

u(𝑡) = −R−1B⊤p(𝑡) = −R−1B⊤Π(𝑡)x(𝑡) .

As we have already noted, the optimal control u(𝑡) = −R−1B⊤Π(𝑡)x(𝑡) is expressed in
feedback form. This is somehow better than what we were originally looking for, as this
control can computed regardless of the initial state x0. This is a very particular instance of
a problem where the PMP technique yields an optimal feedback control. An important
asymptotic case is obtained when 𝑇 →∞ (with S = 0), here the optimal control is given
by

u(x) = −Kx = −R−1B⊤Πx ,

where the Kalman gain K is determined by Π, which is the steady state solution of
(DRE), also known as the Algebraic Riccati Equation

ΠA + A⊤Π − ΠBR−1B⊤Π + Q = 0 . (ARE)

In general, there’s no unique solution to this equation, as we need further structural
assumptions to guarantee the existence of a unique stabilizing Π. Stabilizing here means
that the spectrum of the closed-loop operator (A − BR−1B⊤Π) is in the left half-plane.
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Figure 35: On the right, Rudolf Emil Kálmán (1930-2016), Hungarian-American engineer
and mathematician, who made seminal contributions to control theory in-
cluding the LQR. His control theoretical methods were implemented in the
navigation system of the Apollo developed by Margareth Hamilton (b. 1936).
In 2009, he received the National Medal of Science from Barack Obama.

x(T ) = 1x = 0

ẋ(t) = u(t)

u(·) ∈ [−1, 1]

x(T ) = −1

x(0) = x0 ∈ Ω = [−1, 1]

x(T ) ∈ ∂Ω

Figure 36: Given the linear dynamics ¤x(𝑡) = u(𝑡), we want to minimize the arrival time
to 𝜕Ω = {−1, 1} with a control u(𝑡) ∈ [−1, 1].

Optimal Feedback Control & Dynamic Programming

Let’s start by revisiting the bang-bang control example depicted in Figure 36. Here, the
cost function we want to minimize is the arrival time of the cart to the boundary of
Ω = [−1, 1], which we we express as

min
u(·)∈U

𝑇 (u)

subject to ¤x(𝑡) = u(𝑡) , x(0) = x0 , x(𝑇 ) ∈ 𝜕Ω , u(𝑡) ∈ [−1, 1] .

The two questions we want to solve from an optimal control viewpoint are: what is the
optimal cost 𝑇 and the optimal control law u? We have already studied the answer to
these questions through calculus of variations and Pontryagin’s Maximum Principle. We
will now adopt a Dynamic Programming perspective, relating these questions to the
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solution of the partial differential equation

∥∇𝑇 (x)∥ = 1 , x ∈ Ω = [−1, 1] . (40)

It is easy to see that for the simple dynamics ¤x = u(𝑡) the solution of the minimum time
control problem is to drive to the left at full speed u = −1 is the initial position is negative,
and the right at speed u = if the initial position is positive. From here it follows that the
optimal cost is the distance function to the boundary of Ω. This distance function can be
in fact identified with the solution of the PDE (40), as depicted in Figure 54.

x = −1 x = 1x = 0

|T ′| = 1

T (−1) = 0 T (1) = 0

Figure 37: The Eikonal equation ∥∇𝑇 (x)∥ = 1 poses different PDE-type difficulties: no
classical solutions and non-uniqueness of weak solutions. It’s solution must be
understood in the viscosity solution sense.

However, we must proceed with care. Derivatives are not properly defined at x = −1, 0, 1
and in fact there are infinitely many sawtooth-type functions that satisfy both the bound-
ary conditions 𝑇 (−1) = 𝑇 (1) = 0 and the PDE ∥∇𝑇 (x)∥ = 1 in the weak sense, and none
of them correspond to the distance function we are looking for. To define a concept of
solution in this context, we must talk about viscosity solutions, that is, solutions to the
PDE in a vanishing viscosity limit

∥∇𝑇 (x)∥ = 1 + 𝜖Δ𝑇𝜖 → 𝑇𝜖 (x) = 1 − ∥x∥ + 𝜖
(
𝑒−1/𝜖 − 𝑒−∥x∥/𝜖

)
.

Having identified a relation between solving a PDE and finding the optimal cost of the
problem, we now turn our attention to finding the optimal control law based on the
PDE. We observe that in fact, is 𝑇 (x) is the hat function depicted in Figure (54), then its
gradient (wherever it exists) coincides with the optimal control. Moreover, because of this
relation, the optimal control is naturally expressed as a function of x, i.e., as a feedback
law. This synthesizes the fundamental philosophy behind the dynamic approach: we will
establish a link between the solution of an optimal control problem and the solution of
a nonlinear partial differential equation, and after solving the PDE, we will recover the
optimal feedback law as a by-product.
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The Hamilton-Jacobi-Bellman PDE

A central idea behind the synthesis of optimal feedback laws is the formulation of a
partial differential equation governing the optimal cost of our problem, from which the
optimal feedback map is directly recovered as a by-product. This very particular partial
differential equation is called the Hamilton-Jacobi-Bellman PDE, and is central object of
study in optimal control theory and reinforcement learning. It is often written as{

H(x,𝑉 ,∇𝑉 ) = 0 in Ω ⊂ ℝ𝑑 ,

𝑉 (x) = 𝑏 (x) in 𝜕Ω ,

whereH(x,𝑉 ,∇𝑉 ) is the Hamiltonian (replacing p by ∇𝑉 ), whose selection gives origin
to different PDEs/control problems:

• Eikonal equations:
H(x,∇𝑉 ) = ∥∇𝑉 ∥ − 𝐼 (x) .

• Minimum time control:

H(x,∇𝑉 ) = sup
u∈𝑈
[−𝑓 (x, u) · ∇𝑉 − 1] .

• Infinite horizon optimal control:

H(x,𝑉 ,∇𝑉 ) = sup
u∈𝑈
[𝜆𝑉 − 𝑓 (x, u) · ∇𝑉 − ℓ (x, u)] .

• Isaacs equation (differential games):

H(x,𝑉 ,∇𝑉 ) = sup
u∈𝑈

inf
w∈𝑊
[𝜆𝑉 − 𝑓 (x, u,w) · ∇𝑉 − ℓ (x, u,w)] .

In general, whenever we attempt the synthesis of an optimal feedback law for a deter-
ministic continuous dynamical system, we first find the associated HJB PDE, and then we
proceed to numericall approximate its solution either by classical, grid-based techniques
(finite differences, semi-Lagrangian schemes) or by deep neural networks (deep reinforce-
ment learning). From a computational perspective, there are two fundamental difficulties
in the numerical of solution of HJB PDEs: they are fully nonlinear PDEs (minimization
with respect to u), and they are written over a domain Ω ⊂ ℝ𝑑 , where ℝ𝑑 is the state
space of the control system, which can be arbitrarily large. Richard Bellman, the founding
father of dynamic programming, saw this limitation at a very early stage, coining the term
curse of dimensionality, when referring to the overwhelming computational complexity
associated to the numerical solution of HJB PDEs.
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Figure 38: Richard Bellman (1920-1984), a central figure in modern control theory. Re-
garding the term dynamic programming -which he invented- he said: I thought
“dynamic programming” was a good name. It was something not even a Con-
gressman could object to. So I used it as an umbrella for my activities ( from R.E.
Bellman, “ Eye of the Hurricane”).

Dynamic Programming and Minimum Time Control

We consider nonlinear system dynamics of the form{
¤y(𝑡) = f (y(𝑡), u(𝑡)) ,
y(0) = x ,

where f : ℝ𝑑 ×𝑈 → ℝ𝑑 is continuous. The situation is depicted in Figure 39. Given a
target set T ⊂ ℝ𝑑 , we want to find the optimal control signal u(𝑡) such that its boundary
𝜕T is reached in minimum time from a departure point x. To study this problem with

Ω

∂Ω
x

x

τ

∂τ

ẏ(t) = f (y(t), a(t)

Figure 39: The minimum time control problem.

dynamic programming techniques, we must define the minimum time function:

𝑇 (x) = inf
u(·)∈U

{ 𝑡 > 0 : yx(𝑡, u) ∈ T } ,
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where the notation yx(𝑡, u) stands for the trajectory followed by y departing from y(0) = x
through the action of the control signal u. Under the local controllability condition

inf
u∈𝑈

f (x, u) · 𝑛(x) < 0, ∀x ∈ 𝜕T ,

where 𝑛(x) is the vector normal to 𝜕T , the minimum time function 𝑇 (x) is continuous
over the reachable set R, the set of states with 𝑇 (x) < ∞ . In dynamic programming,
we look for a functional relation characterizing 𝑇 (x), (that is, a global approach).
How do we find a HJB-type PDE? Here, we follow the steps of Bellman and the dynamic
programming principle. If we look at the isochrone map in Figure 40, it depicts the fastest
travel times from anywhere in the world to London in 1914. This a minimum time function.

Figure 40: An isochrone map from 1914 indicating the travel times to London (in days),
assuming the shortest path is taken. What is the optimal direction as a feedback
map based on the minimum time function?

How can we generate such a plot? An extremely inefficient way to generate this plot
would be to solve the fastest travel route (and compute its travel time) for each point
in the globe. Instead, Bellman proposed the use of a backward induction procedure.
Let’s start in London. Travel time from London to London is 0. Next, we identify the
set of points whose fastest travel route can reach London in one hour. This defines a
level set𝑇 (x) = 1 for the minimum time function. Now, if we want to compute the set of
points reaching London (with an optimal route) within two hours, rather than blindly
solving this problem, we solve the problem of finding the outer points whose optimal
travel time to the level set 𝑇 (x) = 1 is of one hour. This is Bellman’s optimality principle:
optimal trajectories are such that they can be split at any point along the trajectory, and
the second half is always the optimal trajectory for this departure point (otherwise, the
trajectory wouldn’t be optimal). In mathematical language, this is expressed as:

Theorem (Dynamic Programming Principle for Minimum Time Control). For all x in the
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reachable set R and 𝜏 ∈ (0,𝑇 (x)), it holds

𝑇 (x) = inf
u(·)∈U

{𝜏 +𝑇 (yx(𝜏, u))} .

Formally speaking, we can take divide this equation by 𝜏 and taking the limit 𝜏 → 0, the
expression

lim
𝜏→0

𝑇 (yx(𝜏, u)) −𝑇 (x)
𝜏

= ∇𝑇 (x) · f (x, u) ,

i.e., the directional derivative along the dynamics. This leads to a more general version of
the Eikonal PDE, namely, the HJB equation for minimum time control:

sup
u∈𝑈
{−∇𝑇 (x) · f (x, u)} = 1 in Ω , 𝑇 (x) = 0 in 𝜕T .

Once we solve this partial differential equation, the optimal feedback map corresponds
to the minimizer of the Hamiltonian above, that is

u∗(𝑥) = argmax
u∈𝑈

{−∇𝑇 (x) · f (x, u)} .

Infinite Horizon Optimal Control

The same idea can be applied for the infinite horizon optimal control problem:

minimize
u(·)∈U

J (u(·), x) :=
∞∫

0

ℓ (y(𝑡), u(𝑡)) 𝑑𝑡

subject to ¤y(𝑡) = f (y(𝑡)) + gu(𝑡)
y(0) = x ∈ ℝ𝑑

u(𝑒) := K(𝑒)

¤y(𝑡) = f (y) + gu

𝑟
𝑒

uy

Dynamic Programming: the value function 𝑉 (x) := inf
u(·)∈U

J (u, x) can be decomposed
in

𝑉 (x) = inf
u(·)∈U


𝜏∫

0

ℓ (y(𝑡), u(𝑡)) 𝑑𝑡 +
∞∫

𝜏

ℓ (y(𝑡), u(𝑡)) 𝑑𝑡
 ,

= inf
u(·)∈U


𝜏∫

0

ℓ (y(𝑡), u(𝑡)) 𝑑𝑡 +𝑉 (yx(𝜏, u))
 ,

and dividing by 𝜏 and taking the limit 𝜏 → 0 leads to the theHamilton-Jacobi-Bellman
equation

min
u∈𝑈

[
(f (x) + gu)⊤∇𝑉 (x) + ℓ (x, u)

]
= 0 , 𝑉 (0) = 0 .

The optimal control is given in feedback (state-dependent) form:

𝑢∗(x) = K(x) := argmin
u∈𝑈

[
(f (x) + gu)⊤∇𝑉 (x) + ℓ (x, u)

]
.
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Exercise. Do the calculations for the LQ case, for the HJB PDE you should arrive to
the Algebraic Riccati Equation. You need to assume 𝑓 (x) = 𝐴x, 𝑔(x) = 𝐵, ℓ (x, u) =
x⊤𝑄x + u⊤𝑅u, 𝑉 (x) = x⊤Πx and𝑈 = ℝ𝑚 .
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