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1. Solve the primal and dual problem for

min 𝑥21 + 𝑥22 + 2𝑥1
s.t. 𝑥1 + 𝑥2 = 0 .

2. Study the duality gap (difference between 𝑓 ∗ and 𝑞∗) for the problem

min
{
𝑒−𝑥2 :

√︃
𝑥21 + 𝑥22 − 𝑥1 ≤ 0

}
.

3. Recompute the dual of the convex quadratic problem from the notes under that
assumption that the matrix Q ⪰ 0 instead of Q ≻ 0.

4. Consider the Chebyshev center problem where we have a set of points a1 . . . , a𝑚 ∈
ℝ𝑛 for which we seek a point x ∈ ℝ𝑛 that is the center of a ball of minimum radius
𝑟 > 0 containing the points

minx,𝑟 𝑟

s.t. ∥x − a𝑖 ∥ ≤ 𝑟 , 𝑖 = 1, 2, . . . ,𝑚 .

Compute the dual of this problem. (Hint: use an equivalent formulation over the
squared radius)

Solutions

1. The primal problem has the following quadratic objective

𝑓 (x) = x⊤
[
1 0
0 1

]
x + 2

[
1 0

]
x
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which is convex (as the identity matrix is positive definite). Hence, KKT condition
are in this case necessary and sufficient.
For the Lagrangian

L(x, 𝜇) = 𝑥21 + 𝑥22 − 2𝑥1 + 𝜇 (𝑥1 + 𝑥2)

we have the following KKT system:
2𝑥1 + 2 + 𝜇 = 0
2𝑥2 + 𝜇 = 0 (𝜇 = −2𝑥2)
𝑥1 + 𝑥2 = 0 (𝑥1 = −𝑥2)

=⇒
(
𝑥∗1 , 𝑥

∗
2
)
=

(
− 1
2
,
1
2

)
at which 𝑓 (x∗) = − 1

2 .

Since the objective function 𝑓 (x) is convex, and the linear equation is feasible,
strong duality holds for this problem. For the associated Lagrangian L(x, 𝜇) given
above, we have

q(𝜇) = min
x∈ℝ2

L(x, 𝜇) ,

and

∇xL = 0 ⇐⇒
{
2𝑥1 + 2 + 𝜇 = 0
2𝑥2 + 𝜇 = 0

=⇒
{
𝑥2 = − 𝜇

2
𝑥1 = −1 − 𝜇

2
(∗)

for which the dual objective becomes

q(𝜇) = (−1 − 𝜇

2
)2 + (−𝜇

2
)2 + 2(−1 − 𝜇

2
) + 𝜇 (−1 − 𝜇)

= −𝜇2

2
− 𝜇 − 1 .

Then, the dual problem reads

max
𝜇

−𝜇2

2
− 𝜇 − 1

which is realized when q′(𝜇) = 0, hence at 𝜇∗ = −1. Then, from (∗) the minimizer is(
𝑥∗1 , 𝑥

∗
2
)
=

(
− 1
2
,
1
2

)
as in the solution of the primal.

2. We consider
min 𝑒−𝑥2 s.t.

√︃
𝑥21 + 𝑥22 − 𝑥1 ≤ 0

for which the feasible set is {x : 𝑥2 = 0, 𝑥1 ≥ 0}, hence Slater’s condition cannot
be satisfied, and so only week duality holds (𝑓 ∗ > 𝑞∗). Since optimility requires
𝑥2 = 0, we have that for the primal, 𝑓 ∗ = 1. Moving now to the dual problem, we
have associated Lagrangian

L(x, 𝜆) = 𝑒−𝑥2 + 𝜆(
√︃
𝑥21 + 𝑥22 − 𝑥1), 𝜆 ≥ 0 ,
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for which the dual objective is q(𝜇) = minx∈ℝ2 L(x, 𝜇). Note that L ≥ 0, but for
any 𝜀 > 0, we have

x𝜀 =
(
𝑥22,𝜀 − 𝜀2

2𝜀
, 𝑙𝑛(𝜀)

)
=⇒

√︃
𝑥21,𝜀 + 𝑥22,𝜀 − 𝑥1,𝜀 = 𝜀 =⇒ L(x𝜀, 𝜆) = (1 + 𝜆)𝜀

and so

q(𝜇) = min
x∈ℝ2

L(x, 𝜇) ⇐⇒ min
𝜀>0

L(x𝜀, 𝜆) ⇐⇒ min
𝜀>0

(1 + 𝜆)𝜀 → 0 ∀𝜆 ≥ 0 .

Thus, q(𝜇) = 0 and the dual solution is given by

max
𝜆≥0

{
0
}
= q∗ = 0 .

3. The quadratic problem from the notes is

min
x∈ℝ𝑛

x⊤𝑄x + 2𝑓 ⊤x , s.t. 𝐴x ≤ 𝑏 ,

where we assume 𝑄 ⪰ 0. This implies that 𝑄 is not necessarily invertible, but
there exists a matrix 𝐷 ∈ ℝ𝑛×𝑛 such that 𝑄 = 𝐷⊤𝐷 . Thus, the quadratic problem is
equivalent to

min
x∈ℝ𝑛

x⊤𝐷⊤𝐷x + 2𝑓 ⊤x , s.t. 𝐴x ≤ 𝑏 ,

which in turns is equivalent to

min
x,z∈ℝ𝑛

∥z∥2 + 2𝑓 ⊤x , s.t.

{
𝐴x ≤ 𝑏

𝑏𝑧 = 𝐷x

The associated Lagrangian

L(x, z, 𝜆, 𝜇) = ∥z∥2 + 2𝑓 ⊤x + 2𝜆⊤(𝐴x − 𝑏) + 2𝜇⊤(z − 𝐷x)

it is separable with respect to x and z, hence the objective for the dual problem can
be computed as

q(𝜆, 𝜇) = min
z

(
∥z∥2 + 2𝜇⊤z

)
︸                  ︷︷                  ︸

(𝑎)

+2min
x

(
𝑓 ⊤x + 𝜆⊤𝐴x − 𝜇⊤𝐷x

)
︸                              ︷︷                              ︸

(𝑏)

−2𝜆⊤𝑏

(a) by first order optimality conditions, we have

∇z

(
∥z∥2 + 2𝜇⊤z

)
= 0 =⇒ 2z + 2𝜇 = 0 =⇒ z∗ = −𝜇

(b) we can rearrange the objective and obtain

min
x

( (
𝑓 ⊤ + 𝜆⊤𝐴 − 𝐷⊤𝜇

)
x
)
=

{
0 𝑓 +𝐴⊤𝜆 − 𝐷⊤𝜇 = 0
−∞ otherwise
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Thus, the dual objective reads

q(𝜆, 𝜇) = min
x,q

L(x, z, 𝜆, 𝜇) =
{
∥𝜇∥2 − 2𝜆⊤𝑏 𝑓 +𝐴⊤𝜆 − 𝐷⊤𝜇 = 0
−∞ otherwise

and since {−∞} ⊄ 𝐷𝑜𝑚(q), we can write the dual problem as

max
𝜇∈ℝ𝑛

𝜆∈ℝ𝑚
+

∥𝜇∥2 − 2𝜆⊤𝑏 s.t. 𝑓 +𝐴⊤𝜆 − 𝐷⊤𝜇 = 0 .

4. We consider the set {a𝑖}𝑚𝑖=1 ⊂ ℝ𝑛 of data points encircled by a ball of radius 𝑟 and
center x:

min
x,𝑟

𝑟 s.t. ∥x − a𝑖 ∥ ≤ 𝑟 𝑖 = 1, ...,𝑚 ,

which is equivalent to

min
x,𝛾

𝛾 s.t. ∥x − a𝑖 ∥2 ≤ 𝛾 𝑖 = 1, ...,𝑚 .

The associated Lagrangian is

L(x, 𝛾, 𝜆) = 𝛾 +
𝑚∑︁
𝑖=1

𝜆𝑖 (∥x − a𝑖 ∥2 − 𝛾) , 𝜆 ≥ 0 ,

for which the dual objective becomes

q(𝜆) = min
(x,𝛾)∈𝑋

L(x, 𝛾, 𝜆) = 𝛾 (1 −
𝑚∑︁
𝑖=1

𝜆𝑖)︸         ︷︷         ︸
0

+
𝑚∑︁
𝑖=1

𝜆𝑖 (∥x − a𝑖 ∥2) .

We take𝑋 = ℝ𝑛+1, without imposing any restriction on𝛾 (which should be positive,
as 𝛾 = 𝑟 2). Assuming 𝜆 ∈ Δ𝑚 , we have
𝑚∑︁
𝑖=1

𝜆𝑖 ∥x−a𝑖 ∥2 =
𝑚∑︁
𝑖=1

𝜆𝑖
(
∥x∥2−2a⊤𝑖 x+∥a𝑖 ∥2

)
= ∥x∥2

( 𝑚∑︁
𝑖=1

𝜆𝑖
)

︸   ︷︷   ︸
1

−2
( 𝑚∑︁
𝑖=1

𝜆𝑖a⊤𝑖
)
x+

( 𝑚∑︁
𝑖=1

𝜆𝑖 ∥a𝑖 ∥2
)
,

and so

q(𝜆) = min
x

(
∥x∥2 − 2

( 𝑚∑︁
𝑖=1

𝜆𝑖a⊤𝑖
)
x +

( 𝑚∑︁
𝑖=1

𝜆𝑖 ∥a𝑖 ∥2
) )
.

By first order optimality conditions, we have

x∗ =
𝑚∑︁
𝑖=1

𝜆𝑖a⊤𝑖 = 𝐴𝜆

for the matrix𝐴 having as 𝑖−th column the coordinate of the point a𝑖 , for 𝑖 = 1, ...,𝑚.
Thus

q(𝜆) = ∥𝐴𝜆∥2 − 2 (𝐴𝜆)⊤(𝐴𝜆)︸       ︷︷       ︸
∥𝐴𝜆∥2

+
𝑚∑︁
𝑖=1

𝜆𝑖 ∥a𝑖 ∥2 =
{
−∥𝐴𝜆∥2 +∑𝑚

𝑖=1 𝜆𝑖 ∥a𝑖 ∥2 𝜆 ∈ Δ𝑚

−∞ otherwise
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for which the dual problem reads

max
𝜆≥0

(
− ∥𝐴𝜆∥2 +

𝑚∑︁
𝑖=1

𝜆𝑖 ∥a𝑖 ∥2
)

s.t. 𝜆 ∈ Δ𝑚 .
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