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. Find the global minimum and maximum points of f(x;, x2) = x; + x2 over the unit
ball in R2, S = B[0,1] = {(xl, x) T xl2 + xg < 1} . Repeat with f(xy, x2) = 2x1 —3x;
over the set S = {(x1, x2) : 2x? + 5x5 < 1}.

Answer: as seen in lectures. Consider
fOax) =0 DTx <1 DX < V2.

The upper bound is attained with the maximizer x = (1 1)T/V2 and a similar lower
bound is attained with the minimizer x = —(1 1)7/V2. For the second part, we
consider the change of variables

u:\/gxl’ Uz\/gxz,

so that S becomes the unit ball in (u,v), where we optimize f(u,v) = Vou - %v

as in the first part of the exercise. Don’t forget to go back to the original variables
(x1, x2) at the very end.

. Classify the matrices

Answer: the matrix A is direct from det(A) = 10 and tr(A) = 7, hence positive
definite. For B, both diagonally dominant and principal minors criteria are incon-
clusive, and therefore we must go back to the definition of indefinite matrix. Note
that

e/Be;=1>0, and (e;—e;3)'B(ez—e3)=-09<0,

and we conclude the matrix B is indefinite.



3. Use a computational tool of your preference to classify

2200 gy s
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Answer: positive definiteness can be easily check in a computer by looking at
the eigenvalues of the matrix. For example, in matlab this is done by using the
command eig(). For example

1 A=[2200;2200 ;003 1;001 3]
2 eig(A)

will give as an output the eigenvalues 0,2,4,4, from where we directly conclude that
the matrix is positive semidefinite.

4. Classify the stationary points of
2
a) f(x) = xl2 +x§ +x§ + X1X2 + X1X3 + XoX3 + (xl2 +x§ +x§) )

Answer: In this case we find that x = 0 is a stationary point and that the
Hessian can be expressed as

2 1 1
ViF=|1 2 1 |+4|x|°+8xx",
1 1 2

where each term corresponds to a positive semi-definite matrix for all x in
R>. The first matrix can be checked by the diagonally dominant criterion,
the second matrix is a diagonal matrix with non-negative entries, and for the
third matrix we observe that given a vector x, the product

vixx'v=(x'v)?>0, VveR?,

hence the matrix 8x"x is positive semidefinite. The sum of positive semidefi-
nite matrices is positive semidefinite. Since the above is valid for all x € R3,
from global optimality conditions we conlude that x = 0 is a global minimizer.

b) f(x1,x2) = xf + 2x12x2 + xg - 4x12 — 8x1 — 8x3.
Answer: The gradient is given by

|

4x13 + 4x1x2 — 8x1 — 8
2x% +2x; — 8

from where Vf = 0 gives x; = 1 and x, = 3. The Hessian is given by

12x7 +4x, — 8 4xy

= B ). e[ 1)




hence it is a strict local minimizer. We also observe that
Fxnx2) = (62 + x5 — 4)% + 4(x; — 1)* — 20 > 20,
and that f(1,3) = —20, therefore it is a global minimizer.
c) f(xy,x2) = xl2 + 4x1%9 + xg + X1 — X9.

Answer: this case is solved by noting that f is quadratic function

f(x)sz( - )X+%[2 ~2]7x,

and noting that det(A) = —3 < 0, hence the Hessian is indefinite and x* =
—A"'b is a saddle point.

Additional notes

Page 4, example

to show that the stationary points are maximizers and minimizers, we need to use Cauchy-
Schwarz inequality. We note that

2 2
X1+ Xy Xy +Xx; t V2
f®)=—F——7F—=< 3 < V2 max — < —,
x1+x2+1 x1+x2+1 >0 t*+1 2

which is the value attained at the stationary point (or with a minus for the minimizer).

Page 8, example

It is clear that the first two stationary points, (0.5,0) and (—0.5, 0) are strict local min
(not global since the function is not bounded below, check f (-1, x;) and x, — c0) and
saddle points, respectively. For the point (0, 0) it is more complicated, as the Hessian is
negative semidefinite, so it can be either a local max or a saddle point. Here, we will show
it is a saddle point by using trajectories. Note that

fla*, a) = a®(=20% + 1+ 4a"7),
which is positive as ¢ — 0. Instead, if we now take
f(=a, a) = a®(=2a* — 1+ 4a"),

this is negative as @ — 0. This means that in any ball surrounding (0, 0), we will find
larger and smaller values than (0, 0) = 0, hence it is a saddle point.

Note that for this to happen, you can only play with he term x;x2, as the other terms
won’t change their sign no matter what you try .



Now, more generally, define a family of curves x; = @?, and x, = o, where By >0
so you don’t have problems as @ — 0. If you repeat the calculations, trying to factor
out a power such that the term +1 remains inside the parenthesis -this is the one that
won’t vanish and allows you to play with the sign-, you’ll find that any positive f, y that
satisfy

B—-2y>0 and 36-2y>0

do the job (the second inequality is redundant, I'm posting it for completeness). In
particular, taking f = 4 and y = 1 as I did, but you can also try with f =3,y =1, 0or f =5
and y = 2, and many others!
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