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1. Find the global minimum and maximum points of 𝑓 (𝑥1, 𝑥2) = 𝑥1 + 𝑥2 over the unit
ball inℝ2, 𝑆 = 𝐵 [0, 1] =

{
(𝑥1, 𝑥2)𝑇 : 𝑥21 + 𝑥22 ≤ 1

}
. Repeat with 𝑓 (𝑥1, 𝑥2) = 2𝑥1− 3𝑥2

over the set 𝑆 = {(𝑥1, 𝑥2) : 2𝑥21 + 5𝑥22 ≤ 1}.

Answer: as seen in lectures. Consider

𝑓 (𝑥1, 𝑥2) = (1 1)⊤x ≤ ∥(1 1)∥∥x∥ ≤
√
2 .

The upper bound is attained with the maximizer x = (1 1)⊤/
√
2 and a similar lower

bound is attained with the minimizer x = −(1 1)⊤/
√
2. For the second part, we

consider the change of variables

𝑢 =
√
2𝑥1 , 𝑣 =

√
5𝑥2 ,

so that 𝑆 becomes the unit ball in (𝑢, 𝑣), where we optimize 𝑓 (𝑢, 𝑣) =
√
2𝑢 − 3√

5
𝑣

as in the first part of the exercise. Don’t forget to go back to the original variables
(𝑥1, 𝑥2) at the very end.

2. Classify the matrices

A =

(
4 1
1 3

)
, B =

©«
1 1 1
1 1 1
1 1 0.1

ª®¬ .

Answer: the matrix A is direct from 𝑑𝑒𝑡 (A) = 10 and 𝑡𝑟 (A) = 7, hence positive
definite. For B, both diagonally dominant and principal minors criteria are incon-
clusive, and therefore we must go back to the definition of indefinite matrix. Note
that

e⊤1 Be1 = 1 > 0 , and (e2 − e3)⊤B(e2 − e3) = −0.9 < 0 ,

and we conclude the matrix B is indefinite.
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3. Use a computational tool of your preference to classify

©«
2 2 0 0
2 2 0 0
0 0 3 1
0 0 1 3

ª®®®¬ ,
©«
2 1 3
1 2 1
3 1 2

ª®¬ ,
©«
−5 1 1
1 −7 1
1 1 −5

ª®¬
Answer: positive definiteness can be easily check in a computer by looking at
the eigenvalues of the matrix. For example, in matlab this is done by using the
command eig(). For example

1 A=[2 2 0 0;2 2 0 0 ;0 0 3 1;0 0 1 3]

2 eig(A)

will give as an output the eigenvalues 0,2,4,4, from where we directly conclude that
the matrix is positive semidefinite.

4. Classify the stationary points of

a) 𝑓 (x) = 𝑥21 + 𝑥22 + 𝑥23 + 𝑥1𝑥2 + 𝑥1𝑥3 + 𝑥2𝑥3 +
(
𝑥21 + 𝑥22 + 𝑥23

)2.
Answer: In this case we find that x = 0 is a stationary point and that the
Hessian can be expressed as

∇2𝑓 =
©«
2 1 1
1 2 1
1 1 2

ª®¬ + 4∥x∥2𝐼3 + 8xx⊤ ,

where each term corresponds to a positive semi-definite matrix for all x in
ℝ3. The first matrix can be checked by the diagonally dominant criterion,
the second matrix is a diagonal matrix with non-negative entries, and for the
third matrix we observe that given a vector x, the product

v⊤xx⊤v = (x⊤v)2 ≥ 0 , ∀v ∈ ℝ3 ,

hence the matrix 8x⊤x is positive semidefinite. The sum of positive semidefi-
nite matrices is positive semidefinite. Since the above is valid for all x ∈ ℝ3,
from global optimality conditions we conlude that x = 0 is a global minimizer.

b) 𝑓 (𝑥1, 𝑥2) = 𝑥41 + 2𝑥21 𝑥2 + 𝑥22 − 4𝑥21 − 8𝑥1 − 8𝑥2.

Answer: The gradient is given by

∇𝑓 =

(
4𝑥31 + 4𝑥1𝑥2 − 8𝑥1 − 8

2𝑥21 + 2𝑥2 − 8

)
from where ∇𝑓 = 0 gives 𝑥1 = 1 and 𝑥2 = 3. The Hessian is given by

∇2𝑓 =

(
12𝑥21 + 4𝑥2 − 8 4𝑥1

4𝑥1 2

)
, ∇2𝑓 (1, 3) =

(
16 4
4 2

)
≻ 0 ,
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hence it is a strict local minimizer. We also observe that

𝑓 (𝑥1, 𝑥2) = (𝑥21 + 𝑥2 − 4)2 + 4(𝑥1 − 1)2 − 20 ≥ −20 ,

and that 𝑓 (1, 3) = −20, therefore it is a global minimizer.

c) 𝑓 (𝑥1, 𝑥2) = 𝑥21 + 4𝑥1𝑥2 + 𝑥22 + 𝑥1 − 𝑥2.

Answer: this case is solved by noting that 𝑓 is quadratic function

𝑓 (x) = x⊤
(
1 2
2 1

)
x + 1

2
[2 − 2]⊤x ,

and noting that 𝑑𝑒𝑡 (A) = −3 < 0, hence the Hessian is indefinite and x∗ =
−A−1b is a saddle point.

Additional notes

Page 4, example

to show that the stationary points are maximizers and minimizers, we need to use Cauchy-
Schwarz inequality. We note that

𝑓 (x) = 𝑥1 + 𝑥2

𝑥21 + 𝑥22 + 1
≤
√
2

√︃
𝑥21 + 𝑥22

𝑥21 + 𝑥22 + 1
≤
√
2max

𝑡≥0

𝑡

𝑡2 + 1
≤

√
2
2

,

which is the value attained at the stationary point (or with a minus for the minimizer).

Page 8, example

It is clear that the first two stationary points, (0.5, 0) and (−0.5, 0) are strict local min
(not global since the function is not bounded below, check 𝑓 (−1, 𝑥2) and 𝑥2 → ∞) and
saddle points, respectively. For the point (0, 0) it is more complicated, as the Hessian is
negative semidefinite, so it can be either a local max or a saddle point. Here, we will show
it is a saddle point by using trajectories. Note that

𝑓 (𝛼4, 𝛼) = 𝛼6(−2𝛼2 + 1 + 4𝛼 10) ,

which is positive as 𝛼 → 0. Instead, if we now take

𝑓 (−𝛼4, 𝛼) = 𝛼6(−2𝛼2 − 1 + 4𝛼 10) ,

this is negative as 𝛼 → 0. This means that in any ball surrounding (0, 0), we will find
larger and smaller values than 𝑓 (0, 0) = 0, hence it is a saddle point.

Note that for this to happen, you can only play with he term 𝑥1𝑥
2
2 , as the other terms

won’t change their sign no matter what you try .
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Now, more generally, define a family of curves 𝑥1 = 𝛼𝛽 , and 𝑥2 = 𝛼𝛾 , where 𝛽,𝛾 > 0
so you don’t have problems as 𝛼 → 0. If you repeat the calculations, trying to factor
out a power such that the term ±1 remains inside the parenthesis -this is the one that
won’t vanish and allows you to play with the sign-, you’ll find that any positive 𝛽,𝛾 that
satisfy

𝛽 − 2𝛾 > 0 and 3𝛽 − 2𝛾 > 0

do the job (the second inequality is redundant, I’m posting it for completeness). In
particular, taking 𝛽 = 4 and 𝛾 = 1 as I did, but you can also try with 𝛽 = 3, 𝛾 = 1, or 𝛽 = 5
and 𝛾 = 2, and many others!
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