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Polynomial fit and denoising

We will replicate the linear regression and regularized linear least squares examples from
this week, with a different model. First, we will generate a noisy dataset of 200 samples

coming from
vi=u?+N(0,0.04), i=1,...,200,

where the u;’s are uniformly sampled in [—1,1], and N (0, 0.04) means adding Gaussian
noise of mean 0 and variance 0.04 for each sample.

1. Generate the pairs (u;, v;) using suitable random generators. Make a plot illustrating
(ui,v;). What is the model you can identify to express v as a function of u?

1 Ns=200; %number of samples

2 u=2*rand(Ns,1)-1;% uniform sampling in [-1;11;

3 u=sort(u); %sorting the samples

4 v=Uu.”2+0.2*randn(Ns,1); %sampling with Gaussian noise of mean ...
@ and variance 0.04

s figure(1) %plotting the samples

s plot(u,v, 'LineStyle', 'none', 'Marker','*")

2. Write a linear regression problem for finding the optimal parameters in a model

o(u) = au® +bu+c

For a linear regression with Ny samples for a model v(u) = au? +bu +c, we assemble
the matrices A € RN*3 and b € R
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Figure 1: The sampled points suggest a quadratic dependence for v(u).

1 A=[u.”2 u ones(Ns,1)]; %Ns by 3 matrix
2 b:V;

We can solve the normal equations

1 xUs=(A'*xA)\ (A'*b); % normal equations with backslash for the ...
inverse

or, you can use backslash directly!

1 xUs=A\ b;

MATLAB will recognize that A is a rectangular matrix and that you’re trying to
solving LLS, so instead of computing the inverse of A, it will compute the solution
to the normal equations.

. Compute the least squares solution and compute the total least squares error in the
{, norm.

For the error we need to compute ||v — Axs]|2,

1 L2error=norm(v-A*xls,2);

. Now, instead of solving a regression problem, use the v; values to recover a denoised
signal using regularized least squares using the same total variation regularization
described the lecture notes.

We assemble the regularization matrix L as in the notes
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Figure 2: The measurements against linear least squares regression for v(u) = au®+bu+c.

1 L=zeros(Ns-1,Ns);
2 for i=1:Ns-1

s L(i,1)=1;

o L(@,i+1)=-1;

s end

We set the regularization parameter A = 100 (just to try, you need to see the effect
of different values) and solve the regularized least squares solution

1 Lambda=100;
2 Xrls=(eye(Ns)+lambdaxL'*L)\b;

and we plot the regularized signal against the noisy measurements

1 figure(3)

2 plot(u,v)

5 hold on

+ plot(u,xrls)
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Figure 3: The regularized signal for A = 100.



