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1. Find the exact linesearch stepsize when 𝑓 (x) is a quadratic function 𝑓 (x) = x⊤Ax+
2b⊤x + c where A is an 𝑛 × 𝑛 positive definite matrix, b ∈ ℝ𝑛 and c ∈ ℝ.

2. Let A be a symmetric 𝑛 × 𝑛 matrix, b ∈ ℝ𝑛 and 𝑐 ∈ ℝ. Then the function 𝑓 (x) =
x⊤Ax + 2b⊤x + c is a 𝐶1,1 function. The smallest Lipschitz constant of 𝑓 is 2∥A∥2

3. Show that 𝑓 (x) =
√
1 + x2 ∈ 𝐶

1,1
𝐿
.

4. Give an example of a function 𝑓 ∈ 𝐶
1,1
𝐿
(ℝ) and a starting point 𝑥0 ∈ ℝ such that the

problem min 𝑓 (𝑥) has an optimal solution and the gradient method with constant
stepsize 𝑡 = 2

𝐿
diverges.

5. Consider the localization problem where we are given 𝑚 locations of sensors
𝒜 := {a1, a2, . . . , a𝑚}, with each sensor in ℝ𝑛 , and approximate distances between
the sensors and an unknown source located at x ∈ ℝ𝑛: 𝑑𝑖 ≈ ∥x − a𝑖 ∥. We try to find
the source location x given the sensor locations 𝒜 and the approximate distances
𝑑1, 𝑑2, . . . , 𝑑𝑚 . For this, we write the optimization problem:

min
x

{
𝑓 (x) ≡

𝑚∑︁
𝑖=1

(∥x − a𝑖 ∥ − 𝑑𝑖)2
}
.

a) State the first-order optimality condition for this problem, and show that for
x ∉ 𝒜 it is equivalent to

x =
1
𝑚

{
𝑚∑︁
𝑖=1

a𝑖 +
𝑚∑︁
𝑖=1

𝑑𝑖
x − a𝑖
∥x − a𝑖 ∥

}
b) Show that the iteration:

x𝑘+1 =
1
𝑚

{
𝑚∑︁
𝑖=1

a𝑖 +
𝑚∑︁
𝑖=1

𝑑𝑖
x𝑘 − a𝑖

x𝑘 − a𝑖




}

is a gradient method, assuming that x𝑘 ∉ 𝒜 for all 𝑘 ≥ 0. What is the stepsize?
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c) Write an explicit Gauss-Newton iteration of the form

x𝑘+1 = x𝑘 − d𝑘 ,

giving an expression for d𝑘 in terms of the Jacobian and vectorized cost for
this problem, without computing the inverse.

6. Consider the quadratic function 𝑓 : ℝ2 → ℝ

𝑓 (x) = 1
2x

⊤𝑄x

where 𝑄 is a symmetric matrix of size 2 × 2 with eigenvalues 0 < 𝜆min < 𝜆max.
Suppose we apply the gradient descent method to the problem of minimizing 𝑓 ,
with exact line search and initial point

x0 =
1

𝜆min
umin +

1
𝜆max

umax

where umin and umax are the norm one eigenvectors associated with 𝜆min and 𝜆max,
respectively.

a) Show that after 1 iteration

x1 =
(
𝜆max − 𝜆min
𝜆max + 𝜆min

) (
1

𝜆min
umin −

1
𝜆max

umax

)
.

b) Assuming that

x𝑘 =

(
𝜆max − 𝜆min
𝜆max + 𝜆min

)𝑘 (
1

𝜆min
umin +

(−1)𝑘
𝜆max

umax

)
for 𝑘 = 0, 1, . . . ,

show that
𝑓 (x𝑘+1)
𝑓 (x𝑘)

=

(
𝜆max − 𝜆min
𝜆max + 𝜆min

)2
.

Using this, what can be said about the convergence of this method based on
the ratio 𝜅 =

𝜆max
𝜆min

?

Quadratic Optimization Benchmark

Consider the quadratic minimization problem

min
x

{
x⊤Ax : x ∈ ℝ5}

where A is the 5 × 5 Hilbert matrix defined by

A𝑖, 𝑗 =
1

𝑖 + 𝑗 − 1 , 𝑖, 𝑗 = 1, 2, 3, 4, 5

The matrix can be constructed via the MATLAB command A=hilb(5). Run the following
methods and compare the number of iterations required by each of the methods when
the initial vector is x0 = (1, 2, 3, 4, 5)⊤ to obtain a solution x∗ with ∥∇𝑓 (x)∥ ≤ 10−4 :
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• Gradient method with backtracking stepsize rule and parameters 𝛼 = 0.5, 𝛽 =

0.5, 𝑠 = 1

• Gradient method with backtracking stepsize rule and parameters 𝛼 = 0.1, 𝛽 =

0.5, 𝑠 = 1

• Diagonally scaled gradient method with diagonal elements D𝑖,𝑖 =
1

A𝑖,𝑖
, 𝑖 = 1,2,3,4,5

and exact line search;

• Diagonally scaled gradient method with diagonal elements D𝑖,𝑖 =
1

A𝑖,𝑖
, 𝑖 = 1,2,3,4,5

and backtracking line search with parameters 𝛼 = 0.1, 𝛽 = 0.5 𝑠 = 1.

Solutions

1) For the quadratic function 𝑓 (x) = x⊤Ax + 2b⊤x + c, the gradient reads ∇𝑓 (x) =
2
(
Ax + b

)
, and the gradient descend iteration is

x𝑘+1 = x𝑘 − 𝑡𝑘∇𝑓 (x𝑘),

where we tune the stepsize 𝑡𝑘 using linesearch. This amounts to solve

min
𝑡≥0

{
𝑔(𝑡) := 𝑓

(
y + 𝑡d

)}
, with d = −∇𝑓 (x𝑘), y = x𝑘 .

Substituting the definition of 𝑓 (·) and ∇𝑓 (·) into 𝑔(𝑡), we obtain

𝑔(𝑡) = (y + 𝑡d)⊤A(y + 𝑡d) + 2b⊤(y + 𝑡d) + c

= 𝑡2(d⊤Ad) + 2(d⊤Ay + d⊤b)𝑡 + x⊤Ay + 2b⊤y + c

= 𝑡2(d⊤Ad) + 2(d⊤Ay + d⊤b)𝑡 + 𝑓 (y) .

To find the minimizer of 𝑔(𝑡), we impose the first order optimality condition for

𝑔′(𝑡) := 2𝑡 (d⊤Ad) + 2(d⊤Ay + d⊤b) ,

i.e. we are looking for 𝑡 ≥ 0 such that 𝑔′(𝑡) = 0. This leads to

𝑡 = −d
⊤2(Ay + b)
2(d⊤Ad) = −d

⊤(∇𝑓 (y))
2(d⊤Ad)

and substituting back d = −∇𝑓 (x𝑘), y = x𝑘 , we have

𝑡𝑘 = + ∥∇𝑓 (x𝑘)∥2

2∇𝑓 (x𝑘)⊤A∇𝑓 (x𝑘)
.

To conclude, we need check whether the computed stepsize is positive. Under the
assumption ∇𝑓 (x𝑘) ≠ 0, we have that both the numerator and the denominator
(remember that A ≻ 0) are strictly positive, hence 𝑡𝑘 > 0, and finally

x𝑘+1 = x𝑘 + ∥∇𝑓 (x𝑘)∥2

2∇𝑓 (x𝑘)⊤A∇𝑓 (x𝑘)
∇𝑓 (x𝑘).
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2) We want to show that – for 𝑓 and ∇𝑓 as before – we have

∥∇𝑓 (x) − ∇𝑓 (y)∥ ≤ 𝐿∥x − y∥, for 𝐿 = 2∥A∥2.

Substituting the expression of the gradient on the left-hand side, we have

∥2(Ax + 𝑏) − 2(Ay + 𝑏)∥ = 2∥A(x − y)∥

for which the Lipschitz condition becomes

∥A(x − y)∥ ≤ ∥𝐴∥2∥x − y∥.

Thus, we aim at showing ∥A(z)∥ ≤ ∥𝐴∥2∥z∥ by using the definition of norm

∥A∥2 = ∥A∥2,2 = max
∥𝑧∥2≤1

∥Az∥.

We precede by contradiction: assume that ∥Az∥ > ∥𝐴∥2∥z∥. Dividing both sides by
∥𝑧∥, we obtain 



A z

∥z∥





 > ∥𝐴∥2,

which is equivalent to ∥Av∥ > ∥A∥2 for all ∥v∥ = 1. In particular, this holds for the
maximum

max
∥v≤1∥

∥Av∥ > ∥A∥2

which contradicts the definition of norm. Thus, we have the required inequality

∥Az∥ ≤ ∥A∥2∥z∥,

for z = x − y.

3) We start by dealing with the one-dimensional case. If we define the function 𝑓 and
its derivative as

𝑓 (𝑥) =
√
1 + 𝑥2 , 𝑓 ′(𝑥) = 𝑥

√
1 + 𝑥2

,

the Lipschitz condition reads



 𝑥
√
1 + 𝑥2

− 𝑦√︁
1 + 𝑦2





 ≤ 𝐿∥𝑥 − 𝑦 ∥.

Since the above inequality is difficult to prove, we rely on the link between Lipschitz
continuity and the norm of the Hessian: for 𝑓 convex and twice differentiable (as
in this case), we have

∥∇𝑓 (x) − ∇𝑓 (y)∥ ≤ 𝐿∥x − y∥ ⇐⇒ ∥∇2𝑓 (x)∥ ≤ 𝐿.

Since we are considering 𝑓 : ℝ → ℝ, we want to bound the absolute value of the
second derivative

𝑓 ′′(𝑥) =

√
1 + 𝑥2 −

√
1 + 𝑥2

𝑥2

1 + 𝑥2
=

1
(1 + 𝑥2) 3

2
, ∥ 𝑓 ′′(𝑥)∥ ≤ 1 ⇐⇒ 𝑓 ∈ 𝐶

1,1
1 .
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Moving to the multi-dimensional case, we consider

𝑓 (x) =
√︁
1 + ∥x∥2 , ∇𝑓 (x) = x√︁

1 + ∥x∥2
, x = [𝑥1, . . . , 𝑥𝑛]⊤ ∈ ℝ𝑛

for which the partial derivatives read

𝜕2𝑓 (x)
𝜕𝑥𝑖𝜕𝑥 𝑗

=
𝛿𝑖, 𝑗√︁

1 + ∥x∥2
−

𝑥𝑖𝑥 𝑗(
1 + ∥𝑥 ∥2

) 3
2
, 𝑖, 𝑗 = 1, . . . , 𝑛

where 𝛿𝑖, 𝑗 are the Dirac deltas defined as 𝛿𝑖, 𝑗 =
{
1 𝑖 = 𝑗

0 𝑖 ≠ 𝑗
.

Moreover, we obtain the Hessian

H := ∇2𝑓 (x) = 𝑎𝟙 − 𝑎3xx⊤ , 𝑎 =
1√︁

1 + ∥𝑥 ∥2
,

whose norm can be computed as

∥∇2𝑓 (x)∥ =
√︃
𝜆𝑚𝑎𝑥

(
H⊤H

)
=

√︃
𝜆𝑚𝑎𝑥

(
H 2) = √︃

𝜆𝑚𝑎𝑥

(
H

)2
=

��𝜆𝑚𝑎𝑥

(
H

) �� .
The Hessian H has eigenvectors x and x⊥, associated to eigenvalues 𝜆1 = (𝑎 −
𝑎3∥x∥2) and 𝜆2 = 𝑎 respectively. We conclude by noticing that 𝑎 ≥ 0, hence
𝜆𝑚𝑎𝑥 = 𝜆2 = 𝑎, and finally

𝑎 =
1√︁

1 + ∥x∥2
≤ 1 ⇐⇒ 𝑓 ∈ 𝐶

1,1
1 .

4) We consider the function 𝑓 (𝑥) = 𝑥2, with first derivative 𝑓 ′(𝑥) = 2𝑥 . Then, 𝑓 is
𝐿-Lipschitz continuous with 𝐿 = 2, since we have that

∥ 𝑓 ′(𝑥) − 𝑓 ′(𝑦)∥ ≤ 2∥𝑥 − 𝑦 ∥ .

The gradient descend iteration for 𝑓 with constant stepsize 𝑡 = 2
𝐿
= 1 reads

𝑥𝑘+1 = 𝑥𝑘 − 𝑡2𝑥𝑘 = 𝑥𝑘 − 2𝑥𝑘 = −𝑥𝑘 .

Hence, the method diverges for every 𝑥0 ≠ 0, as its iterations oscillate repeatedly
between 𝑥0 and −𝑥0. It would be enough to consider 𝑡 = 2

𝐿
− 𝜀, with 𝜀 > 0 to have

convergence of the gradient method for 𝑓 .

5a) The first order optimality condition reads ∇𝑓 (x) = 0. Recalling that for 𝑔(x) = ∥x∥
we write (for x ≠ 0) its gradient ∇𝑔(x) = x/∥x∥, a direct calculation shows that

∇𝑓 (x) = 2
𝑚∑︁
𝑖=1

(∥x − a𝑖 ∥ − 𝑑𝑖)
x − a𝑖
∥x − a𝑖 ∥

= 2
(

𝑚∑︁
𝑖=1

(x − a𝑖) −
𝑚∑︁
𝑖=1

𝑑𝑖
x − a𝑖
∥x − a𝑖 ∥

)
.
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Then, setting ∇𝑓 (x) = 0 leads to

∇𝑓 (x) = 0

2
(

𝑚∑︁
𝑖=1

(x − a𝑖) −
𝑚∑︁
𝑖=1

𝑑𝑖
x − a𝑖
∥x − a𝑖 ∥

)
= 0

𝑚∑︁
𝑖=1

x =

𝑚∑︁
𝑖=1

a𝑖 +
𝑚∑︁
𝑖=1

𝑑𝑖
x − a𝑖
∥x − a𝑖 ∥

x =
1
𝑚

(
𝑚∑︁
𝑖=1

a𝑖 +
𝑚∑︁
𝑖=1

𝑑𝑖
x − a𝑖
∥x − a𝑖 ∥

)
.

5b) If the iteration is a gradient method, it can be expressed as

x𝑘+1 =
1
𝑚

{
𝑚∑︁
𝑖=1

a𝑖 +
𝑚∑︁
𝑖=1

𝑑𝑖
x𝑘 − a𝑖

x𝑘 − a𝑖




}
= x𝑘 + 𝑡𝑘d𝑘

From part a) we now that

x𝑘 − 1
𝑚

{
𝑚∑︁
𝑖=1

a𝑖 +
𝑚∑︁
𝑖=1

𝑑𝑖
x𝑘 − a𝑖

x𝑘 − a𝑖




}
=

1
2𝑚∇𝑓 (x𝑘) ,

or rearranging

x𝑘 − 1
2𝑚∇𝑓 (x𝑘) = 1

𝑚

{
𝑚∑︁
𝑖=1

a𝑖 +
𝑚∑︁
𝑖=1

𝑑𝑖
x𝑘 − a𝑖
∥x𝑘 − a𝑖 ∥

}
,

that is, the iteration corresponds to gradient descent with constant stepsize 𝑡 = 1
2𝑚 .

5c) In the Gauss-Newton method the direction d𝑘 is given by

d𝑘 = (𝐽 (x𝑘)⊤𝐽 (x𝑘))−1𝐽 (x𝑘)⊤𝐹 (x𝑘) ,

where 𝐹 (x) in ℝ𝑚 corresponds to the vector function associated to the cost

𝐹 (x) =


∥x − a1∥ − 𝑑1
...

∥x − a𝑚∥ − 𝑑𝑚

 ,

and 𝐽 (x) in ℝ𝑚×𝑛 is the Jacobian matrix given by

𝐽 (x) =


(x−a1)⊤
∥x−a1∥
...

(x−a𝑚)⊤
∥x−a𝑚 ∥

 .
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6a) For a quadratic function, one has that the stepsize when performing an exact line
search at the point x𝑘 in the direction −d𝑘 ≡ −∇𝑓 (x𝑘) = −𝑄x𝑘 is

𝛼𝑘 =
d⊤
𝑘
d𝑘

d⊤
𝑘
𝑄d𝑘

Thus, we obtain

d0 = 𝑄

(
1

𝜆min
umin +

1
𝜆max

umax

)
= umin + umax

d⊤0 d0 = (umin + umax)⊤ (umin + umax) = ∥umin∥2 + ∥umax∥2 = 2
d⊤0𝑄d0 = (umin + umax)⊤ (𝜆minumin + 𝜆maxumax) = 𝜆min + 𝜆max

Therefore,
𝛼0 =

2
𝜆min + 𝜆max

and

x1 = x0 − 𝛼0d0 =
1

𝜆min
umin +

1
𝜆max

umax −
2

𝜆min + 𝜆max
(umin + umax)

=
𝜆max − 𝜆min
𝜆max + 𝜆min

(
1

𝜆min
umin −

1
𝜆max

umax

)
6b) Using the expression for x𝑘 we obtain

x⊤
𝑘
𝑄x =

(
𝜆max − 𝜆min
𝜆max + 𝜆min

)2𝑘 (
1

𝜆min
umin +

(−1)𝑘
𝜆max

umax

)⊤
𝑄

(
1

𝜆min
umin +

(−1)𝑘
𝜆max

umax

)
=

(
𝜆max − 𝜆min
𝜆max + 𝜆min

)2𝑘 (
1

𝜆min
umin +

(−1)𝑘
𝜆max

umax

)⊤
(umin + (−1)𝑘umax)

=

(
𝜆max − 𝜆min
𝜆max + 𝜆min

)2𝑘 (
1

𝜆min
+ (−1)2𝑘

𝜆max

)
.

The expression for 𝑓 (x𝑘+1) follows analogously evaluating at 𝑘 + 1, and noting that
(−1)2𝑘 = (−1)2𝑘+2, we conclude

𝑓 (x𝑘+1)
𝑓 (x𝑘)

=

(
𝜆max − 𝜆min
𝜆max + 𝜆min

)2
.

This indicates the value of the function decreases by a factor of(
𝜅 − 1
𝜅 + 1

)2
,

where 𝜅 > 1. The closer 𝜅 gets to 1, the faster the method. As 𝜅 increases, the
method becomes slower.
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