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. Find the exact linesearch stepsize when f(x) is a quadratic function f(x) = x" Ax+
2b"x + ¢ where A is an n X n positive definite matrix, b € R" and c € R.

. Let A be a symmetric n X n matrix, b € R" and ¢ € R. Then the function f(x) =
x"Ax +2b"x + c is a C*! function. The smallest Lipschitz constant of f is 2||A||;

. Show that f(x) = V1+x? € Ci’l.

. Give an example of a function f € Ci’l([R) and a starting point x;, € R such that the
problem min f(x) has an optimal solution and the gradient method with constant
stepsize t = % diverges.

. Consider the localization problem where we are given m locations of sensors
o :={ay,ay,...,an}, with each sensor in R", and approximate distances between
the sensors and an unknown source located at x € R™: d; ~ ||x — a;||. We try to find
the source location x given the sensor locations & and the approximate distances
di, ds, . .., dp. For this, we write the optimization problem:

min {f(x) =D, (x-ajl —di)z}.
i=1

a) State the first-order optimality condition for this problem, and show that for
x ¢ o it is equivalent to

b) Show that the iteration:

X! {Za”er |zk::l||}

is a gradient method, assuming that x* ¢ of for all k > 0. What is the stepsize?
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c) Write an explicit Gauss-Newton iteration of the form

giving an expression for d¥ in terms of the Jacobian and vectorized cost for
this problem, without computing the inverse.

6. Consider the quadratic function f : R* - R

£ = 2x70x

where Q is a symmetric matrix of size 2 X 2 with eigenvalues 0 < Ayin < Amax-
Suppose we apply the gradient descent method to the problem of minimizing f,
with exact line search and initial point
1 N 1
X) = —Upin + ——U
0 Amin min Amax max

where up,in and up,x are the norm one eigenvectors associated with Apin and Apyay,
respectively.

a) Show that after 1 iteration

(Amax - Amin) ( 1 1 )
X1 = il Umin — 7 Umax | -

Amax + Amin min Amax

b) Assuming that

Amax - Amin g 1 -1 k
xk:( ) (/1 umin+(/1 ) umax) for k=0,1,...,

)Lmax + /Imin min max

show that

f(xk+1) _ (Amax - Amin)z
f (Xk) - Amax * Amin .

Using this, what can be said about the convergence of this method based on

the ratio x = /A@?

min

Quadratic Optimization Benchmark

Consider the quadratic minimization problem
min {x"Ax : x € R’}
X

where A is the 5 X 5 Hilbert matrix defined by

1
Ajj=——— 1,j=12,345
A T J
The matrix can be constructed via the MATLAB command A=hilb(5). Run the following
methods and compare the number of iterations required by each of the methods when

the initial vector is x° = (1,2,3,4,5)" to obtain a solution x* with ||Vf(x)|| < 107*:




 Gradient method with backtracking stepsize rule and parameters « = 0.5, =
0.5,s=1
« Gradient method with backtracking stepsize rule and parameters @ = 0.1, f =

0.5,s=1

« Diagonally scaled gradient method with diagonal elements D;; = L i=1234,5
and exact line search;

« Diagonally scaled gradient method with diagonal elements D;; = 5, i ,3,4,
and backtracking line search with parameters « = 0.1, f = 0.5s = 1.

Solutions

1) For the quadratic function f(x) = x" Ax + 2b"x + c, the gradient reads Vf(x) =
2(Ax +b), and the gradient descend iteration is

N )

where we tune the stepsize t* using linesearch. This amounts to solve
Itnzi(? {g(t) =fy+ td)} , withd = -Vf(xF), y=x*.

Substituting the definition of f(-) and Vf(-) into g(t), we obtain

g(t) = (y+td)"A(y +td) +2b" (y +td) + ¢
=t*(d"Ad) + 2(d"Ay +d ' b)t +x Ay +2b"y + ¢
=t*(d"Ad) +2(d"Ay +d " b)t + f(y) .

To find the minimizer of g(t), we impose the first order optimality condition for
g(t) =2t(d"Ad) +2(d"Ay +d'b),
i.e. we are looking for ¢t > 0 such that ¢’(t) = 0. This leads to

__dT2(ay+b) _ dT(V/(y)

2(dTAd) 2(dTAd)

and substituting back d = -V f (xk ),y = x*, we have

o, IVFEHI
2V F(xF)TAV f(xF)

To conclude, we need check whether the computed stepsize is positive. Under the
assumption Vf(x*) # 0, we have that both the numerator and the denominator
(remember that A > 0) are strictly positive, hence t* > 0, and finally

RS 2 (C Ok
S 2VFEN)TAVS(xF)

V(x5



2) We want to show that — for f and Vf as before — we have
IVfx) = Vil < Lllx-yl, forL=2[A].
Substituting the expression of the gradient on the left-hand side, we have
[2(Ax +b) = 2(Ay + b)|| = 2[|A(x = y)|
for which the Lipschitz condition becomes

IAx =yl < llAll2lIx - ylI.
Thus, we aim at showing ||A(z)|| < ||Al|2]|z|| by using the definition of norm

|Allz = [|All22 = max [|Az]|.
llzll2<1
We precede by contradiction: assume that ||Az|| > ||A||||z||. Dividing both sides by

||lz||, we obtain
Z

1z

which is equivalent to ||Av|| > ||A|| for all ||v|| = 1. In particular, this holds for the
maximum

HA > [|Al2,

max [|Av]| > [|A]l;
lIv<1]|

which contradicts the definition of norm. Thus, we have the required inequality
Azl < [[All2]lz]l,

forz=x-y.

3) We start by dealing with the one-dimensional case. If we define the function f and
its derivative as

N 4
flx) = Vi+x2, f(X)—m,

the Lipschitz condition reads

Feetvr
V1 + x2 \/1+y2

Since the above inequality is difficult to prove, we rely on the link between Lipschitz
continuity and the norm of the Hessian: for f convex and twice differentiable (as
in this case), we have

IVF(x) = VIl < Lix -yl = IIV*f)l < L.

Since we are considering f : R — R, we want to bound the absolute value of the
second derivative

< Lllx = yll.

Toa? - V1+ x2

2 1
f/(x) = = - @<t & fect
1+x (1+ x?)2
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Moving to the multi-dimensional case, we consider

f(x) = v1i+|x]2, Vf(x)—— x=[x1,...,x,] " €R"

1+ 1|7

for which the partial derivatives read

FPfx) &y xx i=1...n
- 32 s ] s
O NI+ xI® (14 |x]j2)?
. 1 i=j
where §; ; are the Dirac deltas defined as §; ; = 0 i’
L)
Moreover, we obtain the Hessian
2 3. T 1
H:=V°f(x) =al —a’xx", a= T
+ ||x

whose norm can be computed as

||V2f(X)|| = \/Amax (?{T}[) = \/Amax (7‘(2) = \ Amax (7'{)2 = |Amax ((]'{)|

The Hessian H has eigenvectors x and x*, associated to eigenvalues A; = (a —
a’||x||?) and A, = a respectively. We conclude by noticing that a > 0, hence
Amax = A2 = a, and finally

1
a=—— <1 fGCi’l.
1+ [|x]|?

4) We consider the function f(x) = x?, with first derivative f’(x) = 2x. Then, f is
L-Lipschitz continuous with L = 2, since we have that

17 Go) = /)l < 2lx =yl

2
The gradient descend iteration for f with constant stepsize t = 7= 1reads

k k k

e —2x" = —x".

X :xk—thkzx

Hence, the method diverges for every x, # 0, as its iterations oscillate repeatedly
2
between xy and —xj. It would be enough to consider ¢ = - ¢, with € > 0 to have

convergence of the gradient method for f.

5a) The first order optimality condition reads Vf(x) = 0. Recalling that for g(x) = ||x||
we write (for x # 0) its gradient Vg(x) = x/||x||, a direct calculation shows that

w(x)-zZ(nx aill =)= =2 Z“‘ Y Temal

i=1
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Then, setting Vf(x) = 0 leads to

Vf(x) =0
m m X — a
2 Zl(x ai)—Zldi” _al”) 0

i=1 i=1 = lx-ail
1 [& = X—a
oS S
m i=1 i=1 ||X_al||

5b) If the iteration is a gradient method, it can be expressed as

X<+ = { a; + di——— } = xF + tkd*
St D

From part a) we now that

k {Z i+ Z d ||xk —a; ||} 2m Vf(Xk)

or rearranging

1 1 Xk — a;
k k E E k i

that is, the iteration corresponds to gradient descent with constant stepsize ¢t = 5-

5¢) In the Gauss-Newton method the direction d* is given by
d“ = JETTE)TTE) TR,
where F(x) in R™ corresponds to the vector function associated to the cost

lIx —aill - di
F(x) =

Ix — apml| - dn

and J(x) in R™" is the Jacobian matrix given by

(x—ap’
[Ix—a]l

J(x) =

(X_am)T
[Ix—ay, ||




6a) For a quadratic function, one has that the stepsize when performing an exact line
search at the point x; in the direction —dy = -V f (x;) = —Oxx is

dTdy
Ok = 57
dk Qdk
Thus, we obtain
do = Q| = Umin + =™ Umax | = Umin + Umax
Amin Amax

dono = (umin + umaX)T (umin + umax) = ”umin”2 + ”umax”2 =2
dg)— QdO = (umin + umaX)T (Aminumin + Amaxumax) = Amin *+ Amax
Therefore,
2
Q= ———
Amin + Amax

and

1 1 2
X1 = X0 — Qodp = ——Upin + = Umax = 7 (Umin + Umayx)
Amin Amax Amin + Amax
_ Amax - Amin 1 1
Umax

- Umin —
Amax + Amin Amin

Amax

6b) Using the expression for x; we obtain

A /1 Upin +
max T Amin min max

2k T

T Amax - Amin 1 (_l)k 1 (_1)k
Xy Ox = Umax | O 1

k k T
— Amin\ [ 1 (-1)
max min k
— Wrin + ——1u Upmin + (—1)"u
. Amin Amin min )Lmax max ( min ( ) max)
max — /lmin 2 1 + (_1)2k)
Amax + Amin Amin Amax .

The expression for f(xk1) follows analogously evaluating at k + 1, and noting that
(-1)%k = (=1)%+2 we conclude

f (Xk+1) _ Amax — Amin 2
f (Xk) /Imax + Amin ‘

This indicates the value of the function decreases by a factor of

K—1 2

k+1)
where k > 1. The closer k gets to 1, the faster the method. As k increases, the
method becomes slower.




