MATH60005/70005: Optimization (Autumn 23-24)

Week 4: Exercises

Dr Dante Kalise & Dr Estefanía Loayza-Romero Department of Mathematics Imperial College London, United Kingdom {dkaliseb,kloayzar}@imperial.ac.uk

- 1. Find the exact linesearch stepsize when $f(\mathbf{x})$ is a quadratic function $f(\mathbf{x}) = \mathbf{x}^\top A \mathbf{x} + \mathbf{x}^\top B \mathbf{x}$ $2\mathbf{b}^\top \mathbf{x} + \mathbf{c}$ where A is an $n \times n$ positive definite matrix, $\mathbf{b} \in \mathbb{R}^n$ and $\mathbf{c} \in \mathbb{R}$.
- 2. Let A be a symmetric $n \times n$ matrix, $\mathbf{b} \in \mathbb{R}^n$ and $c \in \mathbb{R}$. Then the function $f(\mathbf{x}) =$ $\mathbf{x}^\top \mathbf{A} \mathbf{x} + 2 \mathbf{b}^\top \mathbf{x} + \mathbf{c}$ is a $C^{1,1}$ function. The smallest Lipschitz constant of f is $2\|\mathbf{A}\|_2$
- 3. Show that $f(\mathbf{x}) =$ √ $\overline{1 + x^2} \in C_L^{1,1}.$
- 4. Give an example of a function $f \in C^{1,1}_L(\mathbb{R})$ and a starting point $x_0 \in \mathbb{R}$ such that the problem min $f(x)$ has an optimal solution and the gradient method with constant stepsize $t = \frac{2}{L}$ diverges.
- 5. Consider the localization problem where we are given m locations of sensors $\mathscr{A} := \{a_1, a_2, \ldots, a_m\}$, with each sensor in \mathbb{R}^n , and approximate distances between the sensors and an unknown source located at $\mathbf{x} \in \mathbb{R}^n: d_i \approx ||\mathbf{x} - \mathbf{a}_i||$. We try to find the source location x given the sensor locations $\mathscr A$ and the approximate distances d_1, d_2, \ldots, d_m . For this, we write the optimization problem:

$$
\min_{\mathbf{x}} \left\{ f(\mathbf{x}) \equiv \sum_{i=1}^{m} \left(\|\mathbf{x} - \mathbf{a}_i\| - d_i \right)^2 \right\}.
$$

a) State the first-order optimality condition for this problem, and show that for $x \notin \mathcal{A}$ it is equivalent to

$$
\mathbf{x} = \frac{1}{m} \left\{ \sum_{i=1}^{m} \mathbf{a}_i + \sum_{i=1}^{m} d_i \frac{\mathbf{x} - \mathbf{a}_i}{\|\mathbf{x} - \mathbf{a}_i\|} \right\}
$$

b) Show that the iteration:

$$
\mathbf{x}^{k+1} = \frac{1}{m} \left\{ \sum_{i=1}^{m} \mathbf{a}_i + \sum_{i=1}^{m} d_i \frac{\mathbf{x}^k - \mathbf{a}_i}{\|\mathbf{x}^k - \mathbf{a}_i\|} \right\}
$$

is a gradient method, assuming that $\mathbf{x}^k \notin \mathscr{A}$ for all $k \geq 0.$ What is the stepsize?

c) Write an explicit Gauss-Newton iteration of the form

$$
\mathbf{x}^{k+1} = \mathbf{x}^k - \mathbf{d}^k\,,
$$

giving an expression for \mathbf{d}^k in terms of the Jacobian and vectorized cost for this problem, without computing the inverse.

6. Consider the quadratic function $f : \mathbb{R}^2 \to \mathbb{R}$

$$
f(\mathbf{x}) = \frac{1}{2}\mathbf{x}^\top Q \mathbf{x}
$$

where Q is a symmetric matrix of size 2 \times 2 with eigenvalues 0 < λ_{min} < λ_{max} . Suppose we apply the gradient descent method to the problem of minimizing f , with exact line search and initial point

$$
\mathbf{x}_0 = \frac{1}{\lambda_{\min}} \mathbf{u}_{\min} + \frac{1}{\lambda_{\max}} \mathbf{u}_{\max}
$$

where \mathbf{u}_{min} and \mathbf{u}_{max} are the norm one eigenvectors associated with λ_{min} and λ_{max} , respectively.

a) Show that after 1 iteration

$$
\mathbf{x}_1 = \left(\frac{\lambda_{\max}-\lambda_{\min}}{\lambda_{\max}+\lambda_{\min}}\right)\left(\frac{1}{\lambda_{\min}}\mathbf{u}_{\min}-\frac{1}{\lambda_{\max}}\mathbf{u}_{\max}\right)\,.
$$

b) Assuming that

$$
\mathbf{x}_{k} = \left(\frac{\lambda_{\max} - \lambda_{\min}}{\lambda_{\max} + \lambda_{\min}}\right)^{k} \left(\frac{1}{\lambda_{\min}}\mathbf{u}_{\min} + \frac{(-1)^{k}}{\lambda_{\max}}\mathbf{u}_{\max}\right) \text{ for } k = 0, 1, ...,
$$

show that

$$
\frac{f(\mathbf{x}_{k+1})}{f(\mathbf{x}_k)} = \left(\frac{\lambda_{\max} - \lambda_{\min}}{\lambda_{\max} + \lambda_{\min}}\right)^2
$$

.

Using this, what can be said about the convergence of this method based on the ratio $\kappa = \frac{\lambda_{\text{max}}}{\lambda_{\text{min}}}$ $\frac{\lambda_{\max}}{\lambda_{\min}}$?

Quadratic Optimization Benchmark

Consider the quadratic minimization problem

$$
\min_{\mathbf{x}} \left\{\mathbf{x}^\top \mathbf{A} \mathbf{x} : \mathbf{x} \in \mathbb{R}^5 \right\}
$$

where A is the 5×5 Hilbert matrix defined by

$$
A_{i,j} = \frac{1}{i+j-1}, \quad i, j = 1, 2, 3, 4, 5
$$

The matrix can be constructed via the MATLAB command A=hilb(5). Run the following methods and compare the number of iterations required by each of the methods when the initial vector is $\mathbf{x}^0 = (1, 2, 3, 4, 5)^\top$ to obtain a solution \mathbf{x}^* with $\|\nabla f(\mathbf{x})\| \leq 10^{-4}$:

- Gradient method with backtracking stepsize rule and parameters $\alpha = 0.5, \beta =$ $0.5, s = 1$
- Gradient method with backtracking stepsize rule and parameters $\alpha = 0.1, \beta =$ $0.5, s = 1$
- Diagonally scaled gradient method with diagonal elements $D_{i,i} = \frac{1}{A}$ $\frac{1}{A_{i,i}}$, $i = 1,2,3,4,5$ and exact line search;
- Diagonally scaled gradient method with diagonal elements $D_{i,i} = \frac{1}{A}$ $\frac{1}{A_{i,i}}$, $i = 1,2,3,4,5$ and backtracking line search with parameters $\alpha = 0.1, \beta = 0.5$ s = 1.

