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1. Show the convexity of the following functions:

• the quad-over-lin function

𝑓 (𝑥1, 𝑥2) =
𝑥21
𝑥2

defined over ℝ ×ℝ++ = {(𝑥1, 𝑥2) : 𝑥2 > 0}.

• the generalized quad-over-lin function

𝑔(x) = ∥Ax + b∥2
c⊤x + 𝑑

(
A ∈ ℝ𝑚×𝑛, b ∈ ℝ𝑚, c ∈ ℝ𝑛, 𝑑 ∈ ℝ

)
is convex over 𝐷 = {x ∈ ℝ𝑛 : c⊤x + 𝑑 > 0}.

• 𝑓 (𝑥1, 𝑥2) = − log (𝑥1𝑥2), over ℝ2
++.

• ℎ(x) = 𝑒 ∥x∥2 .

2. Show that
√︁
1 + x⊤𝑄x is convex for 𝑄 positive definite.

3. Find the optimal solution of

max
x∈ℝ3

2𝑥21 + 𝑥22 + 𝑥23 + 2𝑥1 − 3𝑥2 + 4𝑥3

subject to 𝑥1 + 𝑥2 + 𝑥3 = 1
𝑥1, 𝑥2, 𝑥3 ≥ 0
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Solutions

1.1) For the quad-over-lin function, we proceed by computing the Hessian:

𝑓 (𝑥1, 𝑥2) =
𝑥21

𝑥22
, ∇𝑓 =

(
2
𝑥1

𝑥2
,−
𝑥21

𝑥22

)
, ∇2𝑓 = 2 ©­«

1
𝑥2

− 𝑥1
𝑥22

− 𝑥1
𝑥22

𝑥21
𝑥32

ª®¬ .
In order to determine the positiveness of ∇2𝑓 , we study the sign of its trace and
determinant:

𝑇𝑟
(
∇2𝑓

)
= 2

(
1
𝑥2

+
𝑥21

𝑥32

)
> 0 , since 𝑥2 ∈ ℝ++,

𝐷𝑒𝑡
(
∇2𝑓

)
= 4

[
1
𝑥2

·
𝑥21

𝑥32
−
(
𝑥1

𝑥22

)2]
= 0 .

Thus, we have ∇2𝑓 ⪯ 0, and equivalently 𝑓 is convex.

1.2) The generalized quad-over-lin function can be rewritten as follows

𝑔(x) := ∥Ax + b∥2
c⊤x + 𝑑 =

∥y∥2
𝑡

=: ℎ(y, 𝑡)

after the linear change of variables (Ax + b, c⊤x + 𝑑) ↦→ (y, 𝑡). Accordingly, the
set 𝐷 = {x ∈ ℝ𝑛 : c⊤x + 𝑑 > 0} becomes 𝐷′ = {y ∈ ℝ𝑚 : 𝑡 > 0} = ℝ𝑚 × ℝ++.
Moreover, the function ℎ can be seen as a sum of quad-over-lin functions (ex 1.1)
with (𝑥1, 𝑥2) = (𝑦𝑖, 𝑡)

ℎ(y, 𝑡) =
𝑚∑︁
𝑖=1
ℎ𝑖 (y, 𝑡) =

𝑚∑︁
𝑖=1

𝑦2𝑖
𝑡
.

Being a sum of convex functions, ℎ is convex, and so is 𝑔(x), as it can be obtained
as the composition of a convex function with a linear change of variables.

1.3) The function 𝑓 can be written as

𝑓 (𝑥1, 𝑥2) = − log(𝑥1𝑥2) = − log(𝑥1) − log(𝑥2) .

To prove convexity of 𝑓 , it is enough to show that both the terms are convex. In
order to do so, we start by noticing that both the addends are of the form − log(𝑡)
composed with a projection map

(𝑥1, 𝑥2) ↦→ 𝑥1 (𝑥1, 𝑥2) ↦→ 𝑥2

which is an affine transformation. We conclude by showing that the function
𝑡 ↦→ − log(𝑡) is convex over ℝ+:

𝑙 = − log(𝑡) , 𝑙′ = − 1
𝑥
, 𝑙′′ =

1
𝑥2

> 0.

Thus, 𝑓 is convex as a sum of convex functions composed with affine transforma-
tions.
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1.4) ℎ(x) = 𝑒 ∥x∥2 can be written as the following composition of functions

ℎ(x) = 𝑔(𝑓 (x)) with 𝑔(𝑡) = 𝑒𝑡 and 𝑓 (x) = ∥x∥2.

Thanks to convexity of norms, we know that 𝑓 (x) is convex, and since

𝑔′ = 𝑒𝑡 = 𝑔′′ > 0 ,

we also have convexity of 𝑔. Furthermore, the outer function 𝑔 is non-decreasing
over any 𝐼 ⊂ ℝ, hence we have convexity of ℎ(x).

Remark. Having only 𝑓 , 𝑔 convex is not enough, as shown with the following
counterexample. Consider 𝑠 (𝑥) = (𝑥2 − 4)2. We can write 𝑠 (𝑥) = 𝑔(𝑓 (𝑥)) with
𝑔(𝑡) = 𝑡2 and 𝑓 (𝑥) = (𝑥2 − 4). Even though both those functions are convex
(𝑓 ′′, 𝑔′′ > 0), we have 𝑠′′ < 0 for |𝑥 | <

√︃
4
3 .

2) We have
ℎ(x) :=

√︁
1 + x⊤𝑄 x =

√︃
1 + ∥x∥2

𝑄

where ∥x∥𝑄 =
√︁
x⊤𝑄 x. We can write ℎ(x) = 𝑔(𝑓 (x)) as a composition of functions

𝑓 (x) = ∥x∥𝑄 , 𝑔(𝑟 ) =
√
1 + 𝑟 2 .

In order to show convexity, we start by noting that, since 𝑄 ≻ 0

∥x∥𝑄 = ∥
√
Λ𝑈 x∥2 , for the diagonalization 𝑄 = 𝑈 ⊤𝑄𝑈

where Λ is a positive definite diagonal matrix. Since the diagonalization is a linear
transformation and the 2−norm is convex, we have 𝑓 convex.
On the other hand, we have

𝑔(𝑟 ) =
√
1 + 𝑟 2 , 𝑔′(𝑟 ) = 𝑟

√
1 + 𝑟 2

, 𝑔′′(𝑟 ) = 1
1 + 𝑟 2 ,

and since 𝑔′′(𝑟 ) > 0 for every 𝑟 ∈ ℝ and 𝑔′(𝑟 ) > 0 for every 𝑟 > 0 (which is the
case for 𝑟 = x⊤𝑄 x). Summing up, the function 𝑔 is convex and non-decreasing, 𝑓
is convex, hence ℎ is in turn convex.

3) The optimization constraints prescribe x =
(
𝑥1, 𝑥2, 𝑥3

)⊤ ∈ Δ2, that is the unit
simplex (convex set) in ℝ3 with extreme points (1, 0, 0), (0, 1, 0), (0, 0, 1).
Furthermore, the objective function 𝑓 can be written in quadratic form

𝑓 (x) = x⊤𝐴 x + b⊤x = x⊤

2 0 0
0 1 0
0 0 1

 x +
[
2 −3 4

]
x

where𝐴 ≻ 0, hence 𝑓 is strictly convex. Maximizing a convex function over a convex
set comes from evaluating the function at the extreme points . We conclude that
the maximizer is x∗ = (0, 0, 1), where the objective attains its maximum 𝑓 (x∗) = 5.
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Extra exercises

3.1) We can generalize the above example to the matrix norm

∥𝐴∥1,1 := max
{
∥𝐴x∥1 : ∥x∥1 ≤ 1

}
, ∥x∥1 :=

𝑛∑︁
𝑖=1

|𝑥𝑖 | .

As before, we have the maximization of a convex function (norm composed with
an affine transformation) over a convex set (closed 𝓁1−ball). Then, the optimizer
lies at one of the extreme points of the set ∥x∥ ≤ 1. To better understand how to
characterize these extreme points, we consider the case 𝑛 = 2:

∥
[
𝑥1, 𝑥2

]
∥1 ≤ 1 ⇐⇒ |𝑥1 | + |𝑥2 | ≤ 1 ⇐⇒


𝑥1 + 𝑥2 ≤ 1
𝑥1 − 𝑥2 ≤ 1
−𝑥1 + 𝑥2 ≤ 1
−𝑥1 − 𝑥2 ≤ 1

Thus, the set of extreme points in the 𝑛 = 2 case is given by {𝑒1,−𝑒1, 𝑒2,−𝑒2}, where
𝑒𝑖 is a vector with all zeros, except for the 𝑖−th entry, which has value 1. In the
general case, the set becomes {𝑒1,−𝑒1, ..., 𝑒𝑛,−𝑒𝑛}.

We now look at the value of the objective function at the extreme points. By
definition of 𝓁1 norm, we have

∥𝐴𝑒 𝑗 ∥1 = ∥𝐴 (−𝑒 𝑗 )∥1 =
𝑚∑︁
𝑖=1

|𝐴𝑖, 𝑗 |

and so

∥𝐴∥1,1 = max
𝑗=1,2,...,𝑛

∥𝐴𝑒 𝑗 ∥1 = max
𝑗=1,2,...,𝑛

𝑚∑︁
𝑖=1

|𝐴𝑖, 𝑗 | .

4) Determine whether the set 𝐶 =
{
x ∈ ℝ𝑛 : min𝑖 𝑥𝑖 ≤ 1

}
is convex.

In the case 𝑛 = 1,𝐶 is the left closed half-line originating from 1, hence𝐶 is convex.
In the case 𝑛 = 2, 𝐶 is given by the union of the two half-planes defined by
𝐶1 =

{
(𝑥1, 𝑥2) ∈ ℝ2 : 𝑥1 ≤ 1

}
and 𝐶2 =

{
(𝑥1, 𝑥2) ∈ ℝ2 : 𝑥2 ≤ 1

}
. We can show that

𝐶 is a non-convex set by proving that a convex combination between two points in
𝐶 is not in the set:

𝑥∗ = (2, 1), 𝑦∗ = (1, 2) ∈ 𝐶 ≠⇒ 𝜆 𝑥∗ + (1 − 𝜆) 𝑦∗ := 𝑧∗ ∈ 𝐶

as for 𝜆 = 1
2 we have 𝑧

∗ = ( 32 ,
3
2 ).

5) Determine whether the following function is convex:

𝑔(x) =
{
0 𝑥 ∈ 𝐾
∥x∥2 − 1 elsewhere

where 𝐾 =
{
x ∈ ℝ𝑛 : ∥x∥2 ≤ 1

}
.
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We start by noting that 𝐾 is the unit 𝓁2−ball. Then, 𝑔 is the distance function to 𝐾 :

𝑔(x) = min
y∈𝐾

∥x − y∥2 .

We conclude that 𝑔 is convex because it is the distance function to a convex set.

6) Show that the following function is convex over ℝ𝑛
++:

𝑓 (x) =
𝑛∑︁
𝑖=1

𝑥𝑖 ln(𝑥𝑖) −
( 𝑛∑︁
𝑖=1

𝑥𝑖

)
ln

( 𝑛∑︁
𝑖=1

𝑥𝑖

)
.

We first consider the case 𝑛 = 2, in which x = (𝑥1, 𝑥2) and

𝑓 (x) = 𝑥1 ln(𝑥1) + 𝑥2 ln(𝑥2) − (𝑥1 + 𝑥2) ln(𝑥1 + 𝑥2)
= 𝑥1 ln(𝑥1) + 𝑥2 ln(𝑥2) − 𝑥1 ln(𝑥1 + 𝑥2) − 𝑥2 ln(𝑥1 + 𝑥2)

= 𝑥1

(
ln(𝑥1) − ln(𝑥1 + 𝑥2)

)
+ 𝑥2

(
ln(𝑥2) − ln(𝑥1 + 𝑥2)

)
= 𝑥1 ln

(
𝑥1

𝑥1 + 𝑥2

)
+ 𝑥2 ln

(
𝑥2

𝑥1 + 𝑥2

)
.

In the general case, we can rewrite 𝑓 as

𝑓 (x) =
𝑛∑︁
𝑖=1

𝑥𝑖 ln
(

𝑥𝑖∑𝑛
𝑘=1 𝑥𝑘

)
=

𝑛∑︁
𝑖=1
ℎ𝑖 (x) for ℎ𝑖 (x) = 𝑥𝑖 ln

(
𝑥𝑖∑𝑛
𝑘=1 𝑥𝑘

)
.

We now need to show that the functions ℎ𝑖 (x) are convex. Consider the change of
variables

x ↦−→
(
𝑢, 𝑣

)
where 𝑢 = 𝑥𝑖 , 𝑣 =

𝑛∑︁
𝑘=1

𝑥𝑘 .

Then, we can write ℎ𝑖 as

𝜑 (𝑢, 𝑣) = 𝑢 ln
(
𝑢

𝑣

)
for which we can check convexity through the Hessian.

𝜕𝜑

𝜕𝑢
= ln

(
𝑢

𝑣

)
+ 𝑢 · 𝑣

𝑢
· 1
𝑣
= ln(𝑢) − ln(𝑣) , 𝜕𝜑

𝜕𝑣
= −𝑢

𝑣

𝜕2𝜑

𝜕𝑢2
=

1
𝑢
,

𝜕2𝜑

𝜕𝑣2
=
𝑢

𝑣2
,

𝜕2𝜑

𝜕𝑢𝜕𝑣
= − 1

𝑣

=⇒ ∇2𝜑 =


1
𝑢

− 1
𝑣

− 1
𝑣

𝑢

𝑣2

 , 𝐷𝑒𝑡 (∇2𝜑) = 1
𝑣2

− 1
𝑣2

= 0 , 𝑇𝑟 (∇2𝜑) = 1
𝑢
+ 𝑢

𝑣2
> 0 ,

where the positiveness of the trace is given by x ∈ ℝ𝑛
++.

To conclude, 𝜑 is convex, and so are the ℎ𝑖 ’s, as they are compositions of convex
functions with linear transformation. Furthermore, 𝑓 is convex as it is the sum of
convex functions.
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