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1. Show the convexity of the following functions:

« the quad-over-lin function

X
fGaux) =2
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defined over R X Ry, = {(x1, x2) : xo > 0}.

the generalized quad-over-lin function

_ [Ax +Db]|?

AecR™ beR"ceR"deR
c'x+d ( ¢ )

g9(x)

isconvex over D = {x e R" : ¢c"x+d > 0}.
e f(x1,%x2) = —log (x1x2), over R?,.
. h(x) = el
2. Show that /1 + xTQx is convex for Q positive definite.
3. Find the optimal solution of

max 2x12 + xg + x§ + 2x1 — 3x2 + 4x3
xeR3
subjectto x;+x2 +x3 =1

X1, X2, X3 >0



Solutions

1.1)

1.2)

1.3)

For the quad-over-lin function, we proceed by computing the Hessian:
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In order to determine the positiveness of V2f, we study the sign of its trace and
determinant:

1 x?
Tr(sz) = (— + —13) >0, since xy € R4,
X2 x2
1 x? X1 2
Det(sz) = 4[)(_ . —; - (—2) ] =0.
2 X x5

Thus, we have V?f < 0, and equivalently f is convex.

The generalized quad-over-lin function can be rewritten as follows

() oo JAXEBIE )
g " ¢™x+d t

=: h(y, t)

after the linear change of variables (Ax + b,c"x + d) — (y, t). Accordingly, the
set D ={x€R":c'x+d > 0} becomes D' = {y € R" : t > 0} = R" X Ry,.
Moreover, the function h can be seen as a sum of quad-over-lin functions (ex 1.1)

with (x1, x2) = (i 1)
m m 2
Vi
h(y.t)= ) hi(y.t)= > .
i=1 i=1

Being a sum of convex functions, A is convex, and so is g(x), as it can be obtained
as the composition of a convex function with a linear change of variables.

The function f can be written as

f(x1,x2) = —log(x1x2) = —log(x;) — log(xz) .

To prove convexity of f, it is enough to show that both the terms are convex. In
order to do so, we start by noticing that both the addends are of the form — log(t)
composed with a projection map

(1, x2) P x1 (1, x2) > x2
which is an affine transformation. We conclude by showing that the function

t — —log(t) is convex over R;:

1
I=-log(t), [I'=-=, I"==>0.

X x2

Thus, f is convex as a sum of convex functions composed with affine transforma-
tions.




1.4) h(x) = elXl” can be written as the following composition of functions

h(x) =g(f(x)  with g(t) =e' and f(x) = [|x||*
Thanks to convexity of norms, we know that f(x) is convex, and since
g=e=9g">0,
we also have convexity of g. Furthermore, the outer function g is non-decreasing

over any I C R, hence we have convexity of h(x).

Remark. Having only f, g convex is not enough, as shown with the following
counterexample. Consider s(x) = (x? — 4)%. We can write s(x) = g(f(x)) with
g(t) = t? and f(x) = (x* — 4). Even though both those functions are convex

(f”,g” > 0), we have s” < 0 for |x| < \/g.

2) We have

3)

h(x) =1+x70x = [1+ ||x||2Q
where ||x[|o = \/m We can write h(x) = g(f(x)) as a composition of functions
fe=lxllo.  g(r) =Vitr?.
In order to show convexity, we start by noting that, since Q > 0
Ixllo = |IVAUx]|,, for the diagonalization Q = U QU

where A is a positive definite diagonal matrix. Since the diagonalization is a linear
transformation and the 2—norm is convex, we have f convex.
On the other hand, we have

g(r)=V1+r?, 4'(r)=

——. () =—
1 + r2 ’ 1 + r2 ’
and since g”(r) > 0 for every r € R and ¢’(r) > 0 for every r > 0 (which is the
case for r = x"Q x). Summing up, the function g is convex and non-decreasing, f

is convex, hence h is in turn convex.

The optimization constraints prescribe x = (xl, .X'Z,.X'g)T € A,, that is the unit
simplex (convex set) in R® with extreme points (1, 0, 0), (0,1, 0), (0, 0,1).
Furthermore, the objective function f can be written in quadratic form

f(x)=x"Ax+b'x=x"

S O N
S = O

0
0f x+[2 -3 4]x
1

where A > 0,hence f is strictly convex. Maximizing a convex function over a convex
set comes from evaluating the function at the extreme points . We conclude that
the maximizer is x* = (0, 0,1), where the objective attains its maximum f(x*) = 5.



Extra exercises

3.1) We can generalize the above example to the matrix norm

4)

5)

n
1A]l1; = max {nAxul il < 1}, Ixlls = > Il
i=1

As before, we have the maximization of a convex function (norm composed with
an affine transformation) over a convex set (closed #;—ball). Then, the optimizer
lies at one of the extreme points of the set ||x|| < 1. To better understand how to
characterize these extreme points, we consider the case n = 2:

x1+x <1
x1—Xx9 <1
I[xn 2] h<1 & |al+el<t e {7

-xX1+x3 <1

-x1—Xx3 <1

Thus, the set of extreme points in the n = 2 case is given by {e;, —e;, €2, —e, }, where
e; is a vector with all zeros, except for the i—th entry, which has value 1. In the
general case, the set becomes {e;, —ey, ..., €5, —€y }.

We now look at the value of the objective function at the extreme points. By
definition of #; norm, we have

m
1A el = 1A (=l = ) 141
i=1

and so
m
All11 = max ||Aei|l; = max ZA
Al = max fldejll = max DAy
i=1
Determine whether the set C = {x € R™ : min; x; < 1} is convex.

In the case n = 1, C is the left closed half-line originating from 1, hence C is convex.
In the case n = 2, C is given by the union of the two half-planes defined by
C = {(xl, x) € R? :x; < 1} and C; = {(xl, x3) € R? :xy < 1}. We can show that
C is a non-convex set by proving that a convex combination between two points in
C is not in the set:

x*=(21), y=(12)eC = Ax*+(1-1)y" :=z"€C

_1 s _ (33
as for A = 5 we have z —(2,2 .

Determine whether the following function is convex:

0 €K
g(x) = x where K = {x e R":||x|l; < 1}.
x|]]2 =1 elsewhere



We start by noting that K is the unit #,—ball. Then, g is the distance function to K:
9(x) = min |x -yl
yeK

We conclude that g is convex because it is the distance function to a convex set.

6) Show that the following function is convex over R%,:
n n n
f(x) = in In(x;) — (in) 1n( xi).
i=1 i=1 i=1
We first consider the case n = 2, in which x = (x1, x2) and

f(x) =x1In(x1) +x2In(xz) — (31 + x2) In(x1 + x2)

= x1In(xy) + x2 In(x2) — x1 In(x1 + x2) — x2 In(x1 + x3)

= xl(ln(xl) —In(x; + xz)) + xz(ln(xz) —In(x; + xz))

X1 X2
=x;ln +x91n )
X1+ X2 X1+ X2

In the general case, we can rewrite f as

f(x)—Z:x,ln(Zkl ) Zh(x) for h(x)—x,ln(zkl k)

i=1

We now need to show that the functions h;(x) are convex. Consider the change of
variables

x+—>(u,v) where u:xi,U:Zxk.

Then, we can write h; as
u
¢(u,0) =uln (—)
v

for which we can check convexity through the Hessian.
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where the positiveness of the trace is given by x € R},

To conclude, ¢ is convex, and so are the h;’s, as they are compositions of convex
functions with linear transformation. Furthermore, f is convex as it is the sum of
convex functions.
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