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1. Derive the orthogonal projection formula for a closed ball centered at x0 ∈ ℝ𝑛 ,
𝐵 [x0, 𝑟 ].

2. Show that the stationarity condition over the unit ball in ℝ𝑛 , that is,

min{𝑓 (x) : ∥x∥ ≤ 1}

is given by ∇𝑓 (x∗) = 0, or ∥x∗∥ = 1 and there exists 𝜆 ≤ 0 such that ∇𝑓 (x∗) = 𝜆x∗.

3. Consider the minimization problem

min 2𝑥21 + 3𝑥22 + 4𝑥23 + 2𝑥1𝑥2 − 2𝑥1𝑥3 − 8𝑥1 − 4𝑥2 − 2𝑥3
subject to 𝑥1, 𝑥2, 𝑥3 ≥ 0 .

• Show that the vector ( 177 , 0,
6
7 )

⊤ is an optimal solution.

• Implement a projected gradient method with constant stepsize 1
𝐿
, where 𝐿 is

the Lipschitz constant of the gradient of the function.

Solutions

1. We need to solve the problem

min
y

∥y − x∥2 subject to ∥y − x0∥ ≤ 𝑟 .

Using the change of variables z = x − x0, then, then problem can be rewritten as

min
z

∥z − (x − x0)∥2 subject to ∥z∥ ≤ 𝑟 ,

Notice that the optimal solution of the last problem is ℙ𝐵 [0,𝑟 ] (x − x0). Thus,

ℙ𝐵 [x0,𝑟 ] = x0 + ℙ𝐵 [0,𝑟 ] (x − x0)
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Therefore, we only need to derive an expression for ℙ𝐵 [0,𝑟 ] (x). This problem can
be written as

min
y

∥y − x∥2 subject to ∥y∥2 ≤ 𝑟 2 ,

which in turn – by expanding the square and ∥𝑦 ∥ ≤ 𝑟 ⇐⇒ ∥y∥2 ≤ 𝑟 2 – becomes

min
y

∥y∥2 + ∥x∥2 − 2x⊤y subject to ∥y∥2 ≤ 𝑟 2 .

If ∥x∥ ≤ 𝑟 , then ℙ𝐵 [0,𝑟 ] = x. On the other hand, when ∥𝑥 ∥ > 𝑟 we know that y lies
in the boundary, hence ∥y∥2 = 𝑟 2. Thus, the optimization problem reduces to

min
y

{
− 2x⊤y

}
subject to ∥y∥2 = 𝑟 2 .

Now, we will find a lower bound of the objective function using Cauchy–Schwarz,

−2y⊤x ≥ −2∥y∥∥x∥ = −2𝑟 ∥x∥
which is attained at y = −𝑟 x

∥x∥ . Summarizing,

ℙ𝐵 [0,𝑟 ] (x) =

x, if ∥x∥ ≤ 𝑟,

𝑟
x
∥x∥ , otherwise .

and thus

ℙ𝐵 [x0,𝑟 ] (x) =

x, if ∥x − x0∥ ≤ 𝑟,

x0 + 𝑟
x − x0
∥x − x0∥

, otherwise .

2. Using the definition of stationarity of x∗ over the unit ball, we have:

∇𝑓 (x∗)⊤(x − x∗) ≥ 0 ∀x ∈ 𝐵 [0, 1] .
This is equivalent to claim that

min
x∈𝐵 [0,1]

{
∇𝑓 (x∗)⊤(x − x∗)

}
≥ 0 . (1)

Lemma: For any a ∈ ℝ𝑛 we have

min
∥x∥≤1

a⊤x = −∥a∥

which is attained at x∗ = − a
∥a∥ . This can be shown as

a⊤x ≥ −∥a∥∥x∥ ≥ −∥a∥ .
On one hand, the Lemma implies that (1) is equivalent to −∇𝑓 (x∗)⊤x∗ ≥ ∥∇𝑓 (x∗)∥.
On the other hand, by Cauchy-Schwarz inequality, we have

−∇𝑓 (x∗)⊤x∗ ≤ ∥∇𝑓 (x∗)∥∥x∗∥ ≤ ∥∇𝑓 (x∗)∥
as ∥x∗∥ ≤ 1. This leads to

−∇𝑓 (x∗)⊤x∗ = ∥∇𝑓 (x∗)∥ . (2)

We now discuss two different cases:
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a) ∇𝑓 (x∗) = 0 (and ∥x∗∥ ≤ 1) =⇒ (2) holds;

b) ∇𝑓 (x∗) ≠ 0 =⇒ ∥x∗∥ = 1 and then

−∇𝑓 (x∗)⊤x∗ = ∥∇𝑓 (x∗)∥ ∥x∗∥︸︷︷︸
1

⇐⇒ ∃𝜆 ≤ 0 s.t. ∇𝑓 (x∗) = 𝜆x∗

3. see week8.m

Extra exercise (7)

Given 𝑓 , 𝑔 convex functions over ℝ𝑛 , 𝑋 ⊆ ℝ𝑛 convex set, suppose x∗ is a solution of

min
x∈𝑋

𝑓 (x) subject to 𝑔(x) ≤ 0 (3)

that satisfies 𝑔(x∗) < 0. Show that x∗ is also a solution of

min
x∈𝑋

𝑓 (x) .

We assume there exists y ∈ 𝑋 ∩ {x : 𝑔(x) > 0} such that 𝑓 (y) < 𝑓 (x∗). Both x∗, y ∈ 𝑋 ,
which is convex, and 𝑔(x∗) < 0 while 𝑔(y) > 0. Due to continuity of 𝑔, we have that there
exists a z ∈ [x∗, y] ∈ 𝑋 such that 𝑔(z) = 0, with z = 𝜆y + (1 − 𝜆)x∗ for some 𝜆 ∈ [0, 1].
Since 𝑓 is a convex function, we have

𝑓 (z) = 𝑓 (x∗ + 𝜆(y − x∗)) ≤ 𝑓 (x∗) + 𝜆︸︷︷︸
>0

( >0 by assumption︷          ︸︸          ︷
𝑓 (y) − 𝑓 (x∗)

)
< 𝑓 (x∗),

thus 𝑓 (z) < 𝑓 (x∗) for a 𝑧 ∈ 𝑋 such that 𝑔(z) = 0. Since z belongs to the feasible set of
(3), this leads to a contradiction to the optimality of x∗ for (3).
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