MATH60005/70005: Optimisation (Autumn 23-24)

Week 8: Problem Session

Dr Dante Kalise, Dr Estefanía Loayza-Romero and Sara Bicego Department of Mathematics Imperial College London, United Kingdom {dkaliseb,kloayzar,s.bicego21}@imperial.ac.uk

- 1. Derive the orthogonal projection formula for a closed ball centered at $\mathbf{x}_0 \in \mathbb{R}^n$, $B[x_0, r]$.
- 2. Show that the stationarity condition over the unit ball in \mathbb{R}^n , that is,

$$
\min\{f(\mathbf{x}) : \|\mathbf{x}\| \le 1\}
$$

is given by $\nabla f(\mathbf{x}^*) = 0$, or $\|\mathbf{x}^*\| = 1$ and there exists $\lambda \leq 0$ such that $\nabla f(\mathbf{x}^*) = \lambda \mathbf{x}^*$.

3. Consider the minimization problem

min $2x_1^2 + 3x_2^2 + 4x_3^2 + 2x_1x_2 - 2x_1x_3 - 8x_1 - 4x_2 - 2x_3$ subject to $x_1, x_2, x_3 \geq 0$.

- Show that the vector $(\frac{17}{7})$ $\frac{17}{7}$, 0, $\frac{6}{7}$ $(\frac{6}{7})^{\top}$ is an optimal solution.
- Implement a projected gradient method with constant stepsize $\frac{1}{L}$, where L is the Lipschitz constant of the gradient of the function.

Solutions

1. We need to solve the problem

 $\min_{\mathbf{y}} \|\mathbf{y} - \mathbf{x}\|^2$ subject to $\|\mathbf{y} - \mathbf{x}_0\| \leq r$.

Using the change of variables $z = x - x_0$, then, then problem can be rewritten as

$$
\min_{\mathbf{z}} \|\mathbf{z} - (\mathbf{x} - \mathbf{x}_0)\|^2 \qquad \text{subject to} \qquad \|\mathbf{z}\| \leq r,
$$

Notice that the optimal solution of the last problem is $\mathbb{P}_{B[0,r]}(x - x_0)$. Thus,

$$
\mathbb{P}_{B[\mathbf{x}_0,r]} = \mathbf{x}_0 + \mathbb{P}_{B[\mathbf{0},r]}(\mathbf{x} - \mathbf{x}_0)
$$

Therefore, we only need to derive an expression for $\mathbb{P}_{B[0,r]}(x)$. This problem can be written as

$$
\min_{\mathbf{y}} \|\mathbf{y} - \mathbf{x}\|^2 \qquad \text{subject to} \qquad \|\mathbf{y}\|^2 \le r^2,
$$

which in turn – by expanding the square and $||y|| \le r \iff ||y||^2 \le r^2$ – becomes

$$
\min_{\mathbf{y}} \| \mathbf{y} \|^2 + \| \mathbf{x} \|^2 - 2 \mathbf{x}^\top \mathbf{y} \qquad \text{subject to} \qquad \| \mathbf{y} \|^2 \leq r^2 \, .
$$

If $||\mathbf{x}|| \le r$, then $\mathbb{P}_{B[0,r]} = \mathbf{x}$. On the other hand, when $||x|| > r$ we know that y lies in the boundary, hence $||y||^2 = r^2$. Thus, the optimization problem reduces to

$$
\min_{\mathbf{y}} \left\{ -2\mathbf{x}^{\top}\mathbf{y} \right\} \qquad \text{subject to} \qquad ||\mathbf{y}||^2 = r^2 \, .
$$

Now, we will find a lower bound of the objective function using Cauchy–Schwarz,

$$
-2\mathbf{y}^{\top}\mathbf{x} \ge -2\|\mathbf{y}\|\|\mathbf{x}\| = -2r\|\mathbf{x}\|
$$

which is attained at $y = -r \frac{x}{\ln x}$ $\frac{\mathbf{x}}{\|\mathbf{x}\|}$. Summarizing,

$$
\mathbb{P}_{B[0,r]}(\mathbf{x}) = \begin{cases} \mathbf{x}, & \text{if } ||\mathbf{x}|| \leq r, \\ r \frac{\mathbf{x}}{||\mathbf{x}||}, & \text{otherwise.} \end{cases}
$$

and thus

$$
\mathbb{P}_{B[\mathbf{x}_0,r]}(\mathbf{x}) = \begin{cases} \mathbf{x}, & \text{if } ||\mathbf{x} - \mathbf{x}_0|| \le r, \\ \mathbf{x}_0 + r \frac{\mathbf{x} - \mathbf{x}_0}{||\mathbf{x} - \mathbf{x}_0||}, & \text{otherwise.} \end{cases}
$$

2. Using the definition of stationarity of x^* over the unit ball, we have:

$$
\nabla f(\mathbf{x}^*)^\top (\mathbf{x} - \mathbf{x}^*) \ge 0 \quad \forall \mathbf{x} \in B[0,1].
$$

This is equivalent to claim that

$$
\min_{\mathbf{x} \in B[0,1]} \left\{ \nabla f(\mathbf{x}^*)^\top (\mathbf{x} - \mathbf{x}^*) \right\} \ge 0. \tag{1}
$$

Lemma: For any $a \in \mathbb{R}^n$ we have

$$
\min_{\|x\| \le 1} a^{\top} x = -\|a\|
$$

which is attained at $x^* = -\frac{a}{\ln a}$ $\frac{a}{\|\mathbf{a}\|}$. This can be shown as $a^{\top} x \ge -\|a\| \|x\| \ge -\|a\|$.

On one hand, the Lemma implies that [\(1\)](#page-1-0) is equivalent to $-\nabla f(\mathbf{x}^*)^\top \mathbf{x}^* \geq ||\nabla f(\mathbf{x}^*)||$. On the other hand, by Cauchy-Schwarz inequality, we have

$$
-\nabla f(\mathbf{x}^*)^\top \mathbf{x}^* \leq \|\nabla f(\mathbf{x}^*)\| \|\mathbf{x}^*\| \leq \|\nabla f(\mathbf{x}^*)\|
$$

as $\|\mathbf{x}^*\| \leq 1$. This leads to

$$
-\nabla f(\mathbf{x}^*)^\top \mathbf{x}^* = \|\nabla f(\mathbf{x}^*)\|.
$$
 (2)

We now discuss two different cases:

a)
$$
\nabla f(\mathbf{x}^*) = 0
$$
 (and $\|\mathbf{x}^*\| \le 1$) \implies (2) holds;
b) $\nabla f(\mathbf{x}^*) \ne 0 \implies \|\mathbf{x}^*\| = 1$ and then
 $-\nabla f(\mathbf{x}^*)^\top \mathbf{x}^* = \|\nabla f(\mathbf{x}^*)\| \underbrace{\|\mathbf{x}^*\|}_{1} \iff \exists \lambda \le 0 \text{ s.t. } \nabla f(\mathbf{x}^*) = \lambda \mathbf{x}^*$

3. see week8.m

Extra exercise (7)

Given f, g convex functions over \mathbb{R}^n , $X \subseteq \mathbb{R}^n$ convex set, suppose \mathbf{x}^* is a solution of

$$
\min_{\mathbf{x} \in X} f(\mathbf{x}) \text{ subject to } g(\mathbf{x}) \le 0 \tag{3}
$$

that satisfies $g(\mathbf{x}^*) < 0$. Show that \mathbf{x}^* is also a solution of

$$
\min_{\mathbf{x}\in X}f(\mathbf{x})\,.
$$

We assume there exists $y \in X \cap \{x : g(x) > 0\}$ such that $f(y) < f(x^*)$. Both $x^*, y \in X$, which is convex, and $g(\mathbf{x}^*) < 0$ while $g(\mathbf{y}) > 0$. Due to continuity of g, we have that there exists a $z \in [x^*, y] \in X$ such that $g(z) = 0$, with $z = \lambda y + (1 - \lambda)x^*$ for some $\lambda \in [0, 1]$. Since f is a convex function, we have

$$
f(\mathbf{z}) = f(\mathbf{x}^* + \lambda(\mathbf{y} - \mathbf{x}^*)) \le f(\mathbf{x}^*) + \underbrace{\lambda}_{>0} \left(\underbrace{f(\mathbf{y}) - f(\mathbf{x}^*)}_{>0} \right) < f(\mathbf{x}^*),
$$

thus $f(z) < f(x^*)$ for a $z \in X$ such that $g(z) = 0$. Since z belongs to the feasible set of [\(3\)](#page-2-0), this leads to a contradiction to the optimality of x^* for (3).

