MATH60005/70005: Optimisation (Autumn 23-24)

Week 8: Problem Session

Dr Dante Kalise, Dr Estefanía Loayza-Romero and Sara Bicego Department of Mathematics Imperial College London, United Kingdom {dkaliseb,kloayzar,s.bicego21}@imperial.ac.uk

- 1. Derive the orthogonal projection formula for a closed ball centered at $\mathbf{x}_0 \in \mathbb{R}^n$, $B[\mathbf{x}_0, r]$.
- 2. Show that the stationarity condition over the unit ball in \mathbb{R}^n , that is,

$$\min\{f(\mathbf{x}): \|\mathbf{x}\| \le 1\}$$

is given by $\nabla f(\mathbf{x}^*) = 0$, or $\|\mathbf{x}^*\| = 1$ and there exists $\lambda \leq 0$ such that $\nabla f(\mathbf{x}^*) = \lambda \mathbf{x}^*$.

3. Consider the minimization problem

min $2x_1^2 + 3x_2^2 + 4x_3^2 + 2x_1x_2 - 2x_1x_3 - 8x_1 - 4x_2 - 2x_3$ subject to $x_1, x_2, x_3 \ge 0$.

- Show that the vector $(\frac{17}{7}, 0, \frac{6}{7})^{\top}$ is an optimal solution.
- Implement a projected gradient method with constant stepsize $\frac{1}{L}$, where *L* is the Lipschitz constant of the gradient of the function.

Solutions

1. We need to solve the problem

 $\min_{\mathbf{y}} \|\mathbf{y} - \mathbf{x}\|^2 \qquad \text{subject to} \qquad \|\mathbf{y} - \mathbf{x}_0\| \leq r \,.$

Using the change of variables $z = x - x_0$, then, then problem can be rewritten as

$$\min_{\mathbf{z}} \|\mathbf{z} - (\mathbf{x} - \mathbf{x}_0)\|^2 \quad \text{subject to} \quad \|\mathbf{z}\| \le r,$$

Notice that the optimal solution of the last problem is $\mathbb{P}_{B[0,r]}(\mathbf{x} - \mathbf{x}_0)$. Thus,

$$\mathbb{P}_{B[\mathbf{x}_0,r]} = \mathbf{x}_0 + \mathbb{P}_{B[\mathbf{0},r]}(\mathbf{x} - \mathbf{x}_0)$$

Therefore, we only need to derive an expression for $\mathbb{P}_{B[0,r]}(\mathbf{x})$. This problem can be written as

$$\min_{\mathbf{y}} \|\mathbf{y} - \mathbf{x}\|^2 \quad \text{subject to} \quad \|\mathbf{y}\|^2 \le r^2,$$

which in turn – by expanding the square and $||y|| \le r \iff ||y||^2 \le r^2$ – becomes

$$\min_{\mathbf{y}} \|\mathbf{y}\|^2 + \|\mathbf{x}\|^2 - 2\mathbf{x}^\top \mathbf{y} \quad \text{subject to} \quad \|\mathbf{y}\|^2 \le r^2.$$

If $||\mathbf{x}|| \le r$, then $\mathbb{P}_{B[0,r]} = \mathbf{x}$. On the other hand, when $||\mathbf{x}|| > r$ we know that y lies in the boundary, hence $||\mathbf{y}||^2 = r^2$. Thus, the optimization problem reduces to

$$\min_{\mathbf{y}} \left\{ -2\mathbf{x}^{\mathsf{T}} \mathbf{y} \right\} \qquad \text{subject to} \qquad \|\mathbf{y}\|^2 = r^2.$$

Now, we will find a lower bound of the objective function using Cauchy-Schwarz,

$$-2\mathbf{y}^{\mathsf{T}}\mathbf{x} \ge -2\|\mathbf{y}\|\|\mathbf{x}\| = -2r\|\mathbf{x}\|$$

which is attained at $\mathbf{y} = -r \frac{\mathbf{x}}{\|\mathbf{x}\|}$. Summarizing,

$$\mathbb{P}_{B[\mathbf{0},r]}(\mathbf{x}) = \begin{cases} \mathbf{x}, & \text{if } \|\mathbf{x}\| \le r, \\ r \frac{\mathbf{x}}{\|\mathbf{x}\|}, & \text{otherwise}. \end{cases}$$

and thus

$$\mathbb{P}_{B[\mathbf{x}_0,r]}(\mathbf{x}) = \begin{cases} \mathbf{x}, & \text{if } \|\mathbf{x} - \mathbf{x}_0\| \le r, \\ \mathbf{x}_0 + r \frac{\mathbf{x} - \mathbf{x}_0}{\|\mathbf{x} - \mathbf{x}_0\|}, & \text{otherwise}. \end{cases}$$

2. Using the definition of stationarity of \mathbf{x}^* over the unit ball, we have:

$$\nabla f(\mathbf{x}^*)^{\top}(\mathbf{x}-\mathbf{x}^*) \ge 0 \quad \forall \mathbf{x} \in B[0,1].$$

This is equivalent to claim that

$$\min_{\mathbf{x}\in B[0,1]} \left\{ \nabla f(\mathbf{x}^*)^\top (\mathbf{x} - \mathbf{x}^*) \right\} \ge 0.$$
 (1)

Lemma: For any $\mathbf{a} \in \mathbb{R}^n$ we have

$$\min_{\|\mathbf{x}\| \le 1} \mathbf{a}^\top \mathbf{x} = -\|\mathbf{a}\|$$

which is attained at $\mathbf{x}^* = -\frac{\mathbf{a}}{\|\mathbf{a}\|}$. This can be shown as $\mathbf{a}^\top \mathbf{x} \ge -\|\mathbf{a}\| \|\mathbf{x}\| \ge -\|\mathbf{a}\|$.

On one hand, the *Lemma* implies that (1) is equivalent to $-\nabla f(\mathbf{x}^*)^\top \mathbf{x}^* \ge \|\nabla f(\mathbf{x}^*)\|$. On the other hand, by Cauchy-Schwarz inequality, we have

$$-\nabla f(\mathbf{x}^*)^\top \mathbf{x}^* \le \|\nabla f(\mathbf{x}^*)\| \|\mathbf{x}^*\| \le \|\nabla f(\mathbf{x}^*)\|$$

as $\|\mathbf{x}^*\| \leq 1$. This leads to

$$-\nabla f(\mathbf{x}^*)^{\mathsf{T}} \mathbf{x}^* = \|\nabla f(\mathbf{x}^*)\|.$$
(2)

We now discuss two different cases:

a)
$$\nabla f(\mathbf{x}^*) = 0$$
 (and $||\mathbf{x}^*|| \le 1$) \implies (2) holds;
b) $\nabla f(\mathbf{x}^*) \ne 0 \implies ||\mathbf{x}^*|| = 1$ and then
 $-\nabla f(\mathbf{x}^*)^\top \mathbf{x}^* = ||\nabla f(\mathbf{x}^*)|| \underbrace{||\mathbf{x}^*||}_{1} \iff \exists \lambda \le 0 \text{ s.t. } \nabla f(\mathbf{x}^*) = \lambda \mathbf{x}^*$

3. see week8.m

Extra exercise (7)

Given f, g convex functions over $\mathbb{R}^n, X \subseteq \mathbb{R}^n$ convex set, suppose \mathbf{x}^* is a solution of

$$\min_{\mathbf{x}\in X} f(\mathbf{x}) \text{ subject to } g(\mathbf{x}) \le 0$$
(3)

that satisfies $g(\mathbf{x}^*) < 0$. Show that \mathbf{x}^* is also a solution of

$$\min_{\mathbf{x}\in X} f(\mathbf{x}) \, .$$

We assume there exists $\mathbf{y} \in X \cap {\mathbf{x} : g(\mathbf{x}) > 0}$ such that $f(\mathbf{y}) < f(\mathbf{x}^*)$. Both $\mathbf{x}^*, \mathbf{y} \in X$, which is convex, and $g(\mathbf{x}^*) < 0$ while $g(\mathbf{y}) > 0$. Due to continuity of g, we have that there exists a $\mathbf{z} \in [\mathbf{x}^*, \mathbf{y}] \in X$ such that $g(\mathbf{z}) = 0$, with $\mathbf{z} = \lambda \mathbf{y} + (1 - \lambda)\mathbf{x}^*$ for some $\lambda \in [0, 1]$. Since f is a convex function, we have

$$f(\mathbf{z}) = f(\mathbf{x}^* + \lambda(\mathbf{y} - \mathbf{x}^*)) \le f(\mathbf{x}^*) + \underbrace{\lambda}_{>0} \left(\overbrace{f(\mathbf{y}) - f(\mathbf{x}^*)}^{>0}\right) < f(\mathbf{x}^*),$$

thus $f(\mathbf{z}) < f(\mathbf{x}^*)$ for a $\mathbf{z} \in X$ such that $g(\mathbf{z}) = 0$. Since \mathbf{z} belongs to the feasible set of (3), this leads to a contradiction to the optimality of \mathbf{x}^* for (3).

