MATH60005/70005: Optimization (Autumn 23-24)

Week 8: Problem Session

Dr Dante Kalise & Dr Estefanía Loayza-Romero Department of Mathematics Imperial College London, United Kingdom {dkaliseb,kloayzar}@imperial.ac.uk

- 1. Derive the orthogonal projection formula for a closed ball centered at $\mathbf{x}_0 \in \mathbb{R}^n$, $B[\mathbf{x}_0, r]$.
- 2. Show that the stationarity condition over the unit ball in \mathbb{R}^n , that is,

$$\min\{f(\mathbf{x}): \|\mathbf{x}\| \le 1\}$$

is given by $\nabla f(\mathbf{x}^*) = 0$, or $\|\mathbf{x}^*\| = 1$ and there exists $\lambda \leq 0$ such that $\nabla f(\mathbf{x}^*) = \lambda \mathbf{x}^*$.

3. Consider the minimization problem

min $2x_1^2 + 3x_2^2 + 4x_3^2 + 2x_1x_2 - 2x_1x_3 - 8x_1 - 4x_2 - 2x_3$ subject to $x_1, x_2, x_3 \ge 0$.

- Show that the vector $(\frac{17}{7}, 0, \frac{6}{7})^{\top}$ is an optimal solution.
- Implement a projected gradient method with constant stepsize $\frac{1}{L}$, where *L* is the Lipschitz constant of the gradient of the function.

