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1. Solve the problem
min  x7 + 2x3 + 4xx;
st. xe Az .
2. Orthogonal regression. Suppose we have a;, ..., a,, € R". Foragiven 0 # x € R”
and y € R, we define the hyperplane:
Hyy={acR":x'a=y}

In the orthogonal regression problem, we seek to find a nonzero vector x € R”"
and y € R such that the sum of squared Euclidean distances between the points
aj,...,ay to Hy , is minimal:

m
: _ 2 n
Il)’(l’lyn{;d(al,Hx,y) .OixeR,yeR}.

Let A be the matrix

Show the optimal solution of the orthogonal regression problem is given by x which
is an eigenvector of the matrix A" (I, — %eeT)A associated with the minimum
eigenvalue and y = = 37 a'x.

3. Consider the problem

min  x? — x;
st. x,=0,



and its equivalent formulation

min xl2 — X9

2
st. x;<0.

Determine KKT conditions for both problems, are they equivalent and solvable?

Solutions

1. Since x € A,, we our problem reads

x1+x=1 (X1+XZ—1:0)
min {f(x) = X7 + 2x% + 4x1x2} st. x>0 (-x1<0)
X
X220 (—x2<0)

By KKT condition for this Linearly Constrained Problem, if x* is a local minimizer
of f(x) over Ay, then there exist 43, A; > 0 and p € R such that

VxL =0 2
Ai(=x;) =0, i=12 for the Lagrangian L(x, A, p) = f(x)+Z Ai(=x;)+p(x1+x2—-1) .

xX1+x,=1 i=1

Our objective function is quadratic, as

f(x) =x"Ax =x" [; ;] X,

with Tr(A) = 3 and Det(A) = —2. This implies that f is not convex, hence the KKT
condition are only necessary.

2x1+4x2—/11+y:0
4xy +4x1— A +pu =0

The associated KKT system is  { A;x; = 0 which we address by
)LzXz =0
xX1+x,=1

considering the following 4 cases.
+ Case A; = A; = 0: the KKT system becomes
2x1+4x, +pu=0 (1)

4x, + 4,1+ p=0 (2)
xX1+x=1 (3)

and by considering (2) — (1) we obtain 2x; = 0 = x; = 0, and so x; = 1,
u = —4. Thus, (0,1) is a KKT point.




« Case A3, 4, > 0: we need x; = x, = 0 which is unfeasible (it violates the last
condition).

« Case A; > 0,1, = 0: we have x; = 0 which for feasibility implies x; = 1, then

4+u—A4,=0 =—4
A — and so (0,1) solves the system.
4 + H= 0 Al =0

« Case A; = 0,1, > 0: we obtain the KKT point (1, 0).

For optimality, we need to compare f(0,1) and f(1,0):

F0,1)=0+2+0=2 . .
FLO)=140+0=1 £(0,1) < f(1,0) = (0,1) is a local minimum.

. First, we need to find an explicit expression for d (a;, Hy y) = [la; — P, (a;)]|, where
P, (a;) is the orthogonal projection of a; onto the hyperplane Hy j,. During the
lectures, we have computed the orthogonal projection onto affine spaces C = {v €
R": Av = b} given by

Pc(z) =z—- AT (AAT)}(Az - D).

Since a hyperplane is a particular case of an affine space with A = x" and b = v,
we obtain

Py, (a) =a-— x(x'x)Hx"a-y),
_(xTa-y)
11>

Altogether, implies

d (a;, Hxy) = ||lai — a;

L X azy (X a;j—y) H
lIx||?
_ IxTa; — y|

=l
and the orthogonal regression problem is given by
(x"a—y)*
min —————:Xx#0y€eR
{Z I Y

If we fix x, then the optimiser with respect to y is given by

m
Z a/x = —eTAx

1
m i=1

wheree = [1,1,...,1] .



3.

Using the above expression,we obtain
m m 1 2
2 alx=y)=) (a?x - ;eTAx) , o
i=1 i=1
= Z:(aiTx)2 - — Z(eTAx) (a/x) + —(e"Ax)?, (2)
i=1 m 3 m
1
= |Ax|)* - —(e"A%)?, 3)
m

1
=xA" (I]m - —eeT) Ax, (4)
m

and therefore the problem can be reformulated as

T[AT (1, — LeeT) A
min{X [ (m mee) ]X:x;&O},

x [BSIE

whose optimal solution corresponds to the eigenvector associated with the smallest
eigenvalue of the matrix AT [I,, — Zee™| A.

We start with the solution via KKT of
minxl2 —x9 S.t. x5=0

which is a minimization of a convex cost with convex constraints, hence KKT
conditions are both necessary and sufficient:

L(x,p) = X{ = x3 + pxy, ViL=0 = { .
H— =

from which we can conclude that (0, 0) is the only KKT point (and minimizer).
In the alternative formulation
minx? —x, st x5 <0,

we have again convex cost and convex constraint, but the Slater’s condition is not
satisfied, as there is no x; € R such that xg < 0. Then, KKT condition are only
sufficient. For the associated Lagrangian

L(x,A) = xl2 — X +Ax§,

we have
23(,'1:0
ViLl=0 — 42lx,—-1=0
Ax2 =0

but since the last two equations cannot be satisfied simultaneously, the KKT system
has no feasible solution, even though the problem has a feasible optimal solution
atx; = x5, =0.



Constrained Least Squares (extra exercise)

An application of this framework can be found in reformulating the (RLS) problem

min ||Ax — b||2 + )L||X||2
X

as a Constrained Least Squares (CLS) problem

min ||Ax — b||? s.t. Ix]|* < a, a>0
X

which has convex cost and nonlinear convex constraint, and the Slater’s condition is
satisfied withk = 0, since ||| = 0 < a. Thus, KKT conditions are necessary and
sufficient.

The associated Lagrangian reads
L(xA) = |Ax=blIP +A(IxI* —a), A €R,
and so, a KKT point x* satisfies
2AT (Ax* —b) +2Ax" =0
ViL(x) =0 = JA(x*|I?~a)=0
Ix*|?<a = 1>0
We then distinguish the two cases
« Case A = 0: using the first expression we have
x* = (ATA)'ATb = x;5

where x;s is the solution of the ordinary Least Squares problem. If ||xz5|* < «,
then x5 is the solution of the (CLS) problem.

« Case A > 0: if we have to consider this is because ||xzs||> > a. Furthermore, 1 > 0
implies — due to the second equation in the KKT system - that ||x;"1||2 = a . Then
X; = (ATA+ Al)7'ATb and we want to find A such that

Ix511° = =[[(ATA+AD)"'ATb||.
By defining the function F : R — R such that
FO) =(ATA+A)'ATb|)? — a.

The problem reduces to find the zeros of F on [0, +oo[. Let us start noticing that
F(0) = |Ixzs||*—a > 0,and that F is strictly decreasing with lim;_,., F(1) = —a < 0.
Thus, there exists a unique solution A* such that F(1*) = 0.

To conclude, the solution of the CLS problem reads

oo %S if x5l < @,
cLs (ATA+2*D)'ATb  otherwise

where 1* satisfies F(1*) = 0.
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