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1. Solve the problem

min 𝑥21 + 2𝑥22 + 4𝑥1𝑥2
s.t. x ∈ Δ2 .

2. Orthogonal regression. Suppose we have a1, . . . , a𝑚 ∈ ℝ𝑛 . For a given 0 ≠ x ∈ ℝ𝑛

and 𝑦 ∈ ℝ, we define the hyperplane:

𝐻x,𝑦 :=
{
a ∈ ℝ𝑛 : x⊤a = 𝑦

}
In the orthogonal regression problem, we seek to find a nonzero vector x ∈ ℝ𝑛

and 𝑦 ∈ ℝ such that the sum of squared Euclidean distances between the points
a1, . . . , a𝑚 to 𝐻x,𝑦 is minimal:

min
x,𝑦

{
𝑚∑︁
𝑖=1

𝑑
(
a𝑖, 𝐻x,𝑦

)2 : 0 ≠ x ∈ ℝ𝑛, 𝑦 ∈ ℝ

}
.

Let A be the matrix

A =


a⊤1
a⊤2
...

a⊤𝑚


Show the optimal solution of the orthogonal regression problem is given by xwhich
is an eigenvector of the matrix A⊤(𝕀𝑚 − 1

𝑚
ee⊤)A associated with the minimum

eigenvalue and 𝑦 = 1
𝑚

∑𝑚
𝑖=1 a

⊤
𝑖 x.

3. Consider the problem

min 𝑥21 − 𝑥2
s.t. 𝑥2 = 0 ,
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and its equivalent formulation

min 𝑥21 − 𝑥2
s.t. 𝑥22 ≤ 0 .

Determine KKT conditions for both problems, are they equivalent and solvable?

Solutions

1. Since x ∈ Δ2, we our problem reads

min
x

{
𝑓 (x) := 𝑥21 + 2𝑥22 + 4𝑥1𝑥2

}
s.t.


𝑥1 + 𝑥2 = 1 (𝑥1 + 𝑥2 − 1 = 0)
𝑥1 ≥ 0 (−𝑥1 ≤ 0)
𝑥2 ≥ 0 (−𝑥2 ≤ 0)

By KKT condition for this Linearly Constrained Problem, if x∗ is a local minimizer
of 𝑓 (x) over Δ2, then there exist 𝜆1, 𝜆2 ≥ 0 and 𝜇 ∈ ℝ such that
∇𝑥L = 0
𝜆𝑖 (−𝑥𝑖) = 0, 𝑖 = 1, 2
𝑥1 + 𝑥2 = 1

for the Lagrangian L(x, 𝜆, 𝜇) := 𝑓 (x)+
2∑︁
𝑖=1

𝜆𝑖 (−𝑥𝑖)+𝜇 (𝑥1+𝑥2−1) .

Our objective function is quadratic, as

𝑓 (x) = x⊤𝐴x = x⊤
[
1 2
2 2

]
x ,

with𝑇𝑟
(
𝐴
)
= 3 and 𝐷𝑒𝑡

(
𝐴
)
= −2. This implies that 𝑓 is not convex, hence the KKT

condition are only necessary.

The associated KKT system is



2𝑥1 + 4𝑥2 − 𝜆1 + 𝜇 = 0
4𝑥2 + 4𝑥1 − 𝜆2 + 𝜇 = 0
𝜆1𝑥1 = 0
𝜆2𝑥2 = 0
𝑥1 + 𝑥2 = 1

which we address by

considering the following 4 cases.

• Case 𝜆1 = 𝜆2 = 0: the KKT system becomes
2𝑥1 + 4𝑥2 + 𝜇 = 0 (1)
4𝑥2 + 4𝑥1 + 𝜇 = 0 (2)
𝑥1 + 𝑥2 = 1 (3)

and by considering (2) − (1) we obtain 2𝑥1 = 0 =⇒ 𝑥1 = 0, and so 𝑥2 = 1,
𝜇 = −4. Thus, (0, 1) is a KKT point.
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• Case 𝜆1, 𝜆2 > 0: we need 𝑥1 = 𝑥2 = 0 which is unfeasible (it violates the last
condition).

• Case 𝜆1 > 0, 𝜆2 = 0: we have 𝑥1 = 0 which for feasibility implies 𝑥2 = 1, then{
4 + 𝜇 − 𝜆1 = 0
4 + 𝜇 = 0

=⇒
{
𝜇 = −4
𝜆1 = 0

and so (0, 1) solves the system.

• Case 𝜆1 = 0, 𝜆2 > 0: we obtain the KKT point (1, 0).

For optimality, we need to compare 𝑓 (0, 1) and 𝑓 (1, 0):

𝑓 (0, 1) = 0 + 2 + 0 = 2
𝑓 (1, 0) = 1 + 0 + 0 = 1

𝑓 (0, 1) < 𝑓 (1, 0) =⇒ (0, 1) is a local minimum.

2. First, we need to find an explicit expression for 𝑑
(
a𝑖, 𝐻x,𝑦

)
= ∥a𝑖 −ℙ𝐻x,𝑦 (a𝑖)∥, where

ℙ𝐻x,𝑦 (a𝑖) is the orthogonal projection of a𝑖 onto the hyperplane 𝐻x,𝑦 . During the
lectures, we have computed the orthogonal projection onto affine spaces C = {v ∈
ℝ𝑛 : Av = b} given by

ℙC(z) = z − A⊤(AA⊤)−1(Az − b) .

Since a hyperplane is a particular case of an affine space with 𝐴 = 𝑥⊤ and b = 𝑦 ,
we obtain

ℙ𝐻x,𝑦 (a) = a − x(x⊤x)−1(x⊤a − 𝑦) ,

= a − (x⊤a − 𝑦)
∥x∥2 x .

Altogether, implies

𝑑
(
a𝑖, 𝐻x,𝑦

)
=





a𝑖 − a𝑖 +
(x⊤a𝑖 − 𝑦)

∥x∥2 x




 ,

=
|x⊤a𝑖 − 𝑦 |

∥x∥ ,

and the orthogonal regression problem is given by

min
{

𝑚∑︁
𝑖=1

(x⊤a − 𝑦)2
∥x∥2 : x ≠ 0 𝑦 ∈ ℝ

}
.

If we fix x, then the optimiser with respect to 𝑦 is given by

𝑦 =
1
𝑚

𝑚∑︁
𝑖=1

a⊤𝑖 x =
1
𝑚
e⊤Ax ,

where e = [1, 1, . . . , 1]⊤.
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Using the above expression,we obtain
𝑚∑︁
𝑖=1

(a⊤𝑖 x − 𝑦) =
𝑚∑︁
𝑖=1

(
a⊤𝑖 x −

1
𝑚
e⊤Ax

)2
, (1)

=

𝑚∑︁
𝑖=1

(a⊤𝑖 x)2 −
2
𝑚

𝑚∑︁
𝑖=1

(e⊤Ax) (a⊤𝑖 x) +
1
𝑚
(e⊤Ax)2 , (2)

= ∥Ax∥2 − 1
𝑚
(e⊤Ax)2 , (3)

= xA⊤
(
𝕀𝑚 − 1

𝑚
ee⊤

)
Ax , (4)

and therefore the problem can be reformulated as

min
x

{
x⊤

[
A⊤ (

𝕀𝑚 − 1
𝑚
ee⊤

)
A
]
x

∥x∥2 : x ≠ 0

}
,

whose optimal solution corresponds to the eigenvector associated with the smallest
eigenvalue of the matrix A⊤ [

𝕀𝑚 − 1
𝑚
ee⊤

]
A.

3. We start with the solution via KKT of

min𝑥21 − 𝑥2 s.t. 𝑥2 = 0

which is a minimization of a convex cost with convex constraints, hence KKT
conditions are both necessary and sufficient:

L(x, 𝜇) = 𝑥21 − 𝑥2 + 𝜇𝑥2 , ∇𝑥L = 0 =⇒
{
2𝑥1 = 0
𝜇 − 1 = 0

from which we can conclude that (0, 0) is the only KKT point (and minimizer).

In the alternative formulation

min𝑥21 − 𝑥2 s.t. 𝑥22 ≤ 0 ,

we have again convex cost and convex constraint, but the Slater’s condition is not
satisfied, as there is no 𝑥2 ∈ ℝ such that 𝑥22 < 0. Then, KKT condition are only
sufficient. For the associated Lagrangian

L(x, 𝜆) = 𝑥21 − 𝑥2 + 𝜆𝑥22 ,

we have

∇𝑥L = 0 ⇐⇒


2𝑥1 = 0
2𝜆𝑥2 − 1 = 0
𝜆𝑥22 = 0

but since the last two equations cannot be satisfied simultaneously, the KKT system
has no feasible solution, even though the problem has a feasible optimal solution
at 𝑥1 = 𝑥2 = 0.
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Constrained Least Squares (extra exercise)

An application of this framework can be found in reformulating the (RLS) problem

min
x

∥𝐴x − 𝑏∥2 + 𝜆∥x∥2

as a Constrained Least Squares (CLS) problem

min
x

∥𝐴x − 𝑏∥2 s.t. ∥x∥2 ≤ 𝛼, 𝛼 > 0

which has convex cost and nonlinear convex constraint, and the Slater’s condition is
satisfied withx̂ = 0, since ∥x̂∥2 = 0 < 𝛼 . Thus, KKT conditions are necessary and
sufficient.

The associated Lagrangian reads

L(x, 𝜆) = ∥𝐴x − 𝑏∥2 + 𝜆(∥x∥2 − 𝛼) , 𝜆 ∈ ℝ+,

and so, a KKT point x∗ satisfies

∇𝑥L(x∗) = 0 ⇐⇒


2𝐴⊤(𝐴x∗ − 𝑏) + 2𝜆x∗ = 0
𝜆(∥x∗∥2 − 𝛼) = 0
∥x∗∥2 ≤ 𝛼 =⇒ 𝜆 ≥ 0

We then distinguish the two cases

• Case 𝜆 = 0: using the first expression we have

x∗ = (A⊤A)−1A⊤b = x𝐿𝑆

where x𝐿𝑆 is the solution of the ordinary Least Squares problem. If ∥x𝐿𝑆 ∥2 ≤ 𝛼 ,
then x𝐿𝑆 is the solution of the (CLS) problem.

• Case 𝜆 > 0: if we have to consider this is because ∥x𝐿𝑆 ∥2 > 𝛼 . Furthermore, 𝜆 > 0
implies – due to the second equation in the KKT system – that ∥x∗

𝜆
∥2 = 𝛼 . Then

x∗
𝜆
= (𝐴⊤𝐴 + 𝜆𝕀)−1𝐴⊤𝑏 and we want to find 𝜆 such that

∥x∗
𝜆
∥2 = 𝛼 = ∥(𝐴⊤𝐴 + 𝜆𝕀)−1𝐴⊤𝑏∥2 .

By defining the function 𝐹 : ℝ → ℝ such that

𝐹 (𝜆) = ∥(𝐴⊤𝐴 + 𝜆𝕀)−1𝐴⊤𝑏∥2 − 𝛼 .

The problem reduces to find the zeros of 𝐹 on [0, +∞[. Let us start noticing that
𝐹 (0) = ∥x𝐿𝑆 ∥2−𝛼 > 0, and that 𝐹 is strictly decreasing with lim𝜆→∞ 𝐹 (𝜆) = −𝛼 < 0.
Thus, there exists a unique solution 𝜆∗ such that 𝐹 (𝜆∗) = 0.

To conclude, the solution of the CLS problem reads

x∗𝐶𝐿𝑆 =

{
x𝐿𝑆 if ∥x𝐿𝑆 ∥2 ≤ 𝛼 ,

(𝐴⊤𝐴 + 𝜆∗𝕀)−1𝐴⊤𝑏 otherwise

where 𝜆∗ satisfies 𝐹 (𝜆∗) = 0.
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