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Part I

Probability and SDEs

Definition 1.1 (Σ - sample space). It is the set of all elementary outcomes of a random
experiment

Definition 1.2 (F - sigma-field ). Also denoted by σ-field, it is a collection of subsets of
Σ that satisfies the following properties:

1. ∅ ∈ F and F

2. If A ∈ F , then Ac ∈ F

3. If A1, A2, . . . ∈ F , then
⋃∞

i=1Ai ∈ F , i.e. F is closed under countable unions

Trivial σ-filed given by F = {Ω,∅}
Power set of Σ is the largest σ-field, denoted by P(Σ) containing all possible subsets of Σ

Definition 1.3 (Borel set). The smallest σ-field that contains all open sets in R is called
the Borel σ-field, denoted by B(R)

Definition 1.4 (Borel σ-field). σ-Field generated by open sets in R is called the Borel
σ-field, denoted by B(R), containing all open, closed, half-open, half-closed, and countable
unions of these sets. It is the smallest σ-field that contains all open sets in R

B(R) = σ ({(a, b) | a, b ∈ R}) (1)

Definition 1.5 (Probability measure). A function P : F → [0, 1] is called a probability
measure if it satisfies the following properties:

1. P (Ω) = 1, P (∅) = 0

2. P (A) ≥ 0 for all A ∈ F

3. If A1, A2, . . . ∈ F are pairwise disjoint, then P (
⋃∞

i=1Ai) =
∑∞

i=1 P (Ai)

Definition 1.6 (Random variable). A random variable is a function X : Ω → R that maps
the sample space to the real numbers.
It is measurable if for all B ∈ B(R), the set X−1(B) = {ω ∈ Ω | X(ω) ∈ B} ∈ F

Definition 1.7 (Cumuative distribution function). The cumulative distribution function
(CDF) of a random variable X is defined as FX(x) = P (X ≤ x) for all x ∈ R

P (X−1((−∞, x])) = P ({ω ∈ Ω | X(ω) ≤ x}) = FX(x)
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Definition 1.8 (Probability density function). If there exists a function fX : R → R such
that for all x ∈ R, FX(x) =

∫ x
−∞ fX(y)dy, then fX is called the probability density function

(pdf) of X
Or equivalently if the CDF differentiable the pdf is: fX(x) = d

dxFX(x)

Definition 1.9 (Expectation). The expectation of a random variable X is defined as:

E[X] =

∫
Ω
X(ω)dP (ω) (2)

=

∫
R
ydFx(y) (3)

=

∫
R
yfX(y)dy (4)

Definition 1.10 (Variance). The variance of a random variable X is defined as:

V ar(X) = E[(X − E[X])2]

= E[X2]− E[X]2

Proposition 1.11 (Properties of expectation). Let X,Y be random variables and a, b ∈ R,
then:

1. E[aX + bY ] = aE[X] + bE[Y ]

2. If X ≥ 0, then E[X] ≥ 0

3. If X ≥ Y , then E[X] ≥ E[Y ]

Proposition 1.12 (Properties of variance). Let X,Y be random variables and a, b ∈ R,
then:

1. V ar(aX + bY ) = a2V ar(X) + b2V ar(Y ) + 2abCov(X,Y )

2. V ar(X) ≥ 0

3. If X ≥ 0, then V ar(X) ≥ 0

4. If X ≥ Y , then V ar(X) ≥ V ar(Y )

Definition 1.13 (Moment generating function). The moment generating function (mgf)
of a random variable X is defined as:

MX(t) = E[etX ] (5)

We have that
dn

dtn
MX(t) = E[XnetX ]
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Definition 1.14 (Characteristic function). Not all random variables have a MGF, we
instead have the characteristic function (cf) of a random variable X is defined as:

ϕX(t) = E[eitX ] (6)

Definition 1.15 (Independence). Two random variables X,Y are independent if for all
A,B ∈ B(R), we have that:

P (X ∈ A, Y ∈ B) = P (X ∈ A)P (Y ∈ B)

and denoted by X ⊥ Y We also have that

E[XY ] = E[X]E[Y ]

V ar(X + Y ) = V ar(X) + V ar(Y )

Definition 1.16 (Covariance). The covariance of two random variables X,Y is defined as:

Cov(X,Y ) = E[(X − E[X])(Y − E[Y ])] = E[XY ]− E[X]E[Y ] (7)

Definition 1.17 (Correlation). The correlation of two random variables X,Y is defined
as:

Corr(X,Y ) =
Cov(X,Y )√

V ar(X)V ar(Y )

We have that −1 ≤ Corr(X,Y ) ≤ 1. For random variables X1, X2 with X2 = aX1 + b, we
have that Corr(X1, X2) = 1 or −1 depending on the sign of a. Can define a correlation or
covariance matrix for a vector of random variables X = (X1, X2, . . . , Xn) as the matrix of
all pairwise correlations or covariances

Theorem 1.18 (Central Limit Theorem). Let X1, X2, . . . be a sequence of i.i.d. random
variables with mean µ and variance σ2. We have sample mean defined as Xn

Xn =
1

n

n∑
i=1

Xi

√
n
Xn − µ

σ

n↑∞−−−→ N(0, 1)

Example 1.19. Take X ∼ N(µ, σ2), then we have that:

E[(X − µ)n] =

{
0 if n is odd

σnn!! if n is even

where n!! is the double factorial defined as n!! = n(n− 2)(n− 4) . . .
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Definition 1.20 (Multivariate random variable). A multivariate random variable is a
vector of random variables X = (X1, X2, . . . , Xn). The joint distribution of X is defined
as:

FX(x1, x2, . . . , xn) = P (X1 ≤ x1, X2 ≤ x2, . . . , Xn ≤ xn)

With the PDF defined as:

fX(x1, x2, . . . , xn) =
∂n

∂x1∂x2 . . . ∂xn
FX(x1, x2, . . . , xn)

Definition 1.21 (Multivariate Normal). We define for dimension n. Let µ = [µ1, µ2, · · · , µn]
be the vector for the means and let V be a covariance matrix, Vi,j = σiσjρi,j .

We say that X follows a multivariate normal distribution in dimension n and we write
X = [X1, · · · , Xn] ∼ N(µ, V ) ∼ N((µi)i = 1, . . . , n, (σiσjρi, j)i,j=1...n) if

pX(y) = pX1,...,Xn(y1, · · · , yn) =
(2π)−n/2√
det(V )

exp

(
−1

2
(y − µ)TV −1(y − µ)

)
Definition 1.22 (Convergence of Random Variables). Let X,X1, X2, . . . be random vari-
ables, then we have the following types of convergence:

1. Almost sure convergence: Xn
a.s.−−→ X if P (limn→∞Xn = X) = 1

2. Lp convergence: Xn
Lp

−→ X if E[|Xn −X|p] → 0 as n → ∞
Making sure that E[|Xn|p] < ∞ for all n ∈ N

3. Convergence in mean square: Xn
m.s.−−→ X if E[(Xn −X)2] → 0 as n → ∞

Special case of Lp convergence for p = 2

4. Convergence in probability: Xn
p−→ X if for all ϵ > 0, P (|Xn−X| > ϵ) → 0 as n → ∞

5. Weak convergence or convergence in distribution: Xn
d−→ X if FXn(x) → FX(x) for

all x ∈ R where FXn and FX are the CDFs of Xn and X respectively

Definition 1.23 (Stochastic Process). A stochastic process is a collection of random vari-
ables indexed by time, i.e. {Xt}t∈T where T is the index set. We have the following types
of stochastic processes:

1. Discrete-time: If T = {0, 1, 2, . . .}

2. Continuous-time: If T = [0,∞)

3. Markov process: If the future of the process depends only on the present state

4. Martingale: If the expected value of the process at time t given all information up to
time s is equal to the value at time s
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Definition 1.24 (Filtration). A filtration is a collection of σ-fields {Ft}t∈T such that
Fs ⊆ Ft for all s ≤ t. It represents the information available at time t

Definition 1.25 (Brownian Motion). A Brownian motion is a stochastic process {Wt}t≥0

with the following properties:

1. W0 = 0

2. Continuous sample paths: t 7→ Wt(ω)

3. Independent Increments: For all 0 ≤ s < t < u, Wt −Ws and Wu −Wt

4. Stationary Increments: Distribution of Wt+h−Wt does not depend on t, but only
on h for h > 0

5. W is Gaussian: Wt ∼ N(0, t) and Wt −Ws ∼ N(0, t − s) for all 0 ≤ s < t under
the probability measure P

Definition 1.26 (Ordinary Differential Equation). An ordinary differential equation (ODE)
is an equation involving a function of one variable and its derivatives. It is of the form:

dX(t)

dt
= f(X(t)), X(0) = x0

where y is the unknown function of t, and f is a given function of t and y
Can rewrite it as follows

dX(t) = f(X(t))dt

Proposition 1.27 (Solution to Affine ODE). The solution to an ODE of the following
form for A,B functions of time:

dX(t)

dt
= B(t)−A(t)X(t)

X(t) = exp

(
−
∫ t

0
A(s)ds

)(
X(0) +

∫ t

0
B(u) exp

(∫ u

0
A(s)ds

)
du

)
Definition 1.28 (Stochastic Differential Equation). A stochastic differential equation
(SDE) is a differential equation in which one or more of the terms is a stochastic pro-
cess. It is of the form:

dX(t) = f(Xt)dt︸ ︷︷ ︸
Local drift

+ σ(Xt)︸ ︷︷ ︸
Local σ

· dWt︸︷︷︸
Brownian motion

where X(t) is the unknown function of t, f is the local drift, σ is the local volatility, and
Wt is the Brownian motion process with dWt ∼ N(0, dt)
Problems:
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1. Unbounded variation: Brownian motion has unbounded variation

2. Nowhere differentiable: Brownian motion is nowhere differentiable

So the integral of dWt is not well defined

Proposition 1.29 (Fixing the SDE). Can’t use the standard Riemann-Stieltjes integral to
solve the SDE as the Brownian motion is not of bounded variation.

P

(
ω ∈ Ω | dWt

dt
does not exist for any t

)
= 1

In a Stiltjes integral one has∫ T

0
σ(Xs)dWs = lim

n→∞

n∑
i=1

σ(X(ti))(Wti+1 −Wti)

for ANY choice ti ∈ [ti, ti+1). We must carefully choose the partition ti to make the integral
well defined.
We have 2 choices:

1. Ito’s Integral: ∫ T

0
σ(Xs)dWs = lim

n→∞

n∑
i=1

σ(X(ti+1))(Wti −Wti)

where ti = iTn and Wti+1 −Wti ∼ N(0, Tn )

2. Stratonovich Integral:∫ T

0
σ(Xs) ◦ dWs = lim

n→∞

n∑
i=1

1

2
(σ(X(ti)) + σ(X(ti+1)))(Wti+1 −Wti)

Stratonovich Integral looks into the future to calculate the integral, while Ito’s Integral only
uses current and past information.
If σ(Xt) does not depend on Xt, then the two integrals are the same, we call this a Wiener
Integral.

We have the following property for Ito’s Integral:

E

[∫ T

0
σ(Xs)dWs

]
= 0

Proposition 1.30 (Ito’s Isometry). We have that:

E

[(∫ t

0
σ(Xs)dWs

)2
]
= E

[∫ t

0
σ(Xs)

2ds

]
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Definition 1.31 (Adapted to Filtration). A stochastic process {Xt}t∈T is adapted to a
filtration {Ft}t∈T if for all t ∈ T , Xt is Ft-measurable, i.e. Xt is known at time t

Theorem 1.32 (Existence and Uniqueness of Solutions). Consider Ito SDE of the form:

dX(t) = µ(t,Xt)dt+ σ(t,Xt)dWt, X0 = Z

where µ, σ are Globally Lipschitz continuous and follow linear growth in X and σ ̸= 0. Z a
random variable independent σ({Wt : t < T}) and E[Z2] < ∞. Then there exists a unique
global solution to the SDE on the interval [0, T ] that is adapted to the filtration generated
by the Brownian motion, FW

t and is square integrable.

� Lipschitz continuity: A function f : Rn → Rm is Lipschitz continuous if there
exists a constant L > 0 such that for all x, y ∈ Rn, we have that:

||f(x)− f(y)|| ≤ L||x− y||

� Linear growth: A function f : Rn → Rm has linear growth if there exists a constant
K > 0 such that for all x ∈ Rn, we have that:

||f(x)|| ≤ K(1 + ||x||)

Definition 1.33 (Ito’s formula). Given

dXt = f(Xt)dt+ σ(Xt)dWt

we have that for a smooth function ϕ(t, x), the Ito’s formula is given by:

dϕ(t,Xt) =
∂ϕ

∂t
dt+

∂ϕ

∂x
dXt +

1

2

∂2ϕ

∂x2
dX2

t

We have that:

� dtdt = 0

� dWtdWt = dt

� dtdWt = 0

Note for Vt differentiable, we have that:

dVtdVt = V ′(t)dtV ′(t)dt = V ′(t)2 dtdt︸︷︷︸
=0

= 0
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Definition 1.34 (Quadratic Variation). The quadratic variation of a stochastic process
{Xt}t∈T is defined as:

[X]t = lim
n→∞

n∑
i=1

(Xti+1 −Xti)
2

where the limit is taken in the mean square sense. We have that:

[W ]t = t

We have that for 2 independent Brownian motions W, W̃ , we have that:

[W, W̃ ]t = 0

Now set dW
(1)
t = dW ,

tdW
(2)
t = ρdWt +

√
1− ρ2dW̃t

dW
(1)
t dW

(2)
t = ρdt

Proposition 1.35 (Ito-Stratonovich Transformation). We have that:

dXt = f(Xt)dt+ σ(Xt)dWt → dXt = f̃(Xt)dt+ σ(Xt) ◦ dWt

where ◦ denotes the Stratonovich integral and f̃ = f − 1
2σ

∂σ
∂x . Here both integrals are

equivalent. Note for σ deterministic, the two integrals are the same.

Definition 1.36 (Geometric Brownian Motion). A geometric Brownian motion is a stochas-
tic process {St}t≥0 with

dSt = mtStdt+ νtStdWt

where mt is the drift, νt is the volatility, and Wt is the Brownian motion process. We have
that:

St = S0 exp


∫ t

0
(ms −

1

2
ν2s )ds︸ ︷︷ ︸

Mt

+

∫ t

0
νsdWs︸ ︷︷ ︸
V 2
t

 = S0e
N (Mt,V 2

t )

� Expectation: E[St] = S0 exp(
∫ t
0 msds)

� Variance: V ar(St) = S2
0 exp(2

∫ t
0 msds)

(
exp(

∫ t
0 ν

2
sds)− 1

)
Definition 1.37 (Arithmetic Brownian Motion). An arithmetic Brownian motion is a
stochastic process {St}t≥0 with

dSt = µtdt+ σtdWt

9



where µt is the drift, σt is the volatility, and Wt is the Brownian motion process. We have
that:

St = S +

∫ t

0
µsds+

∫ t

0
σsdWs

We have that:

St ∼ N

(
S +

∫ t

0
µsds,

∫ t

0
σ2
sds

)
Definition 1.38 (Ornstein-Uhlenbeck Process). An Ornstein-Uhlenbeck process is a stochas-
tic process {Xt}t≥0 with

dXt = (bt − atXt)dt+ σtdWt

where bt is the drift, at is the mean reversion, σt is the volatility, and Wt is the Brownian
motion process. We have that:

X(t) = e−
∫ t
0 a(s)ds

[∫ t

0
exp

(∫ u

0
a(s)ds

)
(budu+ σudWu) +X(0)

]
Definition 1.39 (Vasicek Model). A special case of the Ornstein-Uhlenbeck process is the
Vasicek model, where we have that:

dXt = κ(θ −Xt)dt+ σdWt, x0

Where κ is the mean reversion rate, θ is the long-term mean, σ is the volatility, and Wt is
the Brownian motion process. We have b(t) = κθ, a(t) = κ and σt = σ. Then:

X(t) = e−κt [exp(κu) (κθdu+ σdWu) +X(0)]

= x0e
−κt + θ(1− e−κt) + σ

∫ t

0
e−κ(t−u)dWu

We know Xt will be Gaussian with mean x0e
−kt + θ(1− e−κt) and variance σ2

2κ (1− e−2κt)

Definition 1.40 (CIR Model). A special case of the Ornstein-Uhlenbeck process

Vasicek: dXt = κ(θ −Xt)dt+ σdWt, x0

CIR: dYt = κ(θ − Yt)dt+ σ
√
YtdWt, x0

Where CIR is used to model interest rates Yt = rt or volatility Yt = νt. Model can never be
negative, but can be zero. We have the Feller condition for the CIR model to be positive:

2κµ ≥ ν2

We have for both models that:
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� κ : Mean reversion rate (speed of mean reversion rate)

� θ : Long-term mean reversion level

� σ : Volatility

E[Xt] = E[Yt] = x0e
−κt + θ(1− e−κt)

V ar(Xt) =
σ2

2κ
(1− e−2κt), V ar(Yt) = y0

σ2

κ
(e−κt − e−2κt) +

θσ2

2κ
(1− e−κt)2

lim
t→∞

V ar(Xt) =
σ2

2k
lim
t→∞

V ar(Yt) =
θσ2

2κ

Definition 1.41 (Product Rule for SDEs). Given two stochastic processes Xt, Yt with
SDEs:

d(XtYt) = XtdYt + YtdXt + dXtdYt

Last term computed with usual rules.

Definition 1.42 (Equivalent Measures). Say 2 measures P,Q on (Σ,F) are equivalent if
they agree on which events have probability 0 or 1. We write P ∼ Q

Definition 1.43 (Radon-Nikodym derivative).

EQ[X] =

∫
Ω
XdQ =

∫
Ω
X

dQ
dP

dP = EP[X
dQ
dP

]

Definition 1.44 (Girsanov’s Theorem). Define for all t ∈ [0, T ]

dQ
dP

|Ft := exp

−1

2

∫ t

0

(
fQ(Xs)−fP(Xs)

σ(Xs)

)2

ds+

∫ t

0

fQ(Xs)−fP(Xs)

σ(Xs)
dW P

s


Then

dXt = fQ(Xt)dt+ σ(Xt)dW
Q
t

Definition 1.45 (Poisson Process). A Poisson process is a counting process {Nt}t≥0 with
the following properties:

1. N0 = 0

2. All jumps are of size 1

3. Right continuity: t 7→ Nt(ω) is right continuous

4. Independent increments: For all 0 ≤ s < t, Nt −Ns is independent of {Nu}u≤s
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5. Stationary increments: Distribution of Nt+h −Nt does not depend on t, but only
on h for h > 0

6. Poisson distribution: For all 0 ≤ s < t, Nt −Ns ∼ Pois(λ(t− s))

Poisson Distribution: X ∼ P (λ)

P (X = k) =
e−λλk

k!

Part II

SDEs for Option Pricing

Definition 2.46 (Economy). A probability space Ω,F , (Ft : 0 ≤ t ≤ T ), P
Assume F = Ft. We have 2 assets traded: a stock price St and a bond price Bt with the
following:

� Stock price: dSt = µStdt+ σStdWt

=⇒ St = S0 exp
(
(µ− 1

2σ
2)t+ σWt

)
, 0 ≤ t ≤ T

� Bond price: dBt = rBtdt

=⇒ Bt = ert

Assumptions:

� No transaction costs: No costs to buy or sell assets

� No dividends: Stock does not pay dividends

� Shares are infinitely divisible: Can buy any fraction of a share

� Short selling allowed: Can sell assets you do not own

� No default risk

� No funding costs: Cash can be borrowed or lent at the risk free rate r

� Continuous time and continuous trading/hedging

� Perfect market info, complete markets

Definition 2.47 (Contingent Claim). A contingent claim Y for maturity T is any square-
integrable (E[Y 2] < +∞) and positive random variable in Ω,Ft, P which is in particular
FT -measurable. We limit ourselves to simple contingent claims, i.e. claims of the form
Y = f(ST ), where f is a measurable function of the risky asset at maturity.
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Definition 2.48 (Trading Strategy). A trading strategy is a pair of processes (φB, φS)
on Ω,F , (Ft : 0 ≤ t ≤ T ), P that are locally bounded and predictable. Representing the
number of shares of the bond and stock respectively. We have the value of the portfolio at
time t given by:

Vt(φ) = φB
t Bt + φS

t St

Definition 2.49 (Gain process).

Gt(ϕ) =

∫ t

0
ϕS
s dSs +

∫ t

0
ϕB
s dBs

representing the income from the trading strategy ϕ up to time t

Definition 2.50 (Self-financing). A strategy is self-financing if Vt(ϕ) ≥ 0 for all t ∈ [0, T ]
and

Vt(ϕ) = V0(ϕ) +Gt(ϕ)

Or equivalently:
dVt(ϕ) = ϕS

t dSt + ϕB
t dBt = dGt(ϕ)

i.e only changes in value of portfolio come from changes in the value of the assets.

Definition 2.51 (Arbitrage). An arbitrage is a self-financing trading strategy ϕ such that:

ϕB
0 B0 + ϕS

0S0 = 0, P(Vt(ϕ) > 0) > 0

i.e. a strategy that has no initial cost and has a positive probability of making a profit.

Definition 2.52 (Attainable contingent claims). A contingent claim Y is attainable if
there exists a self-financing trading strategy ϕ such that:

VT (ϕ) = Y

Say that ϕ generates Y ∧Vt(ϕ) is the price at time t for Y .

Definition 2.53 (European Call). A European call option is a contingent claim with
payoff:

Y = (ST −K)+

where K is the strike price.

Definition 2.54 (European Put). A European put option is a contingent claim with
payoff:

Y = (K − ST )
+

where K is the strike price.
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Definition 2.55 (Risk-neutral measure). The risk-neutral measure is a measure Q on
(Ω,F) such that the discounted price process {e−rtSt}t≥0 is a martingale under Q. We
have that:

dQ
dP

=
e−rTS0

E[e−rTST ]

Definition 2.56 (Black-Scholes-Merton Model). Assume value of simple claim at t = T a
function of St

Vt = V (t, St) = ϕS
t St + ϕB

t Bt

and
dBt = rBtdt, dSt = µStdt+ σStdWt

Assume V ∈ C1,2([0, T ] × R+) i.e 2x differentiable w.r.t St and 1x with t. Then by Ito’s
formula:

dVt =
∂V

∂t
dt+

∂V

∂S
dSt +

1

2

∂2V

∂S2
dS2

t

dSt = µStdt+ σStdWt

dtdt = 0, dWtdWt = dt, dtdWt = 0

We have that:

dVt =

(
∂V

∂t
+ µSt

∂V

∂S
+

1

2
σ2S2

t

∂2V

∂S2

)
dt+ σSt

∂V

∂S
dWt

Via the self-financing condition we get:

For 0 ≤ t ≤ T ϕS
t =

∂V

∂S
(t, St), ϕB

t = (Vt − ϕS
t St)/Bt

Combining the below two equations we get:

dV (t, St) = ϕB
t dBt + ϕS

t dSt

dVt =

[
Vt(t, St)−

∂V

∂S
(t, St)St

]
rdt+

∂V

∂S
(t, St)St(µdt+ σdWt)

We now get the Black-Scholes PDE, for terminal condition V (T, ST ) = f(ST ) = (ST−K)+:

∂V

∂t
+ rSt

∂V

∂S
+

1

2
σ2S2

t

∂2V

∂S2
= rV (t, St)

We have the following solution:

VBS(t, St,K, T, σ, r) = StΦ(d1(t))−Ke−r(T−t)Φ(d2(t))

where:

d1(t) =
log
(
St
K

)
+ (r + σ2

2 )(T − t)

σ
√
T − t

, d2(t) = d1(t)− σ
√
T − t
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Definition 2.57 (In-, At-, Out-of-the-money). We have the following definitions for op-
tions:

� In-the-money: St > K

� At-the-money: St = K

� Out-of-the-money: St < K

Theorem 2.58 (Feynman-Kac Theorem). Given a PDE of the form:

∂V

∂t
+ µ(t, x)

∂V

∂x
+

1

2
σ2(t, x)

∂2V

∂x2
− rV (t, x) = 0

with terminal condition V (T, x) = f(x), then the solution is given by:

V (t, x) = e−r(T−t) · EQ [f(XT ) | Xt = x]

where Xt is the solution to the SDE:

dXt = µ(t,Xt)dt+ σ(t,Xt)dWt

Where diffusion process Xt has dynamics starting at Xt = x

dXs = b(s,Xs)ds+ σ(s,Xs)dWs, s ≥ t,Xt = x

Take b(x) = rx, σ(x) = σx for Black-Scholes model. We get:

VBS(0, S0,K, T, σ2, r) = e−rTEQ
0 [(ST −K)+]

= S0Φ(d1)−Ke−rTΦ(d2)

d1,2 =
log
(
S0
K

)
+ (r ± σ2

2 )T

σ
√
T

Proposition 2.59 (Computing Call option delta). Call option delta - the sensitivity of
the option price to changes in the initial stock price:

ϕS(0) = ∆0 =
∂VBS

∂S
= Φ(d1)

Proposition 2.60 (Risk Netural Measure via Girsanov’s Theorem). Aim to move from

dSt = µStdt+ σStdWt

to
dSt = rStdt+ σStdW

Q
t

We have that:
dP
dQ

= exp

{
−1

2

(
µ− r

σ

)2

T − µ− r

σ
WT

}
Call µ−r

σ the market price of risk or Sharpe ratio.
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Definition 2.61 (Martingale Measure). A martingale measure is a measure Q on (Ω,F)
such that the discounted price process {e−rtSt}t≥0 is a martingale under Q. We have that:

dQ
dP

=
e−rTS0

E[e−rTST ]

which is equivalent to S having drift rate r under Q

dSt = St[rdt+ σdWQ
t ], 0 ≤ t ≤ T

Theorem 2.62 (1st Fundamental Theorem of Asset Pricing). A market is arbitrage-free
if and only if there exists a risk-neutral measure Q equivalent to the real-world measure P.
If there exists a risk-neutral measure Q equivalent to the real-world measure P, then there
exists a unique attainable claim price that can be computed as the expectation of the claim
under the risk-neutral measure.

Definition 2.63 (Complete market). A market is complete if every contingent claim is
attainable.

Theorem 2.64 (2nd Fundamental Theorem of Asset Pricing). A market is complete if and
only if there exists a unique risk-neutral measure Q equivalent to the real-world measure P.

Definition 2.65 (Numeraire). A numeraire is a risk-free asset whose price is always 1. We
can use the numeraire to price other assets.Canonically the numeraire is the bond price Bt

with dynamics:
dBt = rBtdt

Definition 2.66 (Zero-Coupon Bonds). A zero-coupon bond is a bond that pays 1 at
maturity. The price of a zero-coupon bond at time t is given by:

P (t, T ) = e−r(T−t)

Can take r as a Stochastic process, then we have:

P (t, T ) = EQ[e−
∫ T
t rsds | Ft]

Definition 2.67 (Forward Contracts). A forward contract is an agreement to buy or sell
an asset at a future date for a price agreed upon today. The price of a forward contract at
time t is given by:

F (t, T ) = Ste
r(T−t)

VFWD(S0,K, r) = S0 −Ke−rT
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Definition 2.68 (Put-Call Parity). We have the following relationship between call and
put options:

(ST −K)+︸ ︷︷ ︸
CallPrice

− (K − ST )
+︸ ︷︷ ︸

PutPrice

= ST −K︸ ︷︷ ︸
ForwardPrice

So we get that

V PUT
BS (0, S0,K, T, σ, r) = Ke−rTΦ(−d2)− S0Φ(−d1)

And for the delta:
∆PUT = −Φ(−d1) = Φ(d1)− 1

Definition 2.69 (Dynamic Hedging). Dynamic hedging is the process of continuously
adjusting the portfolio to maintain a delta-neutral position. We have that:

∆t =
∂Vt

∂St

And so the number of shares of the stock/cash to hold is given by:

ϕS
t = ∆t, ϕB

t = (Vt −∆tSt)/Bt

Theorem 2.70. Metatheorem/folklore: A market is complete if there are as many assets
as independent sources of randomness. In reality markets are incomplete, as there are some
risks that are covered by no direct assets, and there are more risks than assets.

This can be partly addressed by including a few derivatives themselves among the basic
assets, but it is hard to keep the market complete

Example 2.71. For example, as we will see in the volatility smile part, in a stochastic
volatility model like Heston for the stock price St under the measure Q,

dSt = rStdt+
√

VtStdWt, so, dWdW V = ρdt

dVt = k(θ − Vt)dt+ σ
√
VtdW

V
t , V0,

we have that now the volatility (see underlined) in the stock equation, namely
√
Vt, is a

second stochastic differential equation driven by a second Brownian motion W V . In Black
Scholes the box would have a deterministic constant σ.

If we hedge only with the stock price St, delta hedging does not work because the risk
associated with the randomness of the volatility is not covered by the stock, the stock is
one asset and can only cover one risk, the risk of W , but not the risk of W V .

Thus, if our only hedging risky asset is the stock S, in a Heston model the market is
incomplete. To make the market complete we need to add another asset to the fundamental
assets we start from.
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For example, a specific call option C with a given strike K and maturity T could be
added to Bt and the stock, and the market would be complete again, because we would
have two risky assets now, St and Ct, to hedge two sources of risk, W and W V . A trading
strategy would then have to be a triple now, (ϕB, ϕS , ϕC). In reality it’s not always possible
to find a risky asset matching a given risk, this is particularly difficult or impossible for
some credit risk, liquidity risk, operational risks, etc. Real market remains incomplete.

A further problem is that continuous rebalancing does not happen. Real hedging hap-
pens in discrete time and this will imply an hedging error with respect to the idealized
case

Definition 2.72 (Sensitivities/Greeks). The Greeks are sensitivities of the option price
to changes in the underlying asset price, time, volatility, and interest rate. We have the
following Greeks:

� Delta: (Change to Initial Price) ∆ = ∂V
∂S

� Gamma: (Change to Delta) Γ = ∂2V
∂S2

� Theta: (Time Decay) Θ = ∂V
∂t

� Vega: (Change to Volatility) ν = ∂V
∂σ

� Rho: (Change to Interest Rate) ρ = ∂V
∂r

� Lambda: (Leverage) λ = ∆S
V

� Speed: (Change to Gamma) S = ∂3V
∂S3

Can use the above to rewrite Ito’s Formula (for a call option) as follows:

dV (t, St) = Θdt+∆tdSt +
1

2
σ2ΓtdS

2
t

If we have Θ < 0 for a call option, the option loses value over time, and if Θ > 0 the option
gains value over time. We have Γ to counteract the effect of Θ on the option price.

Intro to Volatility Smile

Definition 2.73 (Volatility Smile). The volatility smile is a pattern that results from
the implied volatilities of options with the same underlying asset and expiration date but
different strike prices. The smile is so named because it looks like a smile. The volatility
smile is a graph of the implied volatility of option contracts at various strike prices.
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Definition 2.74 (Implied Volatility). Implied volatility is the estimated volatility of a
security’s price. In general, implied volatility increases when the market is bearish, when
investors believe that the asset’s price will decline, and decreases when the market is bullish,
when investors believe that the price will rise. It is a function of the options strike price.

Definition 2.75 (Volatility Surface). The volatility surface is a three-dimensional plot
of the implied volatility of options at different strike prices and expiration dates. The
volatility surface is used to show the relationship between volatility and moneyness.

Proposition 2.76 (Smile Modelling). Alternative SDE model for dS can generate a non-
flat smile:

1. Set K to a starting value;

2. Compute the model call option price

VModel(K) = EQ
0

[
e−rT (ST −K)+

]
with S modeled through an alternative dynamics (underlined)

Model: dSt = rStdt+ σ(t, St)StdWt, S0 = s0

3. Invert Black Scholes formula for this strike, i.e. solve

VModel(K) = VBS(0, S0,K, T, ν(K), r).

in ν(K), thus obtaining the model implied volatility ν(K).

4. Change K and restart from point 2.

At the end of this algorithm we have built the smile curve K 7→ ν(K) for this model.

Definition 2.77 (Bachelier Model). The Bachelier model is a model for the dynamics of
a stock price in which the volatility of the stock is constant. The model is used to price
European options. The Bachelier model is a special case of the Black-Scholes model in
which the volatility is zero.

dSt = σdWQ
t

The price of a call option in the Bachelier model is given by:

EQ[(ST −K)+] = (S0 −K)N(d)

VBaM (0, S0,K, T, σ, r) = (s0 −K)Φ(d) + σ
√
TpN (d), d =

s0 −K

σ
√
T

We get the smile curve by inverting the Black-Scholes formula for the Bachelier model.

VBS(0, S0,K, T, ν(K), r)|r=0 = VBaM (0, S0,K, T, σ)
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Definition 2.78 (Displaced Diffusion Model). Here we define:

dSt = rStdt+ σ(St − αert)dWt

See that the drift is now rSt and so arbitrage free. The price of a call option in the
Displaced Diffusion model is given by:

VDDM (0, S0,K, T, σ, r) = (S0 − α)Φ(d1(0))−Ke−rTΦ(d2(0))

d1(0) =
log
(

S0−α
K−αert

)
+ (r + σ2

2 )T

σ
√
T

, d2(0) = d1(0)− σ
√
T

Generating the smile curve by inverting the Black-Scholes formula for the Displaced Dif-
fusion model.

VBS(0, S0,K, T, ν(K), r) = VDDM (0, S0,K, T, σ, α, r)

Definition 2.79 (CEV Model). Constant Elasticity of Variance (CEV) model is a model
for the dynamics of a stock price in which the volatility of the stock is a power function of
the stock price.

dSt = rStdt+ νSγ
t dWt, S0 = s0

where γ is the elasticity of variance, we take γ between 0 and 1 . For γ = 1
2 we call it the

”Feller Square root process”. For γ < 1, need to say what happens at S = 0, usually taken
as absorbing boundary.

Definition 2.80 (Mixture Diffusion Dynamics). Wish to build a model

dSt = rStdt+ σmix(t, St)StdWt, S0 = s0

where σmix(t, St) is a mixture of volatilities such that the distribution of St is a mixture of
log-normal distributions.

pSt(y) =: pt(y) =

N∑
i=1

λipi,t(y) =

N∑
i=1

λip
lognormal
t,σi

(y)

where λi ∈ (0, 1) and
∑

i λi = 1. We have that:

σmix(t, y)
2 =

1∑
j λjpj,t(y)

∑
i

λiσ
2
i pi,t(y)

where pi,t(y) =
1

σi

√
t
exp

{
− 1

2σ2
i t

(
log y

s0
− (r − 1

2σ
2
i )t
)2}

. Can now write

σ2
mix(t, y) =

N∑
i=1

Λi(t, y)σ
2
i , Λi(t, y) =

λipi,t(y)∑
j λjpj,t(y)

20



Definition 2.81 (The Shifted Mixture Dynamics model). Write a mixture diffusion dy-
namics model Xt as

dXt = rXtdt+ σmix(t,Xt)XtdWt, X0 = x0

Assume that the dynamics of St are given by

St = s0αe
rt +Xt

Differentiating to get the dynamics of St we get:

dSt = rStdt+ σmix(t, St − s0αe
rt)(St − s0αe

rt)dWt, S0 = s0

Price of a call option in the shifted mixture dynamics model is given by:

V Call
shift-mix = e−rt

N∑
i=1

λi

[
S0e

rtΦ

(
lnS0/K + (r + 1

2σ
2
i )T

σi
√
T

)
−KΦ

(
lnS0/K + (r − 1

2σ
2
i )T

σi
√
T

)]
where K = K − s0αe

rt,S0 = s0(1− α)

Definition 2.82 (Stochastic Volatility Models). The models above are all called local
volatility models. In these models the volatility σ(t, St) in the SDE

dSt = rStdt+ σ(t, St)StdWt, s0

is a deterministic function of time and the stock price only. In stochastic volatility models,
the volatility is itself a stochastic process.

FILL THE REST OF THIS LATER TOO pg 280 in original notes.

Part III

Risk Measures

Proposition 3.83 (Distribution of log-returns). From Black-Scholes under measure P we
have for stock St

St = S0 exp

{(
µ− 1

2
σ2

)
t+ σWt

}
0 ≤ t ≤ T

Taking logs we get, with δ = ti+1 − ti

log
Sti+1

Sti

=

(
µ− 1

2
σ2

)
δ + σ(Wti+1 −Wti) ∼ N

((
µ− 1

2
σ2

)
δ, σ2δ

)
Gaussian distribution! can test this with QQ plots, or sample skewness and kurtosis, both
should be 0.

Skewness =
E[(X − E[X])3]

σ3
, Kurtosis =

E[(X − E[X])4]

σ4
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Definition 3.84 (VaR - Value at Risk). Defined simply as the loss level that will not
be exceeded with a certain confidence level over a certain period of time
Value at Risk (VaR) is a measure of the risk of loss for investments. It estimates how much
a set of investments might lose (with a given probability), given normal market conditions,
in a set time period such as a day. VaR is typically used by firms and regulators in the
financial industry to gauge the amount of assets needed to cover possible losses.

VaRα = − inf{x ∈ R : P (X ≤ x) ≥ α}

where α is the confidence level, and X is the loss distribution.
Also define LH

LH = Portfolio0 − PortfolioH

and take Π(t, T ) the sum of all future cash flows from the portfolio in [t, T ] discounted
back at t, for our portfolio.
This gives us the price of the portfolio at time t, for T final maturity.

Portfoliot = EQ
t [Π(t, T )]

This gives us V aRH,α, for horizon H and confidence level α, satisfying:

P (LH < V aRH,α) = α

Or equiv.

P
(
EQ
0 [Π(0, T )]− EQ

H [Π(H,T )] < V aRH,α

)
= α
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Proposition 3.85 (Drawbacks to VaR). 1. Does not take into account the tail
structure beyond the percentile. Refer to figure below:

Figure 1: VaR Drawbacks

From the picture above we see that we may have two situations where the VaR is the
same but where the risks in the tail are dramatically different. In the first case, the
VaR singles out a 99% percentile, after which a slightly larger loss follows with 1%
probability mass. The bank may be happy to know the 99% percentile in this case and
to base its risk decision on that. In the second case, the VaR singles out the same
99% percentile, after which an enormously much larger loss concentration follows
with probability 1%. For example, this is now so large to easily collapse the bank.
Would the bank be happy to ignore this potential huge and devastating loss, even if it
has a small 1% probability?

2. VaR is not subadditive, i.e. the VaR of a portfolio is not the sum of the VaR
of the individual assets. This is because VaR is a quantile, and quantiles are not
additive.

Definition 3.86 (ES - Expected Shortfall). Used as a solution to (2) and a partial solution
to (1) above.
Expected Shortfall (ES) is a risk measure that quantifies the average loss of the tail of the
loss distribution. It is an alternative to Value at Risk that is more sensitive to the shape
of the tail of the loss distribution. ES is also known as Conditional Value at Risk (CVaR)
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or Expected Tail Loss (ETL).

ESα = EP[LH | LH > V aRH,α]

=
EP[LH1{LH>V aRH,α}]

P (LH > V aRH,α)

=
1

1− α
EP[Lh1{LH>V aRH,α} ]

Proposition 3.87 (Drawbacks to ES). 1. Does not fully solve the problem of (1) above,
as it still only considers the average loss in the tail, not the full tail structure.

2. liquidity risk - common with VaR and ES, as they do not take into account the
liquidity of the assets in the portfolio. Namely:

V aR(k · Portfolio) ̸= k · V aR(Portfolio)

ES(k · Portfolio) ̸= k · ES(Portfolio)

Selling a million shares of a stock will not be as easy as selling one share, and so the
risk of the portfolio is not linear with the size of the portfolio.

Part IV

Numerical Solutions of SDEs

Definition 4.88 (Euler Scheme). The Euler scheme is a simple numerical method to solve
SDEs. It is a first-order method, and is not very accurate. Let time step be ∆t = ti+1−ti =
δ∀i and write ∆Wti = Wti+1 −Wti ,∆Xti = Xti+1 −Xti . We have:

∆Xti = µ(ti, Xti)∆ti + σ(ti, Xti)∆Wti , X0 = Z

and writing
∆Wti = Wti+1 −Wti ∼

√
δNi(0, 1)

where Ni(0, 1) is a standard normal and all normals are independent. We get the Euler
scheme:

Xti+1 = Xti + µ(ti, Xti)δ + σ(ti, Xti)
√
δNi(0, 1), X0 = Z

Proposition 4.89 (Convergence of Euler Scheme). The Euler scheme converges to under
sufficient conditions for existence and uniqueness of the global solution of our SDE. These
are Lipschitz continuity and linear growth conditions on µ and σ. We have an order of
convergence of 1

2 . We have that there exists a positive real number δ0 such that

E{
∣∣X∆t

T −XT

∣∣} ≤ C(T )(∆t)
1
2 ∀∆t ≤ δ0

Where C(T ) > 0 a constant
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