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PART 1: PROBABILITY and SDEs

PART 1: PROBABILITY and SDEs

In this part we recall the main notions from probability
theory we will need and we introduce and explain
Stochastic Differential Equations (SDEs)

This part is NOT meant to be an extensive exposition, but more an
informal road map for students to make them aware of the relevant
notions with basic intuition.
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Probability space (Ω,F, P) Sample space

The sample space

Definition (Ω – sample space)
It is the set of all elementary outcomes of a random experiment.

Example

Suppose the experiment is rolling a dice, then Ω = {1,2,3,4,5,6}.

Suppose a second experiment is measuring the length of a mechanical
piece within a few decimal places. Then we could take Ω = Q.

Other times we can take, more generally, Ω = R.
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Probability space (Ω,F, P) Sigma-fields

Sigma-fields and events

An event A is a subset of the sample space Ω, A ⊆ Ω. Usually we will
not be interested in all events, but only in some subsets that belong in
some set. This set of subsets of Ω we are interested in has the
structure of a sigma-field, which we define below.

Definition (F – sigma-field)
Also denoted by σ-field or called sigma-algebra, a sigma-field F is the
set of all possible subsets of Ω we are interested in, called events,
which satisfies the following properties:
• is non-empty and contains Ω: F ̸= Φ, Ω ∈ F
• is closed under COMPLEMENTATION; if A ∈ F then Ac ∈ F
• is closed under COUNTABLE UNIONS; if Ai ∈ F for i ∈ N then

∪iAi ∈ F
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Probability space (Ω,F, P) Sigma-fields

Sigma-fields and events

The trivial σ-field is F = {Ω, ∅}. Another one is the power set ℘(Ω)
also denoted by P(Ω), namely the set of all subsets of Ω. Prove that
both are sigma-fields.

An important σ-field when Ω = R is the Borel σ-field, namely the σ-field
of R generated by open intervals in R. This is called BOREL SET of R
and sometimes denoted by B(R). It contains all possible countable
unions of intervals among other subsets of R .

The reasons for taking intervals in the above definition is that we know
how to measure intervals in R. The measure of [a b] is simply b − a.
This is called Lebesgue measure and those of you who studied
measure theory know about this and Lebesgue integration, but we
won’t insist on that here.
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Probability space (Ω,F, P) Sigma-fields

Sigma-fields and events

An event A is a set of elementary outcomes, A ⊆ Ω. If the random
experiment produces ω1 and ω1 ∈ A1, then we say that the event A1
happened.

Example

Assume, as in the dice experiment, Ω = {1,2,3,4,5,6} and suppose
you are interested in the events:
• A = {even numbers: 2,4,6};
• B = {odd numbers: 1,3,5};
• C = {numbers smaller than 3: 1,2}.

If ω = 2, then A and C happened, but not B.
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Probability space (Ω,F, P) Sigma-fields

Sigma-fields and events

Example
Assume we are measuring a mechanical piece in meters up to the 6th
decimal digit. We take Ω = R (we could also take Ω = Q ) and suppose
you are interested in the events:
• A = [0, 1] ;
• B = [0, 0.5] ∪ [1, 1.5];
• C = [1, 1/5].

If our measurement comes out as ω = 0.143234, then A and B hap-
pened, but not C, because ω ∈ A, ω ∈ B but ω is not in C. Also, A ∪ B
happened, B ∩ C did not happen.
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Probability space (Ω,F, P) Sigma-fields

Sigma-fields and events

Given a set of subsets of Ω, say A, we denote by σ(A) the sigma-field
generated by A. This is the smallest sigma-field on Ω containing A. It
will contain all the countable unions, intersections and
complementations of elements in A and combinations of these
operations. Consider for example A = {A}, one subset of Ω in F .

σ({A}) = {A,Ac ,Ω,Φ}.

Consider for example A = {A,B}, two subsets of Ω in F . We have

σ({A,B}) = {A ∩ Bc ,A ∩ B,Ac ∩ B,A,B,A ∪ B, (A ∩ Bc) ∪ (B ∩ Ac),

Ac ∪ B,Ac ∪ Bc ,A ∪ Bc ,Ac ,Bc ,Ac ∩ Bc , (Ac ∪ B) ∩ (Bc ∪ A),Ω,Φ}
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Probability space (Ω,F, P) The probability measure

The probability measure

Definition (P - probability measure)

Is a function P : F → [0,1], i.e. it associates to every event A ∈ F a
number between 0 and 1, which is interpreted as the probability of that
event. To be a probability measure, P should satisfy the following
properties:
• P(∅) = 0 and P(Ω) = 1;
• P is COUNTABLY ADDITIVE,

i.e. if Ai ∈ F , where i ∈ I, with I countable (e.g. I = N), and
Ai ∩ Aj = ∅ for i ̸= j , then P(

⋃
i∈I Ai) =

∑
i∈I P(Ai).
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Random variable on (Ω,F, P)

The random variable

Definition (X – random variable)

A random variable X on (Ω,F ,P) is a function X : Ω → R that is
MEASURABLE wrt the Borel σ-field on R. This means that

B Borel set of R =⇒ X−1(B) := {ω ∈ Ω : X (ω) ∈ B} ∈ F .

The world “measurable” is meant to convey the fact that X brings back
things that I can measure in R (with Lebesgue measure) to things that I
can measure in F (with P). If I can measure B in R, and I can because
it is in the Borel set, then bringing B back with X−1 gives me
something I can measure in F .
Indeed, since X−1(B) ∈ F we can “measure” it by computing its
probability:

P
(
X−1(B)

)
= P

(
{ω ∈ Ω : X (ω) ∈ B}

)
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Random variable on (Ω,F, P)

CDF and PDF of X

For the particularly important case of B = (−∞,b]:

Definition (Cumulative Distribution Function of X )

P
(
X−1((−∞,b]

))
= P

(
{ω ∈ Ω : X (ω) ≤ b}

)
=: FX (b)

or shortly, P(X ≤ b) =: FX (b).

Definition (Probability Density Function of X )

If ∃ a function pX : R → R≥0 such that

FX (b) =
∫ b

−∞
pX (y)dy ,

then pX is the Probability Density Function of X .
If FX is differentiable, then F ′

X = pX .
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Random variable on (Ω,F, P) Common random variables

Uniform random variable on [a,b]

X ∼ U(a,b), “X is distributed as a uniform random variable in [a,b]” if

a b

1
b−a

y

pX (y)

pX (y) =

{
1

b−a if y ∈ [a,b]
0 otherwise

a b

1

y

FX (y)

FX (y) =


0 if y < a
y−a
b−a if y ∈ [a,b]
1 if y ≥ b
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Random variable on (Ω,F, P) Common random variables

Expected value and variance

Expected value of a random variable X is

µX = E[X ] =

∫
Ω

X (ω)dP(ω) =
∫
R

y dFX (y) =

∫
R

y pX (y)dy

The variance is

Var[X ] = σ2
X = E[(X − µX )

2] = E[X 2]− µ2
X

The standard deviation is σX , sometimes denoted Std(X ), the positive
square root of variance, and is an index of dispersion of the random
variable values around the mean. Expected value is linear:

E[αX + Y ] = αE[X ] + E[Y ], α ∈ R.

VAR[αX ] = α2VAR[X ] but VAR and standard deviation are not linear,
VAR[X + Y ] may be different from VAR[X ] + VAR[Y ] in general.

Exercise: compute mean and standard deviation of X ∼ U(a,b).
(c) 2012-24 Prof. D. Brigo SDEs in Financial Modelling Imperial College London 23 / 805



Random variable on (Ω,F, P) Common random variables

Normal or Gaussian random variable X ∼ N (µ, σ2)

µ
y

pX (y)

pX (y) = 1
σ
√

2π
exp

(
− 1

2
(y−µ)2

σ2

)

Note that µ is the MEAN, MEDIAN

and MODE, while σ2 is the
VARIANCE and σ =

√
σ2 the

STANDARD DEVIATION.

µ = E[X ] =

∫
Ω

X (ω)dP(ω)

=

∫
R

y pX (y)dy ,

Var[X ] = σ2 = E[(X−µ)2] = E[X 2]−µ2,

skewness (asymmetry in tails):

E[(X − µ)3]

σ3 = 0,

excess kurtosis (fatness of tails):

E[(X − µ)4]

σ4 − 3 = 0.
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Random variable on (Ω,F, P) Moment generating and characteristic functions

Moment generating and characteristic functions

In general, for a random variable X its moment generating function is
defined as

MX (u) = E[exp(uX )].

The name “moment generating function” is due to the fact that
derivatives of MX computed at u = 0 provide the moments of X . The
n-th moment of X is defined as E[X n]. We have

d
du

MX (u)|u=0 = E[X ],
d2

du2 MX (u)|u=0 = E[X 2] etc

Not all random variables admit a moment generating function. A
generalization is the characteristic function, which is defined as
ϕX (u) = E[exp(i uX )] where i is the imaginary unit number 0 + 1i ∈ C.

We will use occasionally the moment generating function of a normal
random variable X ∼ N (µ, σ2). This is

MN (µ,σ2)(u) = e(uµ+ 1
2 u2σ2)
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Random variable on (Ω,F, P) Moment generating and characteristic functions

Eponential Random Variable with intensity γ

This is a random variable X with cumulative distribution function

FX (y) = 1 − exp(−γy), y ≥ 0; FX (y) = 0 if y < 0

and with density

pX (y) = γ exp(−γy) for y ≥ 0; pX (y) = 0 if y < 0

We have
µ = E[X ] = 1/γ; σ2 = E[(X − µ)2] = 1/γ2.

Important property: Lack of memory. Conditional probability:

P(X > x + y |X > y) :=
P({X > x + y} ∩ {X > y})

P(X > y)
= P(X > x).

This property is important when X models arrival times, for example.
In finance X is used to model default times.
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Random variable on (Ω,F, P) Other facts on random variables

Lognormal r.v.

Lognormal random variable
Y is lognormal if Y = eX with X ∼ N (µ, σ2). We can compute the
expectation of a lognormal r.v. as

E[eN (µ,σ2)] = MN (µ,σ2)(1) = eµ+ 1
2σ

2

via the moment generating function of a normal. For the variance we
have

Var(eX ) = E[(eN (µ,σ2))2]− E[eN (µ,σ2)]2 = E[e2N (µ,σ2)]− (eµ+ 1
2σ

2
)2 =

= MN (µ,σ2)(2)− e2µ+σ2
= e2µ+2σ2 − e2µ+σ2

.
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Random variable on (Ω,F, P) Other facts on random variables

Independent random variables X and Y
Two random variables X and Y are INDEPENDENT if

P({X ∈ A} ∩ {Y ∈ B}) = P(X ∈ A) · P(Y ∈ B) ∀ A,B ∈ F

For independent X and Y : E[XY ] = E[X ]E[Y ],
Var [X + Y ] = Var [X ] + Var [Y ].

Sum of independent normals is normal
X1 ∼ N (µ1, σ

2
1); X2 ∼ N (µ2, σ

2
2); X1 and X2 independent

=⇒ X1 + X2 ∼ N (µ1 + µ2, σ
2
1 + σ2

2)

Sum and products of independent lognormals
X1,X2 independent lognormals =⇒ X1 + X2 is not lognormal but

X1X2 is lognormal : think of X1 = eN1 ,X2 = eN2
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Random variable on (Ω,F, P) Central limit theorem and normal r.v. moments

Central limit theorem and normal r.v. moments I

Going back to normal random variables, the normal is one of the most
important r.v. in statistics, due to the central limit theorem. This states
that if X1,X2, . . . ,Xi , . . . is a sequence of independent and identically
distributed (i.i.d.) random variables, Xi with finite mean µ and finite
variance σ2 , each with the same distribution that need not be normal,
and the sample mean of the first n r.v.’s is X̄n = 1

n
∑n

i=1 Xi , then we
have the following convergence in distribution or in law (see below
“convergence of random variables” to see what this means exactly)

√
n

X̄n − µ

σ

law−−−→
n↑∞

N (0,1)
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Random variable on (Ω,F, P) Central limit theorem and normal r.v. moments

Central limit theorem and normal r.v. moments II

In other words, the rescaled sample mean X̄n converges to a normal
even if the single r.v’s Xi are not normal. This is one of the reasons
why we use the name “normal” for the Gaussian, it is the normal type
of limit you find for any type of random variables sample mean.

Another result we will use from normal random variables is their
moments. Assume X ∼ N (µ, σ2). Then the central moments of the
normal X are given by

E[(X − µ)n] =

{
0 for n odd

σn (n − 1)!! for n even

where the semi-factorial of an odd integer m is defined as

m!! = m(m − 2)(m − 4) · · · 3 1 for m odd.

For example, E[(X − µ)3] = 0, E[(X − µ)4] = 3σ4, E[(X − µ)5] = 0,
E[(X − µ)6] = 15σ6 etc.
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Random variable on (Ω,F, P) Multivariate random variables

Multivariate random variables

These are formally defined as measurable X : F → Rn, meaning that
B is Borel in Rn ⇒ X−1(B) ∈ F .
The components can be written as Xi , so that X = [X1,X2, . . . ,Xn] can
be put in vector form.
The cumulative distribution function for a multivariate random variable
is

FX (x1, x2, . . . , xn) = P(X1 ≤ x1 ∩ X2 ≤ x2 ∩ . . . ∩ Xn ≤ xn).

If there exists a function pX : Rn → R≥0 such that

FX (x1, x2, . . . , xn) =

∫ x1

−∞

∫ x2

−∞
. . .

∫ xn

−∞
pX (y1, y2, . . . , yn)dy1 dy2 . . . dyn

then pX is the Probability Density Function of X .
If FX is differentiable, then ∂nFX

∂x1...∂xn
= pX .
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Random variable on (Ω,F, P) Covariance and correlation

Covariance and correlation

Take a bivariate random variable X = [X1,X2]. The covariance
between X1 & X2 is defined as

cov(X1,X2) = E[(X1 − E[X1])(X2 − E[X2])] = E[X1X2]− E[X1]E[X2]

and is a number expressing how much X1 and X2 vary together,
similarly to how the variance of X is a number expressing how much X
varies (due to randomness).

Note that if X1 and X2 are independent then we have immediately
cov(X1,X2) = 0 from E [X1X2] = E [X1]E [X2]. Similarly, if at least one of
X1 or X2 is a deterministic constant, the covariance is zero.

The opposite is not always true: we can have two r.v. with zero
covariance but that are not independent, see example with X and X 2

below.
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Random variable on (Ω,F, P) Covariance and correlation

Covariance and correlation

Correlation. The correlation between X1 and X2 is defined as

ρ1,2 = cor(X1,X2) =
cov(X1,X2)√

Var(X1)
√

Var(X2)
=

E[X1X2]− E[X1]E[X2]

Std(X1) Std(X2)
.

Correlation, due to Schwartz inequality in L2, is always in the interval
[−1,1]. Two independent random variables have zero correlation but
the opposite is not always true, in that two random variables with zero
correlation are not necessarily independent.

Take for example X ∼ N (0,1) and set X1 = X ,X2 = X 2. The
correlation is zero because
E [XX 2]− E [X ]E [X 2] = E [X 3]− 0 1 = 0 − 0 = 0 where we used the
moments of a normal random variable. Now, even with zero
correlation, the two random variables are clearly dependent, as one is
the square of the other one. Square is not one-to-one, but still
expresses a clear dependence, and yet the correlation is zero.
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Random variable on (Ω,F, P) Covariance and correlation

Covariance and correlation

Similarly, we can find two random variables that are totally dependent
in a one-to-one positive relationship but whose correlation is less than
one. Take again X ∼ N (0,1) and set X1 = X ,X2 = X 3. We have

ρ1,2 =
E[X X 3]− E[X ]E[X 3]

Std(X ) Std(X 3)
=

E [X 4]√
Var [X 3]

.

Now, recalling the formula for the central moments of the Gaussian
and taking into account that X has zero mean µ and σ = 1, we get
Var [X 3] = E [(X 3)2]− E [X 3]2 = E [X 6]− 02 = 15 − 0 = 15 and
E [X 4] = 3. Thus

ρ1,2 =
E [X 4]√
Var [X 3]

=
3√
15

= 0.77.... < 1

Hence we see that even if X and X 3 are related by a one to one
increasing and invertible transformation, their correlation is less than
one.
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Random variable on (Ω,F, P) Covariance and correlation

Covariance and correlation

This is because correlation expresses the linear dependence between
two random variables. If correlation is equal to 1, the two variables are
totally related by a positive slope linear transformation, whereas if
ρ = −1 the slope is negative. All other cases measure partial linear
dependence:

ρ1,2 = 1 for X2 = mX1 + q, ρ1,2 = −1 for X2 = −mX1 + q

where m is a positive real constant.
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Random variable on (Ω,F, P) Covariance and correlation

Covariance and correlation

For an example of two correlated random variables, given three
independent random variables X ,Y ,Z , each with mean zero and
variance 1, set

X1 =
√
αX +

√
1 − αY , X2 =

√
αX +

√
1 − αZ

for a positive constant α ∈ [0,1]. It is easy to show ρ1,2 = α based on
linearity. For example,
E [X1] = E [

√
αX +

√
1 − αY ] =

√
αE [X ] +

√
1 − αE [Y ] = 0 because

E [X ] = E [Y ] = 0. Then

E [X1 X2]−E [X1]E [X2] = E [(
√
αX+

√
1 − αY )(

√
αX+

√
1 − αZ )]−0·0 =

= αE [X 2] + α
√

1 − αE [XZ ] + α
√

1 − αE [YX ] + (1 − α)E [YZ ]

= α1+α
√

1 − αE [X ]E [Z ]︸ ︷︷ ︸
X & Zindepend .

+α
√

1 − αE [Y ]E [X ]︸ ︷︷ ︸
Y & Xindepend .

+(1 − α)E [Y ]E [Z ]︸ ︷︷ ︸
Y & Zindepend .

= α

as E [X ] = E [Y ] = E [Z ] = 0 and E [X 2] = E [X 2]− E [X ]2 = Var [X ] = 1.
(c) 2012-24 Prof. D. Brigo SDEs in Financial Modelling Imperial College London 36 / 805



Random variable on (Ω,F, P) Covariance and correlation

Covariance and correlation

Along similar lines, one shows that Var [X1] = 1, Var [X2] = 1 and then
ρ1,2 = α. For example,

Var [X1] = Var [
√
αX +

√
1 − αY ] = Var [

√
αX ] + Var [

√
1 − αY ] = . . .

where we used that the variance of the sum of independent r.v. is the
sum of the variances. Then, as Var[βX ] = β2Var [X ],

. . . = αVar [X ] + (1 − α)Var [Y ] = α · 1 + (1 − α) · 1 = 1

as both X and Y have variance 1.

However, for nonlinear transformation, this type of correlation may not
work well. Indeed, we have X and X 2 that are clearly related but have
correlation zero, and X and X 3 that are totally related by a one-to-one
transformation whose correlation is less than one.
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Random variable on (Ω,F, P) Covariance and correlation

Covariance and correlation

The above ρ1,2 is called Pearson (linear) correlation. There are other
correlations that solve the above problems, called rank correlations
(e.g. Kendall tau or Spearman rho) but we won’t study them here.
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Random variable on (Ω,F, P) Covariance and correlation

Covariance and correlation matrices

The matrix cov(X ) = (cov(Xi ,Xj))i,j=1,...,n is called covariance matrix of
the random vector X .

The matrix ρ = (ρi,j)i,j is called the correlation matrix of the random
vector X .

These matrices are positive semidefinite.

The covariance can be expressed in terms of standard deviations of
the two variables Xi and XJ and of their correlation ρi,j as
cov(Xi ,Xj) = σiσjρi,j .
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Random variable on (Ω,F, P) Covariance and correlation

Multivariate normal

We can now define a multivariate normal random variable in dimension
n. Let µ = [µ1, µ2, . . . , µn] be the vector for the means and let V be a
covariance matrix, Vi,j = σiσjρi,j .

We say that X follows a multivariate normal distribution in dimension n
and we write
X = [X1, . . . ,Xn] ∼ N (µ,V ) ∼ N ((µi)i=1,...,n, (σiσjρi,j)i,j=1...n) if

pX (y) = pX1,...,Xn(y1, . . . , yn) =
(2π)n/2√

det(V )
exp

(
−1

2
(y − µ)V−1(y − µ)T

)
where (y − µ)T denotes the column vector obtained by transposition of
the row vector (y − µ) = [y1 − µ1, . . . , yn − µn].
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Random variable on (Ω,F, P) Covariance and correlation

Multivariate normal

We note that
X = [X1, . . . ,Xn] ∼ N (µ,V ) ∼ N ((µi)i=1,...,n, (σiσjρi,j)i,j=1...n) implies
that the components are normal too, namely Xi ∼ N (µi , σi).
We further point out that sum of components of a multivariate normal
is still normal, namely∑

i

Xi ∼ N (
∑

i

µi ,
∑
i,j

σiσjρij).

Be careful here: if we only know that X1 and X2 are normal but we
don’t know that [X1,X2] is a bivariate normal, it does NOT follow that
X1 + X2 is normal.
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Convergence of random variables Almost sure and Lp convergence

Convergence of Random Variables

Suppose we have, on the same probability space (Ω,F ,P), a
sequence of random variables X1,X2, . . . ,Xn, . . .. The sequence can
converge to a limit random variable X̄ on the same space.

Almost sure (a.s.) convergence. We say that Xn
a.s.−−→ X̄ if

P{ω : lim
n

Xn(ω) = X̄ (ω)} = 1.

In other terms, the set of ω ∈ Ω where the sequence converges is
measurable and has probability one.

Lp convergence. We say that Xn
Lp
−→ X if E{|Xn|p} < +∞ for all n and

lim
n

E[|Xn − X̄ |p] = 0.
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Convergence of random variables Convergence in mean square and in probability

Convergence of Random Variables

A special case of Lp convergence is p = 2, which is called mean
squared convergence:
Mean square (m.s.) convergence. We say that Xn

m.s.−−→ X̄ if

E[|Xn|2] < +∞ and lim
n

E[|Xn − X̄ |2] = 0.

Convergence in probability. We say that Xn
P−→ X̄ if

for all ϵ > 0, lim
n

P{ω : |Xn(ω)− X̄ (ω)| > ϵ} = 0.
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Convergence of random variables Weak convergence or convergence in distribution

Convergence of Random Variables

Weak convergence or convergence in law. Here the random
variables Xn can be even defined on different probability spaces. We
say that we have convergence in law Xn

law−−→ X̄ if

lim
n

E[f (Xn)] = E[f (X̄ )] for all f continuous and bounded.

Equivalently,

lim
n

FXn(x) = FX̄ (x) for all x where FX̄ is continuous.
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Convergence of random variables Weak convergence or convergence in distribution

Convergence of Random Variables

The strongest convergence is the a.s. convergence and the Lp

convergence. They don’t imply each other.

Both of them imply convergence in probability but convergence in
probability does not imply convergence in Lp or a.s.

Convergence in probability implies convergence in law but not vice
versa.

Xn
a.s−−→ X̄ ⇒ Xn

P−→ X̄ ⇒ Xn
law−−→ X̄

(p > q) Xn
Lp
−→ X̄ ⇒ Xn

Lq
−→ X̄ ⇒ Xn

P−→ X̄ ⇒ Xn
law−−→ X̄
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Convergence of random variables Weak convergence or convergence in distribution

Convergence of Random Variables

Example. Let Xn = 1
n U where U is a standard uniform random variable.

Does Xn converge to a random variable, and in case to which one?

We can see that Xn converges almost surely to 0. Indeed, take any
ω ∈ Ω and set u = U(ω). As U is standard uniform, its values are in
[0,1], so that u is a number between 0 and 1.

If u = 0, we have Xn(ω) =
1
n U(ω) = 0 for all n, so in this case

Xn(ω) → 0.

If 0 < u ≤ 1, we have Xn(ω) =
1
n U(ω) = 1

n u for all n, so in this case
Xn(ω) → 0 again since limn u/n = 0 for all finite u.

So we conclude by saying that for all ω we have Xn(ω) → 0 and we
conclude that we have almost sure convergence. This implies
convergence in probability and convergence in law.
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Convergence of random variables Weak convergence or convergence in distribution

Convergence of Random Variables

We can check that we have convergence in Lp too for any integer
p ≥ 1, and convergence in mean square in particular. To check this,
we need to compute

E[|Xn − 0|p] = E[
1
np Up] =

1
npE[U

p]

For a standard uniform U we know that E [Up] = 1
p+1 so that

E[|Xn − 0|p] = 1
(p + 1)np

and it is easy to see that this tends to 0 as n ↑ ∞, so that we have
convergence in Lp.
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Convergence of random variables Weak convergence or convergence in distribution

Convergence of Random Variables

We now give examples showing that reverse implications do not hold.

Convergence in law does not imply convergence in probability.
Take X ∼ N (0,1), and set Xn = −X for all n. Given symmetry,
Xn ∼ N (0,1) for all n. We thus have FXn = FX = FN(0,1) for all n and

trivially Xn
law−−→ X . However, we can see that there is no convergence

in probability.
Indeed, P{|Xn − X | > ϵ} = P{| − 2X | > ϵ} = P{|N (0,1)| > ϵ/2} > 0
also in the limit where n ↑ +∞, so we cannot have convergence in
probability.
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Convergence of random variables Weak convergence or convergence in distribution

Convergence of Random Variables

Convergence in probability does not imply convergence in mean
square. Take Xn =

√
n1{U<1/n} where U is a standard uniform in [0,1].

Let’s show that Xn
P−→ 0. Calculate

P{|Xn − 0| > ϵ} = P{
√

n1{U<1/n} > ϵ} = P{0 ≤ U < 1/n} =
1
n

and this tends to 0 when n goes to infinity, so we have convergence in
probability to 0. However, for convergence in mean square, we have

E[|Xn −0|2] = E[n1{U<1/n}] = nE[1{U<1/n}] = n P{U < 1/n} = n
1
n
= 1

and this does not converge to 0 when n ↑ +∞, so we don’t have
convergence in mean square.
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Stochastic processes

Putting time in the picture

We are going to define now a stochastic process, which is, roughly
speaking, a family of random variables indexed by time.

In a sense we have already seen a stochastic process. In a sequence
of random variables (Xn)n∈N the index n can be seen as a discrete
time index.

In this sense X1 would be the stochastic process at time 1, X2 would
be the process at time 2, Xn the process at time n, etc.

However, while in Econometrics and often in Statistics one uses
discrete time stochastic processes, in Mathematical Finance we use
continuous time processes, where time is not in a discrete set like N
but in a continuous set like R.
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Stochastic processes

Continous time stochastic processes

Definition (Stochastic process)

Is a COLLECTION OF RANDOM VARIABLES Xt INDEXED by t ∈ R≥0

{Xt random variable in (Ω,F), t ∈ R, t ≥ 0}

satisfying minimal consistency conditions (see e.g. Kolmogorov
construction and the notion of separability).

Definition (Filtration {Ft}t≥0)

A filtration in (Ω,F ,P) is an increasing family of sub-σ-fields of F :

Ft ⊆ F , Ft ⊆ Ft+h for h ≥ 0

Ideally, Ft models the events that are known at time t .
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Stochastic processes

Filtrations and information flow

A filtration in (Ω,F ,P) is meant to model the flow of information, which
increases over time. Ft models the information we know at time t .

Filtrations can be assigned a priori or can be generated by a stochastic
processes. For example, take the stochastic process Xt above taking
values in R (if we had Rn then B would be the generic Borel set of Rn).
We can define the sigma-field generated by the stochastic process up
to time t as

FX
t := σ

(
{X−1

s (B) : B Borel set in R, s ≤ t}
)
.

We see that when we know FX
t we know everything about the process

X up to time t . This is called the natural filtration of the process X and
is often denoted, for brevity, by

FX
t = σ({Xs, s ≤ t}).
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Stochastic processes Brownian Motion or Wiener Process Wt

Brownian Motion or Wiener Process Wt in (Ω,F ,P)

Definition (Wt – Brownian motion)

The Brownian Motion (BM) in (Ω,F ,P) is a stochastic process which
satisfies the following conditions:
• W0 = 0;
• has CONTINUOUS PATHS t 7→ Wt(ω);
• has INDEPENDENT INCREMENTS under P, i.e. for all s < t < u,

Wu − Wt independent of Wt − Ws;
• has STATIONARY INCREMENTS under P, i.e. distribution of

Wt+h − Wt does NOT depend on t , but only on h, for h > 0;
• W is a GAUSSIAN PROCESS with distribution Wt ∼ N (0, t) and

Wt − Ws ∼ N (0, t − s) for all t > 0, s > 0, t > s under P.
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Stochastic processes Some intuition on Brownian motion

Brownian Motion or Wiener Process Wt I

Brownian motion is very important, because it is the source of
randomness in Stochastic Differential Equations. It is the random
engine in the equation. Please familiarize yourself very well with the
definition above. Now we will look at the meaning of these properties.
We will not be fully rigorous but will reason in a roughly intuitive way.

First of all, note that any definition of Brownian motion is related to a
probability measure. Because when we say independent increments,
stationary increments, normal distributed increments, all these
conditions in the definition are related to the probability space we are
in, (Ω,F ,P) in our original definition. Indeed, take for example
independence of increments. Two random variables (increments) that
are independent under a probability measure P might not be so under
a different probability measure Q. Independence of increment
Wu − Wt and increment Wt − Ws (s < t < u) means
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Stochastic processes Some intuition on Brownian motion

Brownian Motion or Wiener Process Wt II

P(Wu −Wt ∈ A∩Wt −Ws ∈ B) = P(Wu −Wt ∈ A)P(Wt −Ws ∈ B) for
any two Borel sets A and B, and as you see this depends on P. If we
change measure to a different probability Q, properties of W like
independent increments or Gaussian law or stationary increments
might not hold and W would not be a Brownian motion under Q.

Next, I call your attention to two properties that are somewhat at odds.

1 Paths are continuous functions of time, t 7→ Wt(ω) is continous
in t for almost every ω ∈ Ω. Continuity, intuitively, is associated
with being somewhat foreseeable, because if the path is
continuous it does not jump and cannot surprise you entirely, so it
is in some way “foreseeable”.
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Stochastic processes Some intuition on Brownian motion

Brownian Motion or Wiener Process Wt III

2 The increments are independent. So if we have the history of
Brownian motion up to time t , namely the path s 7→ Ws(ω) for all
times s ≤ t , the next step dWt = Wt+dt − Wt is independent of the
path up to t . This means that Wt+dt can take any value compared
to the previous path up to t , and as such one would think it to be
somewhat “unforeseeable”.

It turns out that it is possible for the two above properties to co-exist
but the consequence is that Brownian motion paths have unbounded
variation. In intuitive imprecise language, this means the paths swing
a lot and change direction all the time, zig-zagging extremely. A
consequence is that the paths are nowhere differentiable.
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Stochastic processes Some intuition on Brownian motion

Brownian Motion or Wiener Process Wt IV

One Brownian path, t 7→ Wt(ω), for a given ω ∈ Ω. t is on the x axis,
while Wt is on the y axis. Note the unbounded variation features.
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Stochastic processes Some intuition on Brownian motion

Brownian Motion or Wiener Process Wt V

In a precise mathematical sense, unbounded variation means that if
we take a finite interval [0,T ] and partitions
{t0 = 0, t1, t2, . . . , ti , ti+1, . . . , tn = T} with mesh size tending to zero as
n grows to infinity, we get that Brownian motion has infinite variation
with probability one, namely

P

ω ∈ Ω : sup
mesh↓0 as n↑+∞

n−1∑
j=0

∣∣Wtj+1(ω)− Wtj (ω)
∣∣ = +∞

 = 1

Think of any regular function you are used to, they all have bounded
variation in close bounded intervals [0,T ] where they are continuous,
and the above sup is usually finite. An exponential et , a logarithm
ln(t + 1), a power function tn, etc. They all have finite variation.
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Stochastic processes Simulation of Brownian motion

Simulation of Brownian Motion

To get some further intuition on Brownian motion, let us code a
simulation of Brownian motion paths up to 1 year, with a time step of
1/10 of a day, or equivalently 1/3650 years.
The simulation of a single path is the following plot we saw earlier.
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Stochastic processes Simulation of Brownian motion

Simulation of Brownian Motion

Note the extremely swinging and zig-zagging nature of the signal. This
is unbounded variation. Notice also the lack of differentiability
everywhere. This path is not smooth, it is rough. We can also show ten
different paths of Brownian motion, each with a different colour:
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Stochastic processes Simulation of Brownian motion

Simulation of Brownian Motion

In the appendix we give the python code that we used for simulating
the Brownian motion. In the code we also check that the final standard
deviation is 1 and the final mean is 0, plus skewness and excess
kurtosis being 0, as should be, given that the final W1y is Gaussian. To
get these statistics more or less right you need to increase the number
of simulations to n = 10000 or more. Recall

Wt ∼ N (0, t) ⇒ E [Wt ] = 0; Std(Wt) =
√

t .

So in particular

E [W1y ] = 0; Std(W1) =
√

1 = 1.
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Ordinary Differential Equations (ODEs)

Ordinary Differential Equation (ODE)

An Ordinary Differential Equation (ODE) for a deterministic signal X (t)
reads:

dX (t)
dt

= f
(
X (t)

)
, X (0) = x0.

We can write it in differential form:

dX (t) = f
(
X (t)

)
dt INTERPRETATION: X (t + dt) = X (t) + f

(
X (t)

)
dt

x0

f (x0)dt

x(t)

f
(
x(t)

)
dt

Solving an ODE: given
and x0, find .

The solution to an ODE exists and
it is unique under some conditions
on f (·) (Lipschitz continuity, linear
growth).
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Ordinary Differential Equations (ODEs)

1st order ODEs: example 1

Consider the ODE

dX (t)
dt

= µX (t), X (0) = x0.

Here µ is a real constant. To solve this equation we separate variables:

dX
X

= µdt , X (0) = x0.

Integrate both sides∫ X(T )

x0

dX
X

=

∫ T

0
µdt , X (0) = x0.

We get (lnX )|X(T )
x0 = µT from which ln(X (T )/x0) = µT or

X (T ) = x0 exp(µT )

for all T ≥ 0. We will show a numerical example of this equation below.
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Ordinary Differential Equations (ODEs)

1st order ODEs: example 2

It will be useful to recall the solution for the linear (affine) differential
equation

dX (t)
dt

= B(t)− A(t)X (t),

where A and B are functions of time. The solution is given in any
textbook as

X (t) = exp

(
−
∫ t

0
A(s)ds

)[∫ t

0
exp

(∫ u

0
A(s)ds

)
B(u)du + X (0)

]
This will be useful later to solve the Ornstein-Uhlenbek SDE.
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Ordinary Differential Equations (ODEs)

Example

Suppose we have the following toy model for population growth
dX (t)

dt
= 0.1X (t), X (0) = 2.

This ODE tells us that the instantaneous change in population size at a given
time is 1/10 of the population size at that same time.
Solving this ODE amounts to finding the whole time evolution of X (t), given
only its instantaneous change in all possible points and its initial position X (0).

Solution, X (t) = 2e0.1t , up to 10 years.
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Stochastic Differential Equations (SDEs)

Stochastic Differential Equation (SDE)

A SDE is a generalization of an ODE where RANDOMNESS is added to
the system:

dXt = f (Xt)dt︸ ︷︷ ︸
local mean

+ σ(Xt)︸ ︷︷ ︸
local standard

deviation

dWt︸︷︷︸
BM increments:

stationary, independent
from the past and ∼N (0,dt)

t
t + dt

Xt

Xt+dt (ω1)

Xt+dt (ω2)

...

ω

time

X (t , ω)

Can we make it rigorous? Big
problem with the paths:
• UNBOUNDED VARIATION;
• NOWHERE DIFFERENTIABLE

with probability 1.
We’ll come back to this important
problem later. Now we present
some examples to develop intuition
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Stochastic Differential Equations (SDEs)

Example
For a 2D visualization, let’s add a random component to our toy model
for population growth

dX (t) = 0.1X (t)dt + σ dWt , X (0) = 2.

Figure: on the left 10 paths σ = 0.1 and on the right 100 paths for σ = 0.2.
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Stochastic Differential Equations (SDEs)

Further intuition behind SDEs

Let us look at another example, for example a stock price.

This will be a stochastic process Xt described by a stochastic
differential equation.

Let us suppose this is the future price of an asset with return 5% and
see how this varies with σ.
We will take σ = 0.1 = 10%, but we will also plot the case
σ = 0.04 = 4%.

The initial value of the SDE is X0 = 100.

dXt = 0.05Xtdt + 0.1XtdWt , X0 = 100.
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Stochastic Differential Equations (SDEs)

SDE: dXt = 0.05Xtdt + 0.1XtdWt , X0 = 100,
ODE dXt = 0.05Xtdt
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Stochastic Differential Equations (SDEs)

SDE: dXt = 0.05Xtdt + 0.1XtdWt , X0 = 100,
ODE dXt = 0.05Xtdt
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Stochastic Differential Equations (SDEs)

SDE: dXt = 0.05Xtdt + 0.1XtdWt , X0 = 100,
ODE dXt = 0.05Xtdt
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Stochastic Differential Equations (SDEs)

SDE: dXt = 0.05Xtdt + 0.1XtdWt , X0 = 100,
ODE dXt = 0.05Xtdt
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Stochastic Differential Equations (SDEs)

SDE: dXt = 0.05Xtdt + 0.1XtdWt , X0 = 100,
ODE dXt = 0.05Xtdt
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Stochastic Differential Equations (SDEs)

SDE: dXt = 0.05Xtdt + 0.1XtdWt , X0 = 100,
ODE dXt = 0.05Xtdt
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Stochastic Differential Equations (SDEs)

SDE: dXt = 0.05Xtdt + 0.1XtdWt , X0 = 100,
ODE dXt = 0.05Xtdt
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Stochastic Differential Equations (SDEs)

SDE: dXt = 0.05Xtdt + 0.1XtdWt , X0 = 100,
ODE dXt = 0.05Xtdt
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Stochastic Differential Equations (SDEs)

SDE: dXt = 0.05Xtdt + 0.1XtdWt , X0 = 100,
ODE dXt = 0.05Xtdt
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Stochastic Differential Equations (SDEs)

SDE: dXt = 0.05Xtdt + 0.1XtdWt , X0 = 100,
ODE dXt = 0.05Xtdt
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Stochastic Differential Equations (SDEs)
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Stochastic Differential Equations (SDEs)

SDE: dXt = 0.05Xtdt + 0.1XtdWt , X0 = 100,
ODE dXt = 0.05Xtdt . Randomness, Dynamics & Prob
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Stochastic Differential Equations (SDEs)

Probability density function

Here we plotted the probability density function (in red) at time
t = 1 = 1y , x 7→ pX1y (x), where the horizontal axis is actually vertical.

You can see that where the final coloured scenarios are more
concentrated, the red density curve is higher (goes more to the right
hand side), see for example values around 100-110.

Where the colored scenarios are sparse, the density curve is smaller,
like for examples in values near 130-140 or 80-85. .

In the next picture we compare the case σ = 0.1 with σ = 0.04. We will
see that the larger sigma, the more randomness the system has, and
the more spread the paths and the final density will be.
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Stochastic Differential Equations (SDEs)

dXt = 0.05Xtdt + σXtdWt , X0 = 100:
σ = 0.1 vs σ = 0.04
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Stochastic Differential Equations (SDEs)

SDEs: Mathematical problems

We now go back to the mathematical definition of an SDE.

Our problem is that in defining a SDE we write dWt but it turns out that
the paths t 7→ Wt(ω), while being continous, have unbounded variation
for almost every ω ∈ Ω (with probability one). A consequence of this is
that Brownian motion is nowhere differentiable:

P
{
ω ∈ Ω :

dWt(ω)

dt
does not exist for any t

}
= 1

If
dWt

dt
is not well defined, we cannot interpret it as a differential or a

time derivative. Then what does dWt in our SDE really mean?
We need to define dXt = f (Xt)dt + σ(Xt)dWt as an INTEGRAL

EQUATION

Xt = x0 +

∫ t

0
f (Xs)ds +

∫ t

0
σ(Xs)dWs
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Stochastic Differential Equations (SDEs) Stochastic Integrals: Ito and Stratonovich

SDEs: Definition as integral equations

Thus, definining an SDE amounts to define a stochastic integral.
However, since W has unbounded variation, we cannot define∫ t

0 σ(Xs)dWs as a Stieltjes integral on the paths. Fixing a path ω ∈ Ω,
the integral ∫ t

0
σ(Xs(ω))dWs(ω)

does not exist as a Riemann Stiltjes integral in t .

If W were differentiable, we could write a standard limit of Stiltjes sums
to define a Stiltjes type integral. Let tn

0 = 0, tn
1 , . . . , t

n
n = T be an

increasing partition of [0,T ] for all n, that grows finer as n increses.
The partitions are assumed to be nested for different n. Suppose that
the mesh size of the partition tends to 0 as n ↑ +∞.
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Stochastic Differential Equations (SDEs) Stochastic Integrals: Ito and Stratonovich

The stochastic integral as a Stiltjes integral?

In a Stiltjes integral one has∫ T
0 σ(Xs)dWs =

= lim
n

n∑
i=1

σ(X (t̄i))(Wti+1−Wti )

for ANY choice t̄i ∈ [ti , ti+1).

However, for Brownian mo-
tion this does not work since
W has unbounded variation.

Add an extra specification:
we need to explicitly decide
which point t̄i is considered.
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Stochastic Differential Equations (SDEs) Stochastic Integrals: Ito and Stratonovich

SDEs: Definition as integral equations

In a standard Stiltjes integral one has that the following limit converges∫ T

0
σ(Xs)dWs = lim

n

n∑
i=1

σ(X (t̄i))(Wti+1 − Wti )

for ANY possible choice of t̄i ∈ [ti , ti+1).

However, for Brownian motion this does not work since W has
unbounded variation and is not differentiable.

It turns out that one can still define the stochastic integral in a Riemann
Stiltjes way adding an extra specification that is not needed for
ordinary Stiltjes integrals. We need to explicitly decide at which point t̄i
in each limit interval [ti , ti+1) the integrand σ(Xt) is evaluated.
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Stochastic Differential Equations (SDEs) Stochastic Integrals: Ito and Stratonovich

Two types of stochastic integrals: Ito and Stratonovich

• 2 main definitions of stochastic integrals: Initial point vs mid point∫ T

0
σ(Xs)dWs = lim

n

n∑
i=1

σ(X (ti))(Wti+1 − Wti ) (Itô)

∫ T

0
σ(Xs)◦dWs = lim

n

n∑
i=1

σ

(
X
(

ti + ti+1

2

))
(Wti+1−Wti )(Stratonovich)

• (a more general definition for Stratonovich would be∫ T

0
σ(Xs) ◦ dWs = lim

n

n∑
i=1

σ(X (ti)) + σ(X (ti+1))

2
(Wti+1 − Wti ) )

where it is understood that as n tends to infinity the mesh size of
the partition {[0, t1), [t1, t2), . . . , [tn−1, tn = T ]} of [0,T ] tends to 0.

• Stratonovich integral looks into the future, Ito does not.
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Stochastic Differential Equations (SDEs) Stochastic Integrals: Ito and Stratonovich

Two types of stochastic integrals: Ito and Stratonovich

• We note immediately that if σ(Xt) does not depend on X and is a
constant σ, then the Ito and Stratonovich integrals coincide. This
also holds if σ = σ(t) is a deterministic function of time. In this
case the integral is called a Wiener integral.

• What do we mean by “look into the future”? In terms like
σ(X (ti))(Wti+1 − Wti ) the future increment is Wti+1 − Wti and we
interpret ti as the present time. In the Ito integral, σ(X ) is
evaluated at the present time ti , whereas the Stratonovich integral
σ
(

X
(

ti+ti+1
2

))
(Wti+1 − Wti ) is evaluated at a future time ti+ti+1

2
which is after the present time ti .

• In finance we cannot know the future, so we use Ito.
• Stochastic integrals are limits in probability, and sometimes, under

more strict assumptions on the integrand, they can also be
defined as limits in mean square or almost sure. This means that
in the above definitions what we meant really was that
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Stochastic Differential Equations (SDEs) Stochastic Integrals: Ito and Stratonovich

• limit in P: t̄i = ti for Ito and t̄i =
ti+ti+1

2 for Stratonovich: for all ϵ > 0
we have

lim
mesh↓0 as n↑+∞

P

{∣∣∣∣∣Integral −
n∑

i=1

σ
(
X
(
t̄i
))
(Wti+1 − Wti )

∣∣∣∣∣ > ϵ

}
= 0

• limit in mean square: t̄i = ti for Ito and t̄i =
ti+ti+1

2 for Stratonovich:

lim
mesh↓0 as n↑+∞

E

∣∣∣∣∣Integral −
n∑

i=1

σ
(
X
(
t̄i
))
(Wti+1 − Wti )

∣∣∣∣∣
2
 = 0

• limit a.s. : t̄i = ti for Ito and t̄i =
ti+ti+1

2 for Stratonovich:

P

{
ω : lim

mesh↓0 as n↑+∞

n∑
i=1

σ
(
X (̄ti)(ω)

)
(Wti+1(ω)− Wti )(ω) = Integral(ω)

}
= 1
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Stochastic Differential Equations (SDEs) Stochastic Integrals: Ito and Stratonovich

Once the integral is defined, the SDE notation is shorthand for an
integral equation, and it can be either in Itô or Stratonovich form:

dXt = f (Xt)dt + σ(Xt)dWt
Ito⇐⇒ Xt = X0 +

∫ t

0
f (Xs)ds +

∫ t

0
σ(Xs)dWs

dXt = f (Xt)dt+σ(Xt)◦dWt
Str⇐⇒ Xt = X0+

∫ t

0
f (Xs)ds+

∫ t

0
σ(Xs)◦dWs

In this course we will use Itô’s (without going into more detail) because
it does not look into the future. Two properties to keep in mind, coming
from t̄i = ti and by independence of W increments, so that Wti+1 − Wti
is independent of σ(Xti ), are:

E
[∫ t

0
σ(Xs)dWs

]
= 0

E

[(∫ t

0
σ(Xs)dWs

)2]
=

∫ t

0
E[σ(Xs)

2]ds Itô’s isometry
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Stochastic Differential Equations (SDEs) Stochastic Integrals: Ito and Stratonovich

Ito integral has zero mean

We give an heuristic argument to show some intuition on why the Ito
(but not the Stratonovich) integral has zero mean. Consider first the
Riemann-Stieltjes sums of which the Ito integral is the limit (say in
Probability).∫ T

0
σ(Xs)dWs = lim

mesh↓0 as n↑+∞

n∑
i=1

σ (X (ti))(Wti+1 − Wti )

where the limit is the limit of convergence in Probability. On the right
hand side, take an expected value:

E[
n∑

i=1

σ (X (ti))(Wti+1 − Wti )] =
n∑

i=1

E[σ (X (ti))(Wti+1 − Wti )] =

now keep in mind that Xti is independent of the future Brownian
increment Wti+1 − Wti .
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Stochastic Differential Equations (SDEs) Stochastic Integrals: Ito and Stratonovich

Ito integral has zero mean

This is because all the randomness that affects Xti is coming from all
the process X history up to time ti . This randomness was generated
by the only sources of randomness entering the sde for X , or its
integral version, namely increments ∆Wt for t < ti and possibly X0 if
random, but X0 is assumed independent of W . This means that all the
randomness in Xti is coming from past Brownian increments ∆W and,
since Brownian increments are independent, the next increment
Wti+1 − Wti is independent of (i) all past increments ∆W up to ti and (ii)
of X0, and thus of Xti whose randomness is entirely driven by (i) and
(ii). Given independence, we can factor the expectation

=
n∑

i=1

E[σ (X (ti))]E[(Wti+1 − Wti )] = 0

because the expectation of the Brownian increment is zero by definition
of Brownian motion. Given that the mean is zero for every partition, it
remains zero when we move to the limit for mesh size tending to zero.

(c) 2012-24 Prof. D. Brigo SDEs in Financial Modelling Imperial College London 92 / 805



Stochastic Differential Equations (SDEs) Stochastic Integrals: Ito and Stratonovich

Ito integral has zero mean

Note that the same does not hold for the Stratonovich integral,
because X ti+ti+1

2
and Wti+1 − Wti are not independent, given that X is

evaluated at a time after the increment starts.

Finally, we will not give an argument for the Ito isometry, which we give
without proof.
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Stochastic Differential Equations (SDEs) Existence and uniqueness of solutions

Existence and uniqueness of solutions

Consider the Ito SDE dXt = µ(t ,Xt)dt + σ(t ,Xt)dWt , X0 = Z

where the random initial condition Z is independent of σ({Wt , t ≤ T )}
and E[Z 2] < +∞. The functions µ : [0,T ]× R → R (the drift) and
σ : [0,T ]× R → R (the diffusion coefficient) are assumed measurable.
Assume µ and σ satisfy global Lipschitz continuity

|µ(t , x)−µ(t , y)|+|σ(t , x)−σ(t , y)| ≤ K |x−y | for all t ∈ [0,T ] and all x ∈ R

and linear growth

|µ(t , x)|+ |σ(t , y)| ≤ K ′(1 + |x |)| for all t ∈ [0,T ] and all x ∈ R

for two constants K ,K ′. Then for the SDE above there exists a unique
global solution Xt for all t ∈ [0,T ] that is (FW

t )t adapted and continous
in t , satsifying E[

∫ T
0 X 2

t dt ] < +∞.
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Stochastic Differential Equations (SDEs) Existence and uniqueness of solutions

Existence and uniqueness of solutions

A stochastic process Xt(ω) is adapted to a filtration Ft if Xt is Ft
mesurable for all t . This means that the information in Ft includes the
value of Xt . By construction Xt is FX

t adapted.

The above conditions for existence and uniqueness are very strong
sufficient (but not necessary) conditions. Existence of local solutions
can be obtained by requiring local versions of these conditions. Also,
for some SDEs that do not satisfy Lipschitz, e.g. the square root
process dXt = k(θ − Xt)dt + σ

√
XtdWt , the Yamada-Watanabe

theorem (that we won’t cover) works as an alternative.

Finally, we note that for autonomous or time homogeneous SDEs,
namely in the case where the SDE drift and diffusion coefficient are
µ(t , x) = µ(x) and σ(t , x) = σ(x), not depending on t , then global
Lipschitz continuity implies linear growth, so one only has to check for
Lipschitz.
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Stochastic Differential Equations (SDEs) Existence and uniqueness of solutions

Existence and uniqueness of solutions

If you have an autonomous SDE just check Lipschitz continuity but do
mention that this implies linear growth too. To show that Lipschitz
x 7→ f (x) implies linear growth f , note that, from the triangular
inequality
|f (x)| = |f (x)− f (0) + f (0)| ≤ |f (x)− f (0)|+ |f (0)| so that
|f (x)− f (0)| ≥ |f (x)| − |f (0)| and then

|f (x)| − |f (0)| ≤ |f (x)− f (0)| ≤ K |x − 0| ⇒ |f (x)| − |f (0)| ≤ K |x | ⇒

⇒ |f (x)| ≤ K |x |+ |f (0)| ⇒ |f (x)| ≤ max(K , f (0))(1 + |x |)

which is a linear growth condition.
This holds for f (x) but does not hold for f (t , x) that is Lipschitz in x . If
in doubt, verify both conditions anyway to be safe.
We will not delve further into existence theorems here, but it is good to
have at least the above example of theorem, with global Lipschitz
continuity and linear growth.
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Stochastic Differential Equations (SDEs) Existence and uniqueness of solutions

Existence and uniqueness of solutions

From the theory of deterministic differential equations we can see why
these two conditions are needed. Let’s look at two examples.

Growth more than linear (no existence). Take the ODE
dXt

dt
= KX 2

t , X0 = 1

for positive constant K and integrate it by separation of variables,
dX
X 2 = Kdt

and integrate both sides. One gets

Xt =
1

1 − K t
.

In this case the solutions is not global because it is only defined for
t < 1/K . Hence with quadratic growth we have no global existence of
a solution for t ∈ [0,T ].
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Stochastic Differential Equations (SDEs) Existence and uniqueness of solutions

Existence and uniqueness of solutions

Lack of Lipschitz continuity (no uniqueness). Consider the ODE

dXt

dt
= 3X 2/3

t , X0 = 0.

Integrating again by separation of variables we get∫ Xt

0
X−2/3dX = 3t , 3(Xt)

1/3 = 3t Xt = t3.

However, in dividing we have assumed X ̸= 0. What if X = 0 in some
interval? Certainly Xt = 0 is a solution too. So there are at least two
solutions, Xt = t3 and Xt = 0. However, we also have all the other
solutions

Xt = 0 1{t≤a} + (t − a)3 1{t>a}

for any positive a less then T . Thus without Lipschitz continuity we
have lack of uniqueness of solutions.
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Stochastic Differential Equations (SDEs) Diffusion processes

Diffusion processes

The solution of a SDE

dXt = µ(t ,Xt)dt + σ(t ,Xt)dWt , X0 = Z

is sometimes called a diffusion process, or shortly diffusion. This is
also why the term σ(t ,Xt) is called the diffusion coefficient of the SDE.
In practice, as we have seen in the example of SDE simulation for the
stock price with the coloured scenarios, the Brownian motion presence
allows the paths to diffuse in space, according to some probability law
which is locally Gaussian as dWt is normally distributed.
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Stochastic Differential Equations (SDEs) Itô’s formula

Itô’s formula

So, now dXt = f (Xt)dt + σ(Xt)dWt has a meaning as an integral
equation. Given this equation, can we find dφ(t ,Xt) where φ(·, x) is a
smooth function?

Chain Rule
If X(t) is differentiable, then

dφ(t ,Xt) =
∂φ

∂t
dt +

∂φ

∂x
dXt

However, for SDE’s with Itô’s integrals, this is modified as follows:

Itô’s formula

dφ(t ,Xt) =
∂φ

∂t
dt +

∂φ

∂X
dXt +

1
2
∂2φ

∂X 2 dXt dXt

A more rigorous expression for dXt dXt is the QUADRATIC VARIATION

d⟨X ⟩t . Here we present an informal account.
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Stochastic Differential Equations (SDEs) Quadratic variation

Quadratic variation of Brownian motion

When we write dWtdWt = dt we actually mean to express a limit. A
more rigorous expression for this is d⟨W ⟩t = dt , or ⟨W ⟩t = t . The
quadratic variation may be defined for example as a limit in mean
square. Given nested partitions tn

0 , t
n
1 , . . . , t

n
n with tn

0 = 0 and tn
n = t as

we took in the definition of stochastic integrals, we get quadratic
variation ⟨W ⟩t defined as the mean square limit

lim
mesh↓0 as n↑∞

E

(n−1∑
i=0

(Wtn
i+1

− Wtn
i
)2 − ⟨W ⟩t

)2 = 0,

or Xn =
∑n−1

i=0 (Wtn
i+1

− Wtn
i
)2 mean square−−−−−−−−→ ⟨W ⟩t .

One can also show that with nested partitions tn
0 , t

n
1 , . . . , t

n
n ,

Xn =
∑n−1

i=0 (Wtn
i+1

− Wtn
i
)2 a. s.−−→ ⟨W ⟩t .

For Brownian motion ⟨W ⟩t = t , or d⟨W ⟩t = dt
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Stochastic Differential Equations (SDEs) Quadratic variation

Quadratic variation of Brownian motion

Let’s take this formulation, based on nested partitions
Xn =

∑n−1
i=0 (Wtn

i+1
− Wtn

i
)2 a. s.−−→ ⟨W ⟩t . This means that

P

 lim
mesh↓0 as n↑+∞

n−1∑
j=0

∣∣∣Wtn
j+1

− Wtn
j

∣∣∣2 = t

 = 1

So, there is probability one that the quadratic variation of Brownian
motion is t . Recall that the 1-variation of Brownian motion is infinite
with probability one:

P

 sup
mesh↓0 as n↑+∞

n−1∑
j=0

∣∣∣Wtn
j+1

− Wtn
j

∣∣∣ = +∞

 = 1

Roughly, if we sum all the |dWti | over a finite time interval [0, t ], in the
sup limit we get infinity. But if we sum the squares, |dWti |2, in the limit
we get a finite number t called quadratic variation.
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Stochastic Differential Equations (SDEs) Quadratic variation

Stratonovich and the Chain rule

For the Stratonovich version dXt = f (Xt)dt + σ(Xt) ◦ dWt has a
meaning as a Stratonovich integral equation. Given this equation, can
we find dφ(t ,Xt) where φ(·, x) is a smooth function?

For SDE’s with Stratonovich integrals, the chain rule still holds:

dφ(t ,Xt) =
∂φ

∂t
dt +

∂φ

∂X
◦ dXt

More generally, one can still use standard calculus, contrary to the Itô
case. However, it is no longer true that the Stochastic integral has zero
mean, and its probabilistic properties are not so good.

Stratonovich is good for geometry and for convergence of processes
with regular noise when the noise converges to Brownian motion
(Wong Zakai).
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Stochastic Differential Equations (SDEs) Quadratic variation

Ito-Stratonovich transformation

Given a SDE in Itô form, it is possible to write a Stratonovich SDE with
the same solution, and vice versa. This is known as Itô - Stratonovich
transformation. The following two SDEs

dXt = f (Xt)dt + σ(Xt)dWt → dXt = f̃ (Xt)dt + σ(Xt) ◦ dWt

f̃ = f − 1
2
σ
∂σ

∂x
have the same solution X . Note that when the diffusion coefficient is
deterministic or constant, then the Ito and Stratonovich SDEs for X
coincide. Let σ be constant: f̃ = f .

In this course and in Mathematical Finance in general one uses Itô
calculus because of the non-anticipative (not looking into the future)
property and of the good probabilistic properties (zero mean).
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Stochastic Differential Equations (SDEs) Quadratic variation

Itô’s formula

dφ(t ,Xt) =
∂φ

∂t
dt +

∂φ

∂X
dXt +

1
2
∂2φ

∂X 2 dXt dXt

The three key rules to remember in Itô’s formula are

dt dt = 0, dt dWt = 0, dWt dWt = dt

Notice that, if Vt is differentiable, then

dVt dVt = V ′
t dt V ′

t dt = (V ′
t )

2 dt dt︸︷︷︸
0

= 0

This does not happen with Wt because it is NOT differentiable. To
remember Itô’s formula one should keep in mind the three key rules
and a 2nd order Taylor expansion.
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Stochastic Differential Equations (SDEs) Example: Arithmetic to Geometric Brownian Motion

Example: Arithmetic to Geometric Brownian Motion

Consider dXt = µt dt + σt dWt (ARITHMETIC BM), with µt and σt
DETERMINISTIC functions of time.

Set Yt = eXt =: φ(Xt) and find the SDE for Yt .

∂φ
∂t = 0 ∂φ

∂X = eXt ∂2φ
∂X 2 = eXt

dφ(Xt) =
∂φ

∂t
dt +

∂φ

∂X
dXt +

1
2
∂2φ

∂X 2 dXt dXt

= 0 dt + eXt dXt +
1
2

eXt dXt dXt

= eXt (µt dt + σt dWt) +
1
2

eXt (µt dt + σt dWt)
2

= eXt (µt dt + σt dWt) +
1
2

eXt (µ2
t dt dt︸︷︷︸

0

+σ2
t dWt dWt︸ ︷︷ ︸

dt

+2µtσt dt dWt︸ ︷︷ ︸
0

)

dYt =

(
µt +

1
2
σ2

t

)
Yt dt + σtYt dWt GEOMETRIC BM
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Stochastic Differential Equations (SDEs) Example: Arithmetic to Geometric Brownian Motion

Example: Arithmetic to Geometric Brownian Motion I

It can be important to derive the mean and variance of the ABM Xt ,
and to memorize this formula. We assume X0 to be deterministic.
From dXt = µtdt + σtdWt , integrating both sides from 0 to T we get

XT = X0 +

∫ T

0
µtdt +

∫ T

0
σtdWt .

By Ito isometry the last integral is nomal with zero mean and variance∫ T
0 σ2

t dt . As everything else is deterministic, it follows that it is added to
the mean but does not change the variance:

XT ∼ N

(
X0 +

∫ T

0
µtdt ,

∫ T

0
σ2

t dt

)
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Stochastic Differential Equations (SDEs) Example: Arithmetic to Geometric Brownian Motion

Example: Arithmetic to Geometric Brownian Motion II

from which we see that

E [XT ] = X0 +

∫ T

0
µtdt , Var [XT ] =

∫ T

0
σ2

t dt .

In the case where µ and σ are constant, we get

XT = X0 + µ T + σ WT ,

XT ∼ N
(

X0 + µT , σ2T
)

E [XT ] = X0 + µT , Var [XT ] = σ2 T .
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Stochastic Differential Equations (SDEs) Example: Geometric to Arithmetic Brownian Motion

Example: Geometric to Arithmetic Brownian Motion

Now, consider dYt = mtYt dt + νtYt dWt (GEOMETRIC BM), with mt and
νt DETERMINISTIC functions of time.

Set Zt = ln(Yt) =: φ(Yt) and find the SDE for Zt .

∂φ
∂t = 0 ∂φ

∂Y = 1
Yt

∂2φ
∂Y 2 = − 1

Y 2
t

dφ(Yt) =
∂φ

∂t
dt +

∂φ

∂Y
dYt +

1
2
∂2φ

∂Y 2 dYt dYt

= 0 dt +
1
Yt

dYt −
1

2Y 2
t

dYt dYt

=
1
Yt

(mtYt dt + νtYt dWt)−
1

2Y 2
t
(m2

t Y 2
t dt dt︸︷︷︸

0

+ν2
t Y 2

t dWt dWt︸ ︷︷ ︸
dt

+

+ 2mtνtYt dt dWt︸ ︷︷ ︸
0

)

dZt =

(
mt −

1
2
ν2

t

)
dt + νt dWt ARITHMETIC BM
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Stochastic Differential Equations (SDEs) Example: Geometric to Arithmetic Brownian Motion

Example: Geometric Brownian Motion I

We can use this to actually solve the SDE for geometric Brownian
motion. Indeed, we saw that Yt = exp(Zt) and Z can be integrated
directly by integrating both sides between 0 and T :

ZT − Z0 =

∫ T

0

(
mt −

1
2
ν2

t

)
dt +

∫ T

0
νt dWt .

Remembering Ito’s isometry, we know the stochastic integral on the
right is a normal with mean 0 and Variance

∫ T
0 ν2

t dt . Assuming from
now on Z0 is deterministic, given that everything else is deterministic,
we have

ZT ∼ N

(
Z0 +

∫ T

0

(
mt −

1
2
ν2

t

)
dt ,
∫ T

0
ν2

t dt

)
=: N (Z0 + MT ,V 2

T )
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Stochastic Differential Equations (SDEs) Example: Geometric to Arithmetic Brownian Motion

Example: Geometric Brownian Motion II

Now, given that YT = eZT , bringing Z0 to the right and given Y0 = eZ0

YT = Y0 exp

(∫ T

0

(
mt −

1
2
ν2

t

)
dt +

∫ T

0
νt dWt

)
= Y0eN (MT ,V 2

T ). (1)

It can be helpful to memorize the formulae for the mean and the
variance of a GBM like dYt = mtYtdt + νtYtdWt . Let’s compute the
mean of YT using Eq. (1).

E [YT ] = E [Y0eN (MT ,V 2
T )] = Y0E [eN (MT ,V 2

T )]

and now we can use the moment generating function of a Gaussian
computed at point 1, giving

E [YT ] = Y0eMT+
1
2 V 2

T = Y0 exp

(∫ T

0
mt dt

)
.
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Stochastic Differential Equations (SDEs) Example: Geometric to Arithmetic Brownian Motion

Example: Geometric Brownian Motion III

Thus the expectation at time 0 of a GBM with drift rate mt and
deterministic initial condition Y0 is the initial condition times the
exponential of the integral of the drift rate m. This is an important
formula to remember.

For the variance, we can compute

Var(YT ) = E [Y 2
T ]−E [YT ]

2 = E [
(

Y0eN (MT ,V 2
T )
)2

]−

(
Y0 exp

(∫ T

0
mt dt

))2

=

= E [Y 2
0 e2N (MT ,V 2

T )]− Y 2
0 exp

(
2
∫ T

0
mt dt

)
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Stochastic Differential Equations (SDEs) Example: Geometric to Arithmetic Brownian Motion

Example: Geometric Brownian Motion IV

Now the first expected value is the moment generating function of a
normal computed on the point 2 so we get

Var(YT ) = Y 2
0 e2MT+(4/2)V 2

T − Y 2
0 exp

(
2
∫ T

0
mt dt

)
or

Var(YT ) = Y 2
0 exp

(∫ T

0
2mtdt

)(
exp

(∫ T

0
ν2

t dt

)
− 1

)
.

In the special case where m and ν are constants we get

YT = Y0 exp

((
m − 1

2
ν2
)

T + νWT

)
and

E [YT ] = Y0emT , Var(YT ) = Y 2
0 e2mT

(
eν2T − 1

)
.
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Stochastic Differential Equations (SDEs) Example: Ornstein-Uhlenbeck process

Example: Ornstein-Uhlenbeck process

Consider dXt = (bt − atXt)dt + σt dWt (ORNSTEIN-UHLENBECK

process), with b,a and σ DETERMINISTIC functions of time (called
Vasicek model in interest rates).

As σ is not a function of X , we know that this same equation holds in
Stratonovich form and we can write

dXt = (bt − atXt)dt + σt ◦ dWt

Now, with Stratonovich we know that the formal rules of standard
calculus still hold. This means we can treat dW as if it were
differentiable in solving the Stratonovich SDE. Write it like this

dXt = (bt + σt ◦ “dWt

dt

′′
− atXt)dt

(c) 2012-24 Prof. D. Brigo SDEs in Financial Modelling Imperial College London 114 / 805



Stochastic Differential Equations (SDEs) Example: Ornstein-Uhlenbeck process

Example: Ornstein-Uhlenbeck process

“dX ′′
t

dt
= bt + σt ◦ “dWt

dt

′′
− atXt

Call A(t) = a(t) and B(t) = bt + σt ◦ “dWt
dt

′′
, and recall the solution of

the linear-affine ODE we have seen earlier. Substituting A and B in

X (t) = e−
∫ t

0 A(s)ds
[∫ t

0
exp

(∫ u

0
A(s)ds

)
B(u)du + X (0)

]
we get

X (t) = e−
∫ t

0 a(s)ds
[∫ t

0
exp

(∫ u

0
a(s)ds

)(
bu + σu ◦ “dW ′′

u
du

)
du + X (0)

]
Re-writing the “derivative” of W as a differential we get

X (t) = e−
∫ t

0 a(s)ds
[∫ t

0
exp

(∫ u

0
a(s)ds

)
(bu du + σu dWu) + X (0)

]
where we also replaced the Stratonovich integral with an Ito one, since
they are the same here (again σ does not depend on X ).
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Stochastic Differential Equations (SDEs) Example: Ornstein-Uhlenbeck process

Example: Ornstein-Uhlenbeck process

X (t) = e−
∫ t

0 a(s)ds
[∫ t

0
exp

(∫ u

0
a(s)ds

)
(bu du + σu dWu) + X (0)

]
We note that the only random term in the solution is

e−
∫ t

0 a(s)ds
[∫ t

0
exp

(∫ u

0
a(s)ds

)
σu dWu

]
This is a special case of Ito integral, where the integrand
exp

(∫ u
0 a(s)ds

)
σu is a deterministic function of time. These integrals

have a Gaussian distribution. Intuitively, this happens because all dWu
at different times u are independent and each is Gaussian. It follows
that also all terms of the type α(u)dWu (where α is a determinitic
function of time) are Gaussian and independent of each other, so that
adding them up gives a Gaussian distribution. It follows that X (t) is
going to be distributed as a Gaussian if the initial condition X (0) is
Gaussian and independent of W or deterministic.
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Stochastic Differential Equations (SDEs) Example: Ornstein-Uhlenbeck process

Special case of Ornstein-Uhlenbeck: Vasicek model

A special case of Ornstein-Uhlenbeck process in mathematical finance
is the Vasicek model for interest rates, Xt = rt where rt(ω) is the
stochastic process for the short term interest rate. In that case

dXt = k(θ − Xt)dt + σdWt , x0

where k , θ, σ are constant in time. We get then the special solution.
We have b(t) = kθ, a(t) = k and σt = σ.

X (t) = e−kt
[∫ t

0
exp (ku) (kθ du + σ dWu) + X (0)

]
Simplifying

X (t) = x0e−kt + θ(1 − e−kt) + σ

∫ t

0
e−k(t−u)dWu
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Stochastic Differential Equations (SDEs) Example: Ornstein-Uhlenbeck process

Special case of Ornstein-Uhlenbeck: Vasicek model

Given our previous discussion, we know that Xt will be Gaussian with

X (t) ∼ N
(

x0e−kt + θ(1 − e−kt),
σ2

2k

[
1 − e−2kt

])
where the variance is computed as Var[Xt ] =

= Var
[
x0e−kt + θ(1 − e−kt) + σ

∫ t

0
ek(t−u)dWu

]
= Var

[
σ

∫ t

0
ek(t−u)dWu

]
=

= E

[(
σ

∫ t

0
ek(t−u)dWu

)2]
− E

[
σ

∫ t

0
ek(t−u)dWu

]2

=

= σ2
∫ t

0
(ek(t−u))2du − 02 = σ2

∫ t

0
e2k(t−u)du =

σ2

2k

[
1 − e−2kt

]
where we used Ito’s isometry and the fact that the Ito integral has zero
mean (martingale).
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Stochastic Differential Equations (SDEs) Example: Ornstein-Uhlenbeck process

Example: Square of Ornstein-Uhlenbeck process

Back to dXt = (bt − atXt)dt + σt dWt (ORNSTEIN-UHLENBECK

process), with b,a and σ DETERMINISTIC functions of time.

Set Yt = X 2
t =: φ(Xt) and find the SDE for Yt .

∂φ
∂t = 0 ∂φ

∂X = 2Xt
∂2φ
∂X 2 = 2

dφ(Xt) =
∂φ

∂t
dt +

∂φ

∂X
dXt +

1
2
∂2φ

∂X 2 dXt dXt

= 2Xt [(bt − atXt)dt + σt dWt ] + [(bt − atXt)
2 dt dt︸︷︷︸

0

+σ2
t dWt dWt︸ ︷︷ ︸

dt

+

+ 2(bt − atXt)σt dt dWt︸ ︷︷ ︸
0

]

= (2btXt − 2atX 2
t + σ2

t )dt + 2σtXt dWt Xt = ±
√

Yt take pos. sol.

dYt = (σ2
t + 2bt

√
Yt − 2atYt)dt + 2σt

√
Yt dWt

If bt = 0, this is a “square root process” (called CIR model in interest rates).
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Stochastic Differential Equations (SDEs) Square root process (CIR model)

Square root process (CIR model)

With constant coefficients, a more general square root process is the
following,

dyt = κ(µ− yt)dt + ν
√

ytdWt , y0

used in finance to model either stochastic interest rates, yt = rt (Cox
Ingersoll Ross model, CIR), or stochastic volatilities,

√
yt = vt (Heston

model). This is more general than the squared Ornstein Uhlenbeck
model with bt = 0 and constant parameters because we do not require
that µ = ν2. Here µ can be general.

The model can never go negative but in some cases it can hit zero.
The Feller condition

2κµ > ν2

ensures that yt > 0 and 0 is never hit.
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Stochastic Differential Equations (SDEs) Examples of mean–reverting SDEs

Mean reverting properties of Vasicek & CIR I

The parameters of CIR have the same interpretation as the
parameters of Vasicek:

Vasicek model dXt = k(θ − Xt)dt + σdWt , x0.

CIR model dyt = κ(µ− yt)dt + ν
√

ytdWt , y0.

k , κ: speed of mean reversion
θ, µ: long term mean reversion level
σ, ν: volatility parameter.
The formula for the mean of Vasicek and CIR is the same:

E [Xt ] = x0e−kt + θ(1 − e−kt)

E [yt ] = y0e−κt + µ(1 − e−κt)
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Stochastic Differential Equations (SDEs) Examples of mean–reverting SDEs

Mean reverting properties of Vasicek & CIR II

lim
t↑+∞

E [Xt ] = θ, lim
t↑+∞

E [yt ] = µ.

This is why θ and µ are called the long term means of the two models.

From the mean formulas above E0[Xt ],E0[yt ] it is clear that the
parameters k and κ determine how quickly the mean converges to the
long term means θ and µ.
One can also compute the variance of the processes. We have

Var(Xt) =
σ2

2k

[
1 − e−2kt

]
,

Var(yt) = y0
ν2

κ
(e−κt − e−2κt) + µ

ν2

2κ
(1 − e−κt)2
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Stochastic Differential Equations (SDEs) Examples of mean–reverting SDEs

Mean reverting properties of Vasicek & CIR III

We see that for t ↑ +∞ the variance has a finite limit.

lim
t↑+∞

Var(Xt) =
σ2

2k
, lim

t↑+∞
, Var(yt) = µ

ν2

2k
.

After a long time the processes X and y reach (asymptotically) a
stationary distribution (Gaussian for X , non-central chi squared for y )
around their mean θ, µ and with a corridor of variance σ2/(2k),
µν2/(2κ). Models like this are called “mean reverting”, because the
mean reverts to a constant value over time and the variance remains
finite, with a finite limit. Intuitively, when the shocks bring the
processes away from their long term means θ and µ, the SDE drift
k(θ − Xt) and κ(µ− yt) will bring the process back towards the means
θ and µ, with a variance that does not grow to infinity in time.
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Stochastic Differential Equations (SDEs) Examples of mean–reverting SDEs

Mean reverting properties of Vasicek & CIR IV

The parameters k , κ are called “speed of mean reversion”, as they
determine how quickly the means E [Xt ] and E [yt ] tend to θ and µ. The
larger the speed, the faster the convergence.

The parameters σ and ν are the local volatilties parameters of the two
models. They determine how much randomness enters the system
instant by instant. Note however that also the speeds k , κ impact the
total variance of X and y , as you see from the formulas for Var(Xt) and
Var(yt).

The larger k , κ, the faster the processes converge to the stationary
distributions. So, ceteris paribus, increasing k , κ reduces the total
volatility and variance of X and y .
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Stochastic Differential Equations (SDEs) Examples of mean–reverting SDEs

Mean reverting properties of Vasicek & CIR V

The larger θ, µ, the higher the long term means, so the model will tend
to higher X and y in the future on average.

The larger σ, ν, the larger the instantaneous volatilities. Notice however
that speeds k , κ fight instantaneous volatilities σ, ν as far as the
influence on total volatility and variance is concerned.
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Stochastic Differential Equations (SDEs) Examples of mean–reverting SDEs

Mean reverting properties of Vasicek & CIR

Figure: y0 = 0.0165, κ = 0.4, µ = 0.05, ν = 0.04
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Stochastic Differential Equations (SDEs) Examples of mean–reverting SDEs

Example: Exponential of Ornstein-Uhlenbeck process

Exercise

If Xt is Ornstein-Uhlenbeck, find the SDE for Zt = eXt =: φ(Xt) (expo-
nential Vasicek model).

We have ∂φ
∂t = 0, ∂φ

∂X = eX , ∂2φ
∂X 2 = eX .

dφ(Xt) =
∂φ

∂t
dt +

∂φ

∂X
dXt +

1
2
∂2φ

∂X 2 dXt dXt

= 0dt + eXt dXt +
1
2

eXt dXtdXt

= Zt [(bt − atXt)dt + σtdWt ] +
1
2

Ztσ
2
t dt

as we have seen in the previous slide that dXdX = σ2dt . We conclude

dZt = Zt

[
bt − at lnZt +

σ2
t

2

]
dt + σtZtdWt .
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Stochastic differential of a product & quadratic covariation

Product rule for SDEs, quadratic covariation &
instantaneous correlation I

Given two processes Xt and Yt , the differential of the quadratic
covariation between the two processes, written informally dXt dYt and
more rigorously d⟨X ,Y ⟩t is the differential of the quantity ⟨X ,Y ⟩t
defined as the limit (for example in mean square) over nested
partitions tn

0 , t
n
1 , . . . , t

n
n of [0, t ] with tn

0 = 0 and tn
n = t , as we took in the

definition of stochastic integrals:

lim
mesh↓0 as n↑∞

E

(n−1∑
i=0

(Xtn
i+1

− Xtn
i
)(Ytn

i+1
− Ytn

i
)− ⟨X ,Y ⟩t

)2 = 0,

or Zn =
∑n−1

i=0 (Xtn
i+1

− Xtn
i
)(Ytn

i+1
− Ytn

i
)

mean square−−−−−−−−→ ⟨X ,Y ⟩t in case this
limit exists.
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Stochastic differential of a product & quadratic covariation

Product rule for SDEs, quadratic covariation &
instantaneous correlation II

The quadratic variation of a process X is a special case of the
quadratic covariation: ⟨X ⟩t = ⟨X ,X ⟩t .

Now that we have defined the quadratic variation for a general process
X , we can reformulate Ito’s formula for the transformation of a SDE X
more rigorously as
Itô’s formula

dφ(t ,Xt) =
∂φ

∂t
dt +

∂φ

∂X
dXt +

1
2
∂2φ

∂X 2 d⟨X ⟩t
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Stochastic differential of a product & quadratic covariation

Product rule for SDEs, quadratic covariation &
instantaneous correlation III

Whenever we write expressions like

dt dt = 0, dt dWt = 0, dWtdWt = dt , dW (1)
t dW (2)

t = ρ dt

this is an informal notation for the rigorous expressions

d⟨t⟩t = 0, d⟨t ,W ⟩t = 0, d⟨W ⟩t = dt , d⟨W (1),W (2)⟩t = ρ dt

or, even more precisely,

⟨t⟩t = 0, ⟨t ,W ⟩t = 0, ⟨W ⟩t = t , ⟨W (1),W (2)⟩t = ρ t .

We are particularly interested in the last case, the quadratic
covariation of two Brownians W (1) and W (2).
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Stochastic differential of a product & quadratic covariation

Product rule for SDEs, quadratic covariation &
instantaneous correlation IV

While d⟨W ⟩t = dWtdWt = 1 dt , it may happen that two different
Brownian motions have quadratic co-variation less than 1, or even 0.
The differential of the quadratic covariation of two different Brownian
motions is written informally dW (1)

t dW (2)
t or more precisely

d⟨W (1),W (2)⟩t and is defined as the mean square limit, given nested
partitions tn

0 , t
n
1 , . . . , t

n
n of [0, t ] with tn

0 = 0 and tn
n = t as we took in the

definition of stochastic integrals:

lim
mesh↓0 as n↑∞

E

(n−1∑
i=0

(W (1)
tn
i+1

− W (1)
tn
i
)(W (2)

tn
i+1

− W (2)
tn
i
)− ⟨W (1),W (2)⟩t

)2 = 0,

or Zn =
∑n−1

i=0 (W
(1)
tn
i+1

− W (1)
tn
i
)(W (2)

tn
i+1

− W (2)
tn
i
)

mean square−−−−−−−−→ ⟨W (1),W (2)⟩t .
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Stochastic differential of a product & quadratic covariation

Product rule for SDEs, quadratic covariation &
instantaneous correlation V

With this definition in mind, it’s quick to check that if W and W̃ are
independent Brownian motions, then

⟨W , W̃ ⟩t = 0

or informally dWtdW̃t = 0 or again d⟨W , W̃ ⟩t = 0. Now, set

dW (1)
t = dWt , dW (2)

t = ρdWt +
√

1 − ρ2dW̃t ,

with ρ ∈ [−1,1] and where W and W̃ are again two independent
Brownian motions. It is easy to see that W (1) is a Brownian motion and
so is W (2), but they are not independent.
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Stochastic differential of a product & quadratic covariation

Product rule for SDEs, quadratic covariation &
instantaneous correlation VI

The quadratic co-variation is

dW (1)
t dW (2)

t = dWt(ρdWt +
√

1 − ρ2dW̃t)

= ρdWtdWt +
√

1 − ρ2dWtdW̃t = ρdt +
√

1 − ρ20 = ρdt .

Hence we conclude d⟨W (1),W (2)⟩t = ρ dt . This is also the general
case of two correlated Brownian motions. We say that two Brownian
motions have quadratic covariation ρ ∈ [−1,1] if dW (1)

t dW (2)
t =

= d⟨W (1),W (2)⟩t = ρ dt i.e.
n−1∑
i=0

(W (1)
tn
i+1

− W (1)
tn
i
)(W (2)

tn
i+1

− W (2)
tn
i
)

m.s.−−→ ρ t .
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Stochastic differential of a product & quadratic covariation

Product rule for SDEs, quadratic covariation &
instantaneous correlation VII

Informally, “corr ′′(dW (1)
t ,dW (2)

t ) =
dW (1)

t dW (2)
t√

(dW (1)
t dW (1)

t )(dW (2)
t dW (2)

t )
= ρ.

This is also true for SDEs driven by W (1) and W (2). If

dX (1)
t = µ1(t ,X

(1)
t )dt + σ1(t ,X

(1)
t )dW (1)

t , x (1)
0

dX (2)
t = µ2(t ,X

(2)
t )dt + σ2(t ,X

(2)
t )dW (2)

t , x (2)
0

=⇒ dX (1)
t dX (2)

t = d⟨X (1),X (2)⟩t = σ1(t ,X
(1)
t )σ2(t ,X

(2)
t )ρ dt ,

“corr”(dX (1)
t ,dX (2)

t ) =
dX (1)

t dX (2)
t√

(dX (1)
t dX (1)

t )(dX (2)
t dX (2)

t )
= ρ.
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Stochastic differential of a product & quadratic covariation

Product rule for SDEs

Suppose you have two SDEs describing two stochastic processes X
and Y . The product rule reads

d(XtYt) = Yt dXt + Xt dYt + d⟨X , Y ⟩t .

The last term, often written informally as dXt dYt , is again specific to
Ito calculus and is missing in standard calculus.

The last term is computed with the usual rules
d⟨t⟩t = dt dt = 0, d⟨t ,W ⟩t = dt dWt = 0,
d⟨W ⟩t = dWt dWt = dt , d⟨W (1),W (2)⟩t = dW (1)

t dW (2)
t = ρ dt ′.

Note: This rule can be proven by applying Ito’s formula to the function
of two variables φ(X ,Y ) = XY starting from the two-dimensional SDE
for (Xt ,Yt). It is a standard application of Ito’s formula to bivariate
diffusions.
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Martingales

Martingale SDEs

A martingale is a stochastic process Xt such that E{|Xt |} < +∞ and

E[Xt |σ({Xu, 0 ≤ u ≤ s})] = Xs, s ≤ t .

This reads: the expected value of Xt given all the information on X
from time 0 to time s is equal to Xs. On average, X stays constant. It is
a process with zero local trend, so it does neither increase nor
decrease locally, on average.
For a regular SDEs (unique strong solution exists, no explosion, finite
second moment...) the solution of the SDE is a martingale if the SDE
has zero drift.

dXt = 0 dt + σ(t ,Xt)dWt .
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Martingales

Martingale SDEs

Martingales can be defined on more general filtrations than
σ({Xu, 0 ≤ u ≤ s}).

Remember that the Ito stochastic integral is a martingale.

Martingales are used in finance to model “fair games” and
no-arbitrage.
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Martingales

Martingale SDEs

As a first exercise, let’s prove that the solution to the SDE with zero
drift dXt = σtdWt , x0 is a martingale. This is a special case of an
arithmetic Brownian motion seen earlier (here µt = 0). We can simply
integrate both sides directly,

Xt = X0 +

∫ t

0
σu dWu.

Let’s show that X satisfies the classic martingale definition, namely

E[Xt |FX
s ] = Xs, s ≤ t . We can write Xt = Xs +

∫ t

s
σu dWu

Take then

E[Xt |FX
s ] = E[Xs +

∫ t

s
σu dWu|FX

s ] = Xs + E[
∫ t

s
σu dWu|FX

s ] =
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Martingales

Martingale SDEs

Now note that all future increments dWu of Brownian motion for u > s
are independent of FX

s , so that the conditioning can be removed,

= Xs + E[
∫ t

s
σu dWu] = Xs

because we know that the expectation of the Ito stochastic integral is
zero (coming from the fact that each independent dW has expectation
zero).

More generally, one can show that the Ito integral seen as a stochastic
process {

∫ t
0 b(Xs(ω)dWs(ω), t ≥ 0} is a martingale.
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Martingales

Martingale SDEs

As a second exercise, let’s prove that the solution to the SDE
dYt = νYtdWt , y0 is a martingale. We know the solution of this
equation from our previous example of GBM (here m = 0).

Yt = y0 exp

(
−1

2
ν2 t + νWt

)
.

Let’s show that Y satisfies the classic martingale definition, namely

E[Yt |FY
s ] = Ys, s ≤ t .

We can write

Yt = Ys
Yt

Ys
= Ys exp

(
−1

2
ν2 (t − s) + ν(Wt − Ws)

)
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Martingales

Martingale SDEs

Then

E[Yt |FY
s ] = E[Ys exp

(
−1

2
ν2 (t − s) + ν(Wt − Ws)

)
|FY

s ] =

= Ys exp

(
−1

2
ν2 (t − s)

)
E[exp (ν(Wt − Ws)) |FX

s ] =

Now Wt − Ws is indepedent of FX
s due to the properties of Brownian

motion, so that

= Ys exp

(
−1

2
ν2 (t − s)

)
E[exp(ν(Wt − Ws))] =

and the expectation is E[exp(νN (0, t − s))] which is the moment
generating function of a normal with 0 mean and variance ν2(t − s),
namely exp

(1
2ν

2 (t − s)
)
. Plugging this in we get

= Ys exp

(
−1

2
ν2 (t − s)

)
exp

(
1
2
ν2 (t − s)

)
= Ys
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Change of measure: Girsanov’s theorem

Change of measure: Girsanov’s theorem

In general, the statistics of a random variable X depend on the
probability measure. Recall that FX (y) = P(X ≤ y). If we change
probability measure P with a new measure Q, the distribution F , and
also the mean, variance, etc. . . will change.

In the theory of SDEs, we have seen that

dXt = f P(Xt)dt + σ(Xt)dW P
t ,

where the local mean and the BM are all under the probability
measure P. The local standard deviation needs to be the same to
apply the Girsanov theorem we are going to introduce, and for the two
measures to be equivalent in particular.

Definition (Equivalent measures)

Two measures P and Q on (Ω,F) are equivalent if they agree on which
events have zero probability.
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Change of measure: Girsanov’s theorem

Consider now the following problem: what happens to an SDE if we
change P with an equivalent measure Q?

Definition (Radon-Nikodym derivative dQ
dP )

It is a random variable such that, for any other random variable X

EQ[X ] =

∫
X dQ =

∫
X

dQ
dP

dP = EP
[
X

dQ
dP

]
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Change of measure: Girsanov’s theorem

Theorem (Girsanov’s theorem)

If we define for all t ∈ [0,T ]

dQ
dP

∣∣∣∣
Ft

:= exp

[
−1

2

∫ t

0

(
fQ(Xs)− f P(Xs)

σ(Xs)

)2

ds +

∫ t

0

fQ(Xs)− f P(Xs)

σ(Xs)
dW P

s

]

then
dXt = fQ(Xt)dt + σ(Xt)dWQ

t(
recall dXt = f P(Xt)dt + σ(Xt)dW P

t
)

where WQ is a BM UNDER Q, and the
measures P and Q are EQUIVALENT.
A sufficient condition for this to hold is the Novikov condition

E
{
exp

(
1
2

∫ T
0

(
fQ(Xs)−f P(Xs)

σ(Xs)

)2
ds
)}

< +∞

So, WE CAN CHANGE THE DRIFT (LOCAL MEAN) OF A SDE BY

CHANGING THE EQUIVALENT PROBABILITY MEASURE. THE LOCAL

VARIANCE STAYS THE SAME.
In finance, an important version of the Girsanov theorem is the
CHANGE OF NUMERAIRE.
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Change of measure: Girsanov’s theorem

Intuition behind Girsanov’s theorem I

So, first of all, recall that any definition of Brownian motion is related to
a probability measure. Go back to the definition of Brownian motion for
the related example based on independence of increments, that hold
under the specific measure P, similarly to the stationarity of the
increments and to the normal distribution, that also hold under P.
Thus, our original W is a Brownian motion under (Ω,F ,P). This can be
emphasized by renaming W as W P . The process W = W P may not
be a Brownian motion under a different probability measure Q,
because for example increments may not be independent under Q, or
the distribution may not be Gaussian, etc.

Now when you have an SDE, an important element of the SDE is its
local mean or drift. You may want to change the drift for various
reasons. The reasons are different depending on the field of science
(math finance, stochastic filtering, etc).
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Change of measure: Girsanov’s theorem

Intuition behind Girsanov’s theorem II

In finance, we will see later that we have the Feynman Kac theorem
that will be important to compute option prices and this will require a
drift change in the SDE.

So let’s say we have a SDE describing a stochastic process X under
the measure P. The SDE is

dXt = f (Xt)dt + σ(Xt)dW P
t

Now notice that both f and σ depend on the probability measure P.
Indeed, for example, informally, mean and variance of the SDE
increment conditional on Ft (denoted EP

t and VarP
t ) are
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Change of measure: Girsanov’s theorem

Intuition behind Girsanov’s theorem III

EP
t [dXt ] = EP

t [f (Xt)dt + σ(Xt)dW P
t ] = f (Xt)dt + σ(Xt)EP

t [dW P
t ]

= f (Xt)dt + σ(Xt) 0 = f (Xt)dt

given that EP [dW P
t ] = 0 and that both f (Xt) and σ(Xt) are Ft

measurable and can be brought out of the expectation, and

VarP
t [dXt ] = VarP

t [f (Xt)dt + σ(Xt)dW P
t ] = VarP

t [σ(Xt)dW P
t ]

= σ(Xt)
2VarP

t [dW P
t ] = σ(Xt)

2dt

given that, conditional on Ft , f (Xt) is a deterministic constant and does
not contribute to the variance, σ(Xt) is also deterministic and can be
taken out of the variance, and the variance of dW is dt .
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Change of measure: Girsanov’s theorem

Intuition behind Girsanov’s theorem IV

So we get that

EP
t [dXt ] = f (Xt)dt , VarP

t [dXt ] = σ(Xt)
2dt

that justify the names “local mean” for f and “local standard deviation”
for σ, and we see clearly that f and σ depend on the measure P we are
using, as they are related to the mean and variance under P of dXt .

To emphasize this we will write f = f P . We could also write σ = σP but
the Girsanov theorem requires σ to stay the same under change of
measure, so to apply the theorem under a measure Q we would have
to require σP = σQ = σ. As a consequence, we don’t put the P on σ.

With this in mind, we can rewrite our SDE for X under P as

dXt = f P(Xt)dt + σ(Xt)dW P
t
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Change of measure: Girsanov’s theorem

Intuition behind Girsanov’s theorem V

For some applications we may need to work with a SDE for the same
process X but with a different drift and Brownian. Let’s say this SDE is
dXt = g(Xt)dt + σ(Xt)dZ . Unfortunately, this is not the equation we
had under the measure P.
So if we now need the second SDE with drift g for our application, our
only way to reconcile this with the original X SDE driven by W P is to
say that we are under a different probability measure Q and that the
process Z is a Brownian motion under Q .

As explained above, a process is a Brownian motion only under a
specific probability measure. So we call Q the measure under which Z
is a Brownian motion and this will be the measure we will have to use
to do probabilistic calculations with the SDE with drift g. We can also
rename Z as W Q to emphasize it is a Brownian under Q, and g = f Q

to emphasize it is the drift under Q.
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Change of measure: Girsanov’s theorem

Intuition behind Girsanov’s theorem VI

Now we may wonder what this measure Q is. How to characterize it. In
this, the Girsanov theorem helps us. It tells us that if we have two
different SDEs describing the same process X using Brownian
motions under two different probability measures P and Q, namely

dXt = f P(Xt)dt + σ(Xt)dW P
t

dXt = fQ(Xt)dt + σ(Xt)dWQ
t

then the relationship between P and Q is described in terms of the
difference of the drifts of the two SDEs, divided by the diffusion
coefficient, and of the Brownian motion.

The first quantity is called market price of risk in finance. So the market
price of risk, depending on (f Q − f P)/σ defines the Randon Nykodym
derivarive dQ/dP defining the measure Q given the measure P.
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Change of measure: Girsanov’s theorem

Intuition behind Girsanov’s theorem VII

The Girsanov theorem also tells us that the two measures P and Q are
equivalent, and a requirement for that is that the two SDEs for X share
the same diffusion coefficient σ. Putting two different σP and σQ would
make the measures non-equivalent, so we keep σP = σQ = σ. What
does equivalence of P and Q mean?

It means that P and Q agree on which events are certain or
impossible. Q(A) = 1 ⇐⇒ P(A) = 1 or Q(A) = 0 ⇐⇒ P(A) = 0. We
don’t want things that are certain for the measure P (P probability one)
to be uncertain for the measure Q (Q probability less than one). For
example, the probability that a stock price X is positive. In Black
Scholes we will see later, with stock Xt , we have P(Xt > 0) = 1. So
prices X are positive with probability one, almost surely. Equivalence
of the measures means that also Q(Xt > 0) = 1.

(c) 2012-24 Prof. D. Brigo SDEs in Financial Modelling Imperial College London 151 / 805



Change of measure: Girsanov’s theorem

Intuition behind Girsanov’s theorem VIII

If measures were not equivalent and for example P(Xt > 0) = 1,
Q(Xt > 0) = 0.5, this would spell troubles because a positive stock
price X under the original probability measure P could become
negative under the pricing measure Q, with Q probability 0.5, and this
would be bad, because the stock paths are a given, and we cannot
have them be positive and non positive at the same time. So the
measures need to agree on this (and other things). Equivalence of the
measures, given by the Girsanov theorem, gives us these fundamental
agreements.

A final important point is to keep in mind that the two SDEs

dXt = f P(Xt)dt + σ(Xt)dW P
t

dXt = fQ(Xt)dt + σ(Xt)dWQ
t
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Change of measure: Girsanov’s theorem

Intuition behind Girsanov’s theorem IX

are essentially the same SDE expressed using Brownian motion under
two different equivalent measures, and as such they have the same
solution, even if the different Brownian motions induce different drifts.
Simply put, X is always the same X , so while the two SDEs Brownian
motions are under different measures, they describe the SAME
solution process X .

We can also derive a direct relationship between the two Brownian
motions. As dXt = dXt we can write

f P(Xt)dt + σ(Xt)dW P
t = fQ(Xt)dt + σ(Xt)dWQ

t

as both sides equal the same dXt . Solving in dW Q we get

dW Q
t =

f P(Xt)− fQ(Xt)

σ(Xt)
dt + dW P

t .
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Poisson Process

Poisson Process Nt

Definition (Nt – Poisson Process)
The Poisson Process (PP) is a stochastic process which satisfies the
following conditions:
• N0 = 0;
• Trajectories t 7→ Nt(ω) are all increasing, and increase only by

jumps of size 1;
• Trajectories t 7→ Nt(ω) are right-continuous;
• has INDEPENDENT INCREMENTS, i.e. for all s < t < u, Nu − Nt

independent of Nt − Ns;
• has STATIONARY INCREMENTS, i.e. the distribution of Nt+h − Nt

does NOT depend on t , h > 0.

These conditions IMPLY that Nt ∼ P(γ t) for some γ > 0, and
Nt − Ns ∼ P(γ(t − s)). Here P is the Poisson law.
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Poisson Process

Poisson Process vs Brownian Motion

The PP has a discrete distribution:

X ∼ P(λ) : P(X = k) = exp(−λ) λk/(k !) for k = 0,1,2, . . . (0! = 1)

The time between two subsequent jumps in a Poisson process
Nt ∼ P(γ t) is distributed like an exponential random variable with
intensity γ.

Poisson Process and Brownian Motion both have stationary
independent increments but one is continuous (BM) whereas the other
one (PP) is a pure jump process.

BM and PP are examples of more general processes with stationary
independent increments, the Levy processes.
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PART 2: SDEs FOR OPTION PRICING

PART 2: SDEs FOR OPTION PRICING

In this part we introduce no-arbitrage theory in
continuous time, the Black-Scholes SDE option
pricing model, and a few volatility smile SDE models.
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No arbitrage and option pricing / hedging

NO ARBITRAGE, OPTION PRICING AND
DERIVATIVES MARKETS

We start now the mathematical finance part of the course.

We introduce no-arbitrage, the Black Scholes and Merton result, their
precursors (Bachelier, DeFinetti...) and the refinements of their initial
theory (Harrison, Kreps, Pliska....) into no-arbitrage valuation, pointing
out its significance, successes and failures.

We also look at the derivatives markets and their significance

Later on we will address some effects of the financial crises of the
past, introducing risk measures, although for now we focus on options
pricing and hedging.
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No arbitrage and option pricing / hedging The Black Scholes and Merton Analysis

The Black Scholes and Merton Analysis

We will follows these steps:
• Arbitrage as self-financing trading strategy with zero initial cost

attaining a positive payout at maturity.
• Portfolio replication theory plus Ito’s formula to derive the Black

and Scholes PDE for the option price under certain assumptions
on the dynamics of the underlying stock price.

• The Feynman-Kac theorem to interpret the solution of the Black
and Scholes PDE as an expected value of a function of the stock
price with a modified dynamics.

• The Girsanov theorem to interpret the modified dynamics of the
stock price as a dynamics under a different (martingale)
probability measure.

• No-arbitrage theorem (Harrison, Kreps and Pliska): There is no
arbitrage opportunity if and only if there exists a martingale
measure.
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No arbitrage and option pricing / hedging The Black Scholes and Merton Analysis

Description of the economy

We consider:
• A probability space with a (right continuous) filtration
(Ω,F , (Ft : 0 ≤ t ≤ T ),P)

• (& assume FT = F). In the given economy, two securities are
traded continuously from time 0 until time T . The first one (a bank
account, or cash, or riskless bond) is riskless and its
(deterministic) price Bt evolves according to

dBt = Bt r dt , B0 = 1, (2)

which is equivalent to
Bt = ert , (3)

where r is the short term or instantaneous interest of the bank
account and it is assumed to be a nonnegative number.
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No arbitrage and option pricing / hedging The Black Scholes and Merton Analysis

Description of the economy

• As for the second one, given the (Ft ,P)-Brownian motion (or
Wiener process) Wt , consider the following stochastic differential
equation dSt = St [µdt + σdWt ], or

dSt = µ Stdt + σ StdWt , 0 ≤ t ≤ T , (4)

with deterministic initial condition S0 > 0, and where µ and σ are
positive constants. This is a Geometric Brownian Motion. As seen
earlier, Equation (4) has a unique solution which is given by

St = S0 exp

{(
µ− 1

2
σ2
)

t + σWt

}
, 0 ≤ t ≤ T . (5)
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No arbitrage and option pricing / hedging Contingent Claims

The Black & Scholes Assumptions

dBt = Bt rdt , B0 = 1,
dSt = µ St dt + σ St dWt , 0 ≤ t ≤ T ,

The second asset (a stock) is risky and its price is described by the
process St . Furthermore, it is assumed that
• (i) there are no transaction costs in trading the stock;
• (ii) the stock pays no dividends or other distributions;
• (iii) shares are infinitely divisible;
• (iv) short selling is allowed without any restriction or penalty. Short

selling: investor borrows a security and sells it on the market,
planning to buy it back later for less money to give it back to the
lender and make a profit. This assumes total absence of credit
/default risk.

These assumptions are Black & Scholes’ ideal conditions.
Example of risky asset dynamics over 5 years:
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No arbitrage and option pricing / hedging Contingent Claims

S0 = 100, (µ, σ) = (5%,10%), (10,10), (10,1), (1,20)
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No arbitrage and option pricing / hedging Contingent Claims

Contingent claims, pricing problem

A contingent claim Y for the maturity T is any square-integrable
(E[Y 2] < +∞) and positive random variable in (Ω,FT ,P), which is in
particular FT –measurable.

In this derivation we limit ourselves to simple contingent claims, i.e.
claims of the form Y = f (ST ), measurable functions of the risky asset
at the final maturity T .

The idea behind a claim is that it represents an amount that will be paid
at maturity to the holder of the contract. I can go to a bank and “buy”
the contract for the claim Y . I will pay the initial price at time 0, and at
time T the bank will give me the amount Y (ω) from the claim payoff.

The Pricing Problem is giving a fair price to such a contract: how
much should the bank charge me as a fair price at time 0?
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No arbitrage and option pricing / hedging Strategies, Value process, Gains

Trading strategies, Value process, gain process I

A trading strategy is a pair of stochastic processes ϕ = (ϕB, ϕS) on
(Ω,F , (Ft : 0 ≤ t ≤ T ),P) that are locally bounded and predictable
(and, therefore, Ft–adapted). The pair (ϕB

t , ϕ
S
t ) represents respectively

amounts of bond and stock to be held at time t .
Predictability is assumed to reduce the investor freedom at jump times
and assumes that the vakue ϕt will be known immediately before t .
However, in our Black Scholes setting, where the paths of the assets
are continuous, this issue is not relevant and you need not worry about
this assumption. We can just assumed adapted.

The value process is the process V describing the value of the
portfolio constructed by following the strategy ϕ,

Vt(ϕ) = ϕB
t Bt + ϕS

t St .
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No arbitrage and option pricing / hedging Strategies, Value process, Gains

Trading strategies, Value process, gain process II

The gain process is defined as

Gt(ϕ) =

∫ t

0
ϕB

u dBu +

∫ t

0
ϕS

u dSu .

and represents the income one obtains thanks to price movements in
bond and stock when following the trading strategy ϕ.

The strategy is self–financing if Vt(ϕ) ≥ 0 for all t and
Vt(ϕ) = V0(ϕ) + Gt(ϕ), or

ϕB
t Bt + ϕS

t St − (ϕB
0 B0 + ϕS

0 S0) = Gt(ϕ) ,

or, in differential terms, d Vt(ϕ) = d Gt(ϕ), i.e.

d(ϕB
t Bt + ϕS

t St) = ϕB
t dBt + ϕS

t dSt . (6)

(c) 2012-24 Prof. D. Brigo SDEs in Financial Modelling Imperial College London 165 / 805



No arbitrage and option pricing / hedging Self financing Strategies, attainable claims & arbitrage

Self–financing strategies, arbitrage I

d(ϕB
t Bt + ϕS

t St) = ϕB
t dBt + ϕS

t dSt .

Intuitively, this means that the changes in value of the portfolio
described by the strategy ϕ are only due to gains/losses coming from
price movements, i.e. to changes in the prices B and S, without any
cash inflow and outflow.

An important use of self-financing strategies is in defining arbitrage.
An arbitrage opportunity is a self–financing strategy ϕ such that
(recall Vt(ϕ) ≥ 0)

ϕB
0 B0 + ϕS

0 S0 = 0 , P(ϕB
T BT + ϕS

T ST > 0) > 0 .
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No arbitrage and option pricing / hedging Self financing Strategies, attainable claims & arbitrage

Self–financing strategies, arbitrage II

Basically, an arbitrage opportunity is a strategy which creates a
positive cash inflow from nothing with positive proability and never
creates a loss or negative flow.

In other terms you have an arbitrage if, with zero initial money, you can
only draw or win, and there is a strictly positive probability that you win.
“Money from nothing”.

We say that the market is arbitrage–free, or simply that we have no
arbitrage, if there are no arbitrage opportunities.

We will work under no-arbitrage conditions, because no one wants to
be in an arbitrageable market, as that means some arbitrageurs can
make money from nothing and one would be at a disadvantage against
these arbitrageurs and lose money to them.
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No arbitrage and option pricing / hedging Self financing Strategies, attainable claims & arbitrage

Self–financing strategies, arbitrage III

In reality there are different definitions of no-arbitrage, involving very
complex mathematical issues, including the specific space of trading
strategies, its structure, probabilistic poperties and topology, etc.

Based on this, there are more refined definitions related to no arbitrage
such as “no free lunch with vanishing risk” (NFLVR), which is slightly
more restrictive than the definition of no-arbitrage given above (see the
works of Delbaen and Schachermayer).

We have that NFLVR implies no-arbitrage as given above, but not
viceversa, although the two definitions are quite close.

For practical purposes, in this introduction by saying “no arbitrage” we
will refer to either no-arbitrage as above or to NFLVR, depending on
the context.
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Self–financing strategies, attainable claims, price

Self-financing strategies are important also because they allow us to
define attainable contingent claims. A contingent claim Y is
attainable if ∃ self-financing ϕ such that VT (ϕ) = Y .

We say that ϕ generates Y , & Vt(ϕ) is the price at time t for Y .

We thus have a first notion of price of a claim Y as the value of a
self-financing trading strategy attaining (or sometimes we’ll say
“replicating”) the claim Y .
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Example of Claim: European Call Option

Figure: A one-year maturity Gamble on an equity stock. Call Option.
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Example of Claim: European Call Option I

Suppose we have to price a simple claim Y = f (ST ) at time t .

We focus on the case of a European call option: Let K be its strike
price and T its maturity. The option payoff (to a long position) is
represented by Y = (ST − K )+ = max(ST − K ,0).

This is a contract which at maturity-time T pays nothing if the
risky–asset price ST is smaller than the strike price K , whereas it pays
the difference between the two prices in the other case.
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Example of Claim: European Call Option II

Example of a defensive use of a call option: Suppose now we are at
time 0 and we plan to buy one share (unit) of a certain stock at time T .
We wish to pay this stock the same price K = S0 it has now, rather
than the price it will have at time T , which could be much higher. We
want to be protected by a price increase in the future when we will buy.
What one can do in this situation is to buy a call option on the stock
with maturity time T and strike price S0.

He then buys the stock at time T paying ST and receives (ST − S0)
+

from the option payoff. Clearly, the total amount he pays in T is then
ST − (ST −S0)

+ which equals ST if ST ≤ S0 and equals S0 if ST ≥ S0.
Therefore, an European call option can be seen as a contract which
locks the stock price at a desired value to be paid at maturity time T .
This locking has of course a price, which we wish to determine.
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Example of Claim: European Call Option III

An alternative use of the call options is an offensive use and is
speculation. If we have a view that the stock price ST will grow a lot in
the future, we can capitalize by buying a call option with strike K = S0,
the current stock price.

We pay the price of the option at time 0, but if we are right, the payoff
max(ST − S0,0) will be very large as ST has grown a lot compared to
S0. This allows us to make a lot of money by time T , as the payoff we
get will be much larger than the price we paid for the option at time 0.
Of course, if S goes down instead, we will get nothing from the option
payoff and we will just lose the option price we paid at time 0.
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Example of Claim: European Put Option I

Figure: A one-year maturity Gamble on an equity stock going down. Put
Option.
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Example of Claim: European Put Option II

The put option is a contingent claim that pays the payoff
Y = max(X − ST ,0) where X is the strike price. For example, we
could take X = S0, the current stock price. In this case the option will
pay us at the future time maturity T the difference between the stock
price now at time 0 and the stock price at maturity if this difference is
positive, and zero otherwise.

The put option can also be used to protect or speculate.

Defensive use. Suppose we bought a lot of stock. We are concerned
that if the stock price goes down too much we could lose a lot. So we
buy a put option with strike S0. The total of holding the stock and the
put option at maturity T is

ST +max(S0−ST ,0) = S0 if S0 > ST and ST ifST ≤ S0 = max(S0,ST ).
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Example of Claim: European Put Option III

So with a put option added to our stock, at maturity T we get always
the best between the final stock price ST and the initial one S0. So if
the stock goes down we are protected and we get the initial S0, while if
it goes up we keep the final stock ST . Of course this protection will
cost us the option price.

Offensive use. Put options can be used for speculation too, in an
offensive fashion. If we have a view that the stock price will go down,
we can profit it by buying a put option with strike X = S0, the current
stock price.

We pay the price of the option at time 0, but if we are right, the payoff
max(S0 − ST ,0) will be very large as ST has gone down a lot
compared to S0. This allows us to make a lot of money by time T , as
the payoff we get will be much larger than the price we paid for the
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Example of Claim: European Put Option IV

option at time 0. Of course, if S goes up instead, we will get nothing
from the option payoff and we will just lose the option price we paid at
time 0.

We now sketch a derivation of the Black Scholes PDE for the
“attainable-claim” price of an option. This is a relatively informal
derivation.
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The Black & Scholes PDE for a simple claim

We now assume that the value of the simple claim at time t is a
function of the underlying stock S at the same time, namely
Vt = V (t ,St). This is the candidate claim (option) value at time t .
Assume the function V (t ,S) of time t and of the stock price S to have
regularity V ∈ C1,2([0,T ]× R+). In other terms, we assume V is twice
continously differentiable with respect to S and once continuously
differentiable with respect to t . Apply Ito’s formula to V :

dV (t ,St) =
∂V
∂t

(t ,St) dt +
∂V
∂S

(t ,St) dSt +
1
2
∂2V
∂S2 (t ,St) dSt dSt . (7)

Substituting the equation for dSt = µStdt + σStdWt and recalling that
dt dt = 0, dt dWt = 0, dWtdWt = dt , we get

dV (t ,St) =

(
∂V
∂t

(t ,St) +
∂V
∂S

(t ,St)µSt +
1
2
∂2V
∂S2 (t ,St)σ

2S2
t

)
dt

+
∂V
∂S

(t ,St)σStdWt . (8)
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The Black and Scholes PDE

Now, if we are looking to attain our claim with a self financing strategy
ϕS, ϕB, so that V (t ,St) = ϕS

t St + ϕB
t Bt , this will have to satisfy the self

financing condition, namely

dV (t ,St) = ϕB
t dBt + ϕS

t dSt . (9)

Compare this last Eq to Eq (7) in the previous slide and match the dSt
terms. We get, for each 0 ≤ t ≤ T ,

ϕS
t =

∂V
∂S

(t ,St), ϕB
t = (Vt − ϕS

t St)/Bt . (10)

where the first equation comes from the matching, and the second
equation comes by construction, as the value of the strategy at time t
must be V itself, and clearly V (t ,St) = ϕB

t Bt + ϕS
t St . In other terms,

to get the second equation solve V (t ,St) = ϕB
t Bt + ϕS

t St in ϕB
t .
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The Black and Scholes PDE

Now we can explicit the self financing condition for ϕ:

dVt = ϕB
t dBt + ϕS

t dSt (11)

=

[
V (t ,St)−

∂V
∂S

(t ,St)St

]
rdt +

∂V
∂S

(t ,St)St(µdt + σdWt).

Then by equating (8) and (11) (ITO + SELF FINANCING), we obtain
that Vt satisfies

∂V
∂t

(t ,St) +
∂V
∂S

(t ,St)rSt +
1
2
∂2V
∂S2 (t ,St)σ

2S2
t = rV (t ,St), (12)

which is the celebrated Black and Scholes partial differential equation
with terminal condition VT = (ST − K )+.
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Black and Scholes’ famous formula

The strategy (ϕB, ϕS) has final value equal to the claim Y we wish to
price (terminal condition of the PDE), and during its life the strategy
does not involve cash inflows or outflows (self–financing condition). As
a consequence, its initial value Vt at time t must be equal to the unique
claim price to avoid arbitrage opportunities.
The solution of the above equation is given by

VBS(t) = VBS(t ,St ,K ,T , σ, r) := StΦ(d1(t))− Ke−r(T−t)Φ(d2(t)), (13)

where

d1(t) :=
ln(St/K ) + (r + σ2/2)(T − t)

σ
√

T − t
,

d2(t) := d1(t)− σ
√

T − t ,

and Φ(·) denotes the cumulative standard normal distribution function.
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Black and Scholes’ famous formula

Expression (13) is the celebrated Black and Scholes option pricing
formula which provides the unique no-arbitrage price for the given
European call option.

Notice that the coefficient µ does not appear in (13), indicating that
investors, though having different risk preferences or predictions about
the future stock price behaviour, must yet agree on this unique option
price.

MORE ON THE SIGNIFICANCE OF THIS LATER.
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Numerical example

Suppose the current stock value is S0 = 100.
Suppose the risk free interest rate is r = 2% = 0.02.
Suppose that the strike K = 100 (at the money option).
Assume the volatility σ = 0.2 = 20%.
Take a maturity of T = 5y . CALL PRICE IS VBS(0) = 22.02.

For example, in Matlab this is obtained through commands
S0=100; sig=0.2; r=0.02; K=100; T=5;
d1 = (r + 0.5*sig*sig)*T/(sig*sqrt(T));
d2 = (r - 0.5*sig*sig)*T/(sig*sqrt(T));
V0 = S0*normcdf(d1)-K*exp(-r*T)*normcdf(d2);
The same calculation with lower volatility σ = 0.05 = 5% would give

VBS(0)|σ=0.05 = 10.5943, VBS(0)|σ=0.0001 = 9.52.

The last value is very close to the intrinsic value S0 − Ke−rT .
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Numerical example

• Acme today is worth S0 = 100.
• The more the value of acme goes up in 5 years, the more we gain

as S5y − S0 grows. In a scenario where S5y = 200, we gain 100.
• If however Acme goes down instead, S5y − S0 goes negative but

the option (S5y − S0)
+ caps it at zero and we lose nothing. For

example, in a scenario where Acme goes down to 60, we get
(60 − 100)+ = (−40)+ = 0 ie we lose nothing

• With the original data, entering the gamble costs initially 22 USD
out of 100 of stock notional. It is expensive. On the other hand, it
is a gamble where we can only win and in principle have
scenarios with unlimited profit.

• You will notice that:

↑ σ ⇒ VCallBS ↑, ↑ S0 ⇒ VCallBS ↑, ↓ K ⇒ VCallBS ↑ ....
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Another numerical example

Take one more example where now the strike K is at the money
forward and volatility very low, namely
S0=100; sig=0.0001; r=0.02; T=5; K=S0*exp(r*T);
Then

VBS(0) = 0 ≈ S0 − Ke−rT = S0 − S0 = 0.
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In–, at–, and out–of–the money options I

A call option is in-the-money if the initial stock price is larger than the
strike, S0 > K . This means that if the call were exercised immediately,
at time 0, we would have a positive payoff (S0 − K )+ > 0.

A call option is at-the-money if the initial stock price is equal to the
strike, S0 = K . This means that if the call were exercised immediately,
we would have a zero payoff (S0 − S0)

+ = 0, but as soon as the stock
moves we go either in the money or out of the money.

A call option is out-of-the-money if the initial stock price is smaller than
the strike, S0 < K . This means that if the call were exercised
immediately, we would have a zero payoff (S0 − K )+ = 0.
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In–, at–, and out–of–the money options II

For the put options, a put option will be in-the-money if S0 < K
((K − S0)

+ > 0), it will be at the money if K = S0, and it will be
out-of-the-money if K < S0 ((K − S0)

+ = 0).

The above definitions are modified in “In-, at- or
out-of-the-money-forward options” when S0 is replaced by S0erT . More
specifically:

A call option will be in-the-money-forward if K < S0erT (implying the
payoff at time 0 with a T discounted strike K to be (S0 − Ke−rT )+ > 0),
it will be at the money forward if K = S0erT , i.e. the strike being equal
to the forward stock price at time 0 for maturity T (this is equivalent to
(S0 − Ke−rT )+ = 0, with the option going in-the-money-forward or
out-of-the-money forward as soon as the stock moves; the name
“forward stock price at time 0 for maturity T ” will be explained later
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In–, at–, and out–of–the money options III

when introducing the forward contract), and the call option will be
out-of-the-money-forward if K > S0erT (implying (S0 − Ke−rT )+ = 0).

The definitions for the put option are analogous: a put option will be
in-the-money-forward if K > S0erT (implying the payoff at time 0 with a
T discounted strike to be (Ke−rT − S0)

+ > 0), it will be at the money
forward if K = S0erT (this is equivalent to (Ke−rT − S0)

+ = 0, with the
option going in-the-money-forward or out-of-the-money forward as
soon as the stock moves), and it will be out-of-the-money-forward if
K < S0erT (implying (Ke−rT − S0)

+ = 0).
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In–, at–, and out–of–the money options IV

The difference between at-the-money and at-the money-forward is that
we look for the strike that makes the payoff inside the option equal zero
when priced at time 0, but in the first case we don’t discount the strike
from the option maturity T , while in the second case we do. This
coincides with defining the strike for at the money forward as the
forward price at time 0 for maturity T :

S0 − K = 0 ⇒ at-the-money K , K = S0.

S0−Ke−rT = 0 ⇒ at-the-money-forward K , K = S0erT = forward price.
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Verifying the Self financing condition

Going back to the general Black Scholes result, we then prove that the
strategy

ϕS
t =

∂VBS

∂S
(t ,St), ϕB

t = (VBS(t)− ϕS
t St)/Bt(

VBS(t) = VBS(t ,St ,K ,T , σ, r) := StΦ(d1(t))− Ke−r(T−t)Φ(d2(t))
)

,

is indeed self-financing. By Ito’s Lemma, in fact, we have

dVBS(t) =
∂

∂t
VBS(t)dt +

∂

∂S
VBS(t)dSt +

1
2

∂2

∂S2 VBS(t)σ2S2
t dt . (14)
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Verifying the Self financing condition

Since straightforward differentiation of VBS expression leads to

∂

∂t
VBS(t) = −StΦ

′(d1(t))σ
2
√

T − t
− rXe−r(T−t)Φ(d2(t)),

∂2

∂S2 VBS(t) =
Φ′(d1(t))

Stσ
√

T − t
,

where Φ′(x) := 1√
2π

e− 1
2 x2

, then it is enough to substitute ϕS and ϕB

expressions given above to obtain from (14) that
dVBS(t) = ϕS

t dSt + ϕB
t dBt , which is the self–financing condition in

differential form.
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The Feynman Kac theorem for Risk Neutral Valuation

Different interpretation: the Feynman-Kac Theorem allows to interpret
the solution of a parabolic PDE such as the Black and Scholes PDE in
terms of expected values of a diffusion process. In general, given
suitable regularity and integrability conditions, the solution of the PDE

∂V
∂t

(t , x)+
∂V
∂x

(t , x)b(x)+
1
2
∂2V
∂x2 (t , x)σ

2(x) = rV (t , x), V (T , x) = f (x),
(15)

can be expressed as

V (t , x) = e−r(T−t)EQ
t ,x{f (XT )|Ft} (16)

where the diffusion process X has dynamics starting from x at time t

dXs = b(Xs)ds + σ(Xs)dW Q
s , s ≥ t , Xt = x (17)

under the probability measure Q under which the expectation EQ
t ,x{·} is

taken. The process W Q is a standard Brownian motion under Q.
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Risk Neutral interpretation of the B e S’s formula

By applying this theorem to the Black and Scholes setup, with
b(x) = rx , σ(x) = σ x (so that the general PDE of the theorem
coincides with the BeS PDE) we obtain:
The unique no-arbitrage price of the integrable contingent claim
Y = (ST − K )+ (European call option) at time t , 0 ≤ t ≤ T , is given by

VBS(t) = EQ
(

e−r(T−t)Y |Ft

)
. (18)

The expectation is taken with respect to the so-called martingale
measure Q, i.e. a probability measure Q ∼ P under which the
risky–asset price St/Bt = e−rtSt measured with respect to the risk-free
asset price Bt is a martingale, which is equivalent to S having drift rate
r under Q:

dSt = St [rdt + σdW Q
t ], 0 ≤ t ≤ T , (19)
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Deriving Black-Scholes via risk neutral valuation I

We now derive the Black Scholes formula

VBS = e−rT EQ[(ST − K )+]

under the assumption

dSt = rStdt + σStdW Q
t , s0.

We have solved Geometric Brownian Motion equations like this several
times and we know that the solution is

S(t) = s0 exp

(
σW Q

t + (r − σ2

2
)t
)

We will omit the Q in W Q for brevity.
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Deriving Black-Scholes via risk neutral valuation II

Compute the distribution of the random variable in the exponent. It is
Gaussian, since it is a Brownian motion Wt (which is Gaussian with
zero mean and variance t) plus a deterministic quantity. Thus

E [σWt + (r − σ2/2)t ] = 0 − (r − σ2/2)t

and the variance (recall Var(X + constant) =Var(X ))

Var
[
σWt + (r − σ2/2)t

]
= Var[σWt ] = σ2t .

We thus have

I(T ) := σWT +(r − σ2

2
)T ∼ m+VN (0,1), m = (r − 1

2
σ2)T , V 2 = σ2T
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Deriving Black-Scholes via risk neutral valuation III

Recall that we have

ST = s0 exp(I(T )) = s0em+VN (0,1)

Compute the option price (omitting for now the discounting e−rT to be
added later)

EQ[(ST − K )+] = EQ[(s0em+VN (0,1) − K )+]

=

∫ +∞

−∞
(s0em+Vy − K )+pN (0,1)(y)dy = . . .

Note that s0 exp(m + Vy)− K > 0 if and only if

y >
− ln

( s0
K

)
− m

V
=: ȳ
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Deriving Black-Scholes via risk neutral valuation IV

so that

. . . =

∫ +∞

ȳ
(s0 exp(m + Vy)− K )pN (0,1)(y)dy =

= s0

∫ +∞

ȳ
em+VypN (0,1)(y)dy − K

∫ +∞

ȳ
pN (0,1)(y)dy =
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Deriving Black-Scholes via risk neutral valuation V

= s0
1√
2π

∫ +∞

ȳ
e− 1

2 y2+Vy+mdy − K (1 − Φ(ȳ))

= s0
1√
2π

∫ +∞

ȳ
e− 1

2 (y−V )2+m+ 1
2 V 2

dy − K (1 − Φ(ȳ)) =

= s0em+ 1
2 V 2 1√

2π

∫ +∞

ȳ
e− 1

2 (y−V )2
dy − K (1 − Φ(ȳ)) =

= s0em+ 1
2 V 2 1√

2π

∫ +∞

ȳ−V
e− 1

2 z2
dz − K (1 − Φ(ȳ)) =

= s0em+ 1
2 V 2

(1 − Φ (ȳ − V ))− K (1 − Φ(ȳ)) =

= s0em+ 1
2 V 2

Φ (−ȳ + V )− KΦ(−ȳ) =

= s0erTΦ (d1)− KΦ(d2), d1,2 =
ln s0

K + (r ± 1
2σ

2)T

σ
√

T
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Deriving Black-Scholes via risk neutral valuation VI

This is an expression for EQ
0 [(ST − K )+]. Now we need to add the

discount term:

VBS(0,S0,K ,T , σ, r) = e−rT EQ
0 [(ST − K )+] = s0Φ(d1)− Ke−rTΦ(d2).

d1,2 =
ln s0

K + (r ± 1
2σ

2)T

σ
√

T
This confirms the price formula we had given earlier for the call option,
without proof, via the PDE (Ito formula plus self financing condition)
method.

The above formula for a call option has to be learned by heart, as it is
the most used formula by traders in derivatives markets. While one
has to know how to derive the formula, it is important to have it ready
in memory for many applications.
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Deriving Black-Scholes via risk neutral valuation VII

We now compute the call option Delta, namely the sensitivity of the
option price to the initial condition. This is our term ϕS(0) in the trading
strategy we used to calculate the option price with the PDE.
This is done with a partial derivative

ϕS(0) = ∆0 =
∂VBS(0,S0,K ,T , σ, r)

∂S0
=

=
∂ s0Φ(d1)

∂S0
− ∂Ke−rTΦ(d2)

∂S0
= . . .

Please note that d1 and d2 also depend on S0. We have

. . . = Φ(d1) + s0
∂Φ(d1)

∂S0
− Ke−rT ∂Φ(d2)

∂S0
=

= Φ(d1) + s0Φ
′(d1)

∂d1

∂S0
− Ke−rTΦ′(d2)

∂d2

∂S0
=
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Deriving Black-Scholes via risk neutral valuation VIII

= Φ(d1) + s0ϕ(d1)
1

S0σ
√

T
− Ke−rTϕ(d2)

1
S0σ

√
T

= Φ(d1) +
1

σ
√

2πT
e− d2

1
2 − Ke−rT

s0σ
√

2πT
e− d2

2
2

= Φ(d1) +
1

σ
√

2πT
exp

−1
2

[
ln S0

K + (r + σ2/2)T

σ
√

T

]2


− Ke−rT

s0σ
√

2πT
exp

−1
2

[
ln S0

K + (r − σ2/2)T

σ
√

T

]2
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Deriving Black-Scholes via risk neutral valuation IX

= Φ(d1) +
1

σ
√

2πT
exp

−1
2

[
ln S0

K + (r + σ2/2)T

σ
√

T

]2


− 1
σ
√

2πT
exp

−rT − ln
S0

K
− 1

2

[
ln S0

K + (r − σ2/2)T

σ
√

T

]2


= Φ(d1) + 0 = Φ(d1)

as the two terms after Φ(d1) cancel each other. We conclude

ϕS(0) = ∆0 =
∂VBS(0,S0,K ,T , σ, r)

∂S0
= Φ(d1).

This formula should be memorized as part of the Black Scholes
setting. Please note that in differentiating with respect to s0 it’s as if we
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Deriving Black-Scholes via risk neutral valuation X

had only differentiated with respect to s0 in the boxed term but skipped
the other s0 terms in d1 and d2:

∆0 =
∂ ( s0 Φ(d1)− Ke−rTΦ(d2))

∂S0
.

Indeed, in that case we would get immediately Φ(d1) without all the
other calculations we did above. However, the reason why we can
ignore d1 and d2 for the delta, when differentiating, is rather subtle and
we won’t explain it here.

Note that the delta of the call option is always positive. This means that
the option price increases when the underlying stock s0 increases.
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Deriving Black-Scholes via risk neutral valuation XI

Finally, one important point that we clarify for the avoidance of doubt.
For some options, the strike K is a function of S0, for example if the
option is at-the-money, K = S0. A misconception is that, when we
compute the delta, we need to differentiate also with respect to the S0
in the strike. This is not true. We differentiate the option price keeping
K fixed and substitute a posteriori K = S0.
Indeed, when we compute the delta of a call option, for example, we
want to measure how the option value changes for small changes of
the stock price at time 0, but not for changes in the strike. The strike of
the option does not change, even if it had been fixed to S0 itself. So if
we were to write the delta of an at-the-money option as a limit, ∆0 =

lim
∆S↓0

VBS(0,S0 +∆S,K ,T , σ, r)− VBS(0,S0,K ,T , σ, r)
∆S

∣∣∣∣
K=S0

= Φ(d1)|K=S0 .
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The Risk Neutral measure via Girsanov’s theorem I

We apply Girsanov’s theorem to move from

d St = µSt dt + σSt dW P
t

to

d St = rSt dt + σSt dW Q
t

and obtain the Radon Nykodym derivative connecting Q with P.

dQ
dP

= exp

{
−1

2

(
µ− r
σ

)2

T − µ− r
σ

WT

}
. (20)
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The Risk Neutral measure via Girsanov’s theorem II

Note that the Novikov condition needed for Girsanov to work is
satisfied trivially:

E

[
exp

(
1
2

∫ T

0

(
µSt − rSt

σSt

)2

dt

)]
= exp

(
1
2

(
µ− r
σ

)2
)

< +∞

The quantity
µ− r
σ

is called “market price of risk”, or sometimes, in finance circles, the
Sharpe ratio. It tells us how much better the stock S is doing with
respect to the risk free rate, divided by the volatility. In the real world
the stock local growth rate or “return” is µ. So µ− r is the difference
between S’s return and the risk free rate, telling us how much better S
is doing than a cash account B.
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No arbitrage: Main steps followed so far I

1 Self Financing Condition (Portfolio replication theory) plus Ito’s
formula to derive the Black and Scholes PDE for any attainable
payout claim in ST :

d St = µSt dt + σSt dWt

∂V
∂t

(t ,St) +
∂V
∂S

(t ,St)rSt +
1
2
∂2V
∂S2 (t ,St)σ

2S2
t = rV (t ,St),

VT = f (ST )

2 If each such claim can be replicated/attained with a unique self
financing strategy then there is a unique claim price equal to the
initial cost of the strategy (and given by the PDE).

(c) 2012-24 Prof. D. Brigo SDEs in Financial Modelling Imperial College London 207 / 805



No arbitrage and option pricing / hedging Fundamental Theorems: No arbitrage and completeness

No arbitrage: Main steps followed so far II

3 The Feynman-Kac theorem to interpret the price solution of the
Black and Scholes PDE as an expected value of a function of the
stock price with modified dynamics

V (t ,St) = EQ{e−r(T−t)f (ST )|Ft}

d St = rSt dt + σSt dW Q
t

4 The Girsanov theorem to interpret the modified dynamics of the
stock price as a dynamics under a new (Risk neutral or
martingale) probability measure Q:

dQ
dP

= exp

{
−1

2

(
µ− r
σ

)2

T − µ− r
σ

WT

}
.
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No arbitrage: Main steps followed so far III

5 Hence the notion of attainable/replication claim price obtained
from the PDE (self-financing condition & Ito’s formula) coincides
with a second notion of price: expectation of the claim payout
under a risk neutral measure where the risky asset local mean
grows at the risk free rate. This is a second way to express
no-arbitrage via the condition that S/B is a martingale (more on
martingales in a minute), ie a fair game. Hence no arbitrage will
be related to the market for the underlying risky asset S to be a
fair game.
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Fundamental Theorems I
Pricing, no arbitrage, complete markets

The two approaches (i) attainable claim PDE and (ii) Risk neutral
expectation are more generally related by the full theory of Harrison,
Kreps and Pliska, and following extensions such as Dalang, Morton &
Willinger and Delbaen & Schachermayer, and they are equivalent to
the absence of arbitrage opportunities as defined earlier. Without
specifying fully all the technical details, we report a high level summary.
Here ∃ means “there exists” and ∃! means “there exists a unique...”.

First Fundamental Theorem of Asset Pricing. We call a martingale
meaure a probability measure under which any risky assets divided by
the risk free asset is a martingale. In Black-Scholes under Q, St/Bt is
a martingale. Then
∃ a martingale measure Q ⇐⇒ we have no arbitrage.
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Fundamental Theorems II
Pricing, no arbitrage, complete markets

The precise statements on the right hand side would be “we have no
free lunch with vanishing risk” (NFLVR).

The fundamental result here is that existence of a martingale measure
is equivalent to no arbitrage: if Q ∃ there is no arbitrage opportunity, ie
there is no self–financing ϕ producing positive wealth with positive
probability with zero costs and without losses. Also, the vice versa
holds: if there are no arbitrage opportunities then a martingale
measure exists.

Theorem. ∃ a martingale measure Q ⇒ ∃! attainable claim price that
can be computed as a Q expectation of the discounted claim.
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Fundamental Theorems III
Pricing, no arbitrage, complete markets

There is a second result related to the uniqueness (rather than
existence) of the martingale measure. This is related to complete
markets.

A market is complete if every contingent claim is attainable.

Second fundamental theorem of asset pricing
Market is arbitrage free & complete ⇐⇒ ∃! martingale measure Q
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Fundamental Theorems IV
Pricing, no arbitrage, complete markets

If the market is arbitrage free but not complete, the price of any
attainable clain is still uniquely given, either as the value of the
replicating strategy or as the risk neutral expectation under any
equivalent martingale measure.

The Black Scholes market (Bt ,St) we have seen above is arbitrage
free and complete.

In reality markets are never complete, as many risks are not
directly associated with tradable assets, so one has to find ways
to deal with market incompleteness.
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Fundamental Theorems V
Pricing, no arbitrage, complete markets

The above framework can be applied easily to markets with n diffusive
underlying assets S1, . . . ,Sn, each similar to the Black Scholes equity
process, and with a bank or cash account Bt . The definitions and
results on arbitrage opportunities, attainable claims, price, martingale
measure, market completeness extend to the n-dimensional case
easily and also to non-simple claims that are path dependent or early
exercise.
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The idea behind the martingale approach

Why martingales?
A martingale is a stochastic process representing a fair game. Loosely
speaking, the above proposition states that in order to price under
uncertainty one must price in a world where the probability measure is
such that the risky asset evolves as a fair game when expressed in
units of the risk–free asset.

Hence in our case St/Bt must be a fair game, ie a martingale.

martingales: local mean =0
As seen earlier, for regular diffusion processes Xt martingale means
”zero-drift”, no up or down local direction: dXt = 0dt + σ(t ,Xt)dWt .

Indeed, show that the drift of the SDE for d(St/Bt) is zero under Q.
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St/Bt is a martingale under Q
We show that St/Bt is a martingale under Q (that’s why sometimes Q
is called the martingale measure) by showing that the SDE for St/Bt
has zero drift under Q.

Let Yt = St/Bt = St/er t = e−r tSt .

dYt = d(e−rt)St + e−rtdSt = · · ·

Note that there is no quadratic covariation term, d(e−r t)dSt = 0
because dt dt = 0 and dt dWt = 0.

· · · = −re−rtSt dt + e−rtdSt = −re−rtSt dt + e−rt(rStdt + σStdW Q
t ) =

= e−rtσStdW Q
t = σ(St/er t)dW Q

t = σYtdW Q
t .

Hence
dYt = 0dt + σYtdW Q

t

so the drift is indeed 0 and Y = St/Bt is a martingale under Q.
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The idea behind the martingale approach

Numeraire
When we consider St/Bt we may say that we are looking at S
measured with respect to the numeraire Bt .
In general it is possible to adopt any non-dividend paying asset price
as numeraire, and price under the particular probability measure
associated with that numeraire. However, the canonical numeraire is
the bank account B we have used now and the probability measure
associated with the numeraire B is the risk neutral measure Q.
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The idea behind the martingale approach

No need to know the real expected return
We noticed earlier that the coefficient µ does not appear in (13),
indicating that investors, though having different risk preferences or
predictions about the future stock price behaviour, must yet agree on
this unique option price.

This property can also be inferred from (19), since, under Q, the drift
rate of the stock price process equals the risk-free interest rate while
the variance rate is unchanged. For this reason the pricing rule (18) is
often referred to as risk-neutral valuation, and the measure Q
defines what is called the risk-neutral world.

Intuitively, in a risk-neutral world the expected rate of return on all
securities is the risk-free interest rate, implying that investors do not
require any risk premium for trading stocks.
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Weak point of the derivation: Uniqueness of ϕ

The above derivation, however, is still not fully satisfactory, since we
have implicitly assumed that (ϕB, ϕS) is the unique self-financing
strategy replicating the claim with payoff f (ST ). This uniqueness,
anyway, can be obtained by applying the more general theory on
complete markets, which is beyond the scope of this introduction.
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Zero coupon bonds I

A (default-free) zero coupon bond is the simplest possible contingent
claim Y , where at final maturity T the claim pays a fixed amount of
currency, the so called bond notional. Assume the bond notional is 1.
The bond is called default-free because it is issued by a default-free
entity, so that if you buy the bond, you will receive the contingent claim
payoff Y = 1 at the future time T for sure.

Risk neutral pricing tells us that the price at time t for a zero coupon
bond with maturity T is

P(t ,T ) = EQ
t [e−r(T−t) Y ] = EQ

t [e−r(T−t) 1] = e−r(T−t).

This is what you pay the bank now at time t to receive Y = 1 at future
time T .
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Zero coupon bonds II

In this course r made its first appearance in the Bank account
numerarie dBt = r Bt dt . We assumed it constant and deterministic. In
reality, r can be a stochastic process following a SDE, for example
Ornstein Uhlenbeck/Vasicek or a Feller square root process/CIR,

drt = k(θ − rt)dt + σdWt , or (CIR) drt = k(θ − rt)dt + σ
√

rtdWt

and the bond price formula for a bond at time t with matuirty T would
then be

P(t ,T ) = EQ
t [e−

∫ T
t ru du 1] =: EQ

t [D(t ,T )], D(t ,T ) = e−
∫ T

t ru du.

If interest rates are stochastic, then D(t ,T ) is random at time t and is
called a stochastic discount factor. P(t ,T ), being a t expectation of D,
is known and not random at time t .
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Zero coupon bonds III

Term structure modeling, or modeling of interest rate dynamics drt , is
beyond the scope of this course. We deal with it in the MSc in
Mathematics and Finance. Here we keep assuming that r is constant
and deterministic, leading to

D(t ,T ) = P(t ,T ) = e−r(T−t).

Note that if the bond notional is N instead of one then the bond price is

EQ
t [e−r(T−t) N] = e−r(T−t) N = NP(t ,T )

and in particular at time 0 we get

P(0,T ) = e−rT , EQ
0 [e−rT N] = e−rT N = NP(0,T ).
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Forward contracts I

The contingent claim with payoff Y = ST − K is called a forward
contract on the stock S with maturity T and strike K .
The price of this forward contract at a time t < T is

VFWD(t ,St ,K , r) = e−r(T−t)EQ
t [ST − K ] = e−r(T−t)(EQ

t [ST ]− K ) = · · ·

Let’s calculate EQ
t [ST ]. We don’t need a model to do that but only the

property that S/B must be a martingale under the probability measure
Q. This implies, from the definition of martingale,

EQ
t

[
ST

BT

]
=

St

Bt
.

Recalling that BT = erT and Bt = ert this gives EQ
t [ST ] = Ster(T−t). So

· · · = VFWD(t ,St ,K , r) = St − e−r(T−t)K .
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Forward contracts II

Note that we didn’t postulate any model for dS to get this but only the
martingale property of S/B, which is a general no-arbitrage property of
any model.

Hence the forward contract is a contract whose valuation is
model-independent. It does not matter which model we will use for dS
(Black-Scholes, or models we will see later like Displaced Diffusion,
CEV, mixture dynamics...), the price of the forward contract will not
depend on the model but will always be St − e−r(T−t)K . In particular, it
does not depend on the volatility.

The forward stock price at time t for maturity T is the value of the strike
K for which the forward contract price at time t for maturity T is zero.
Namely we solve in K

VFWD(t ,St ,K , r) = St − e−r(T−t)K = 0 ⇒ K = Ster(T−t) =: Ft ,T .
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Forward contracts III

We note that the forward price is a martingale under the measure Q.
Indeed, differentiating wrt t we get

dFt ,T = d(Ster(T−t)) = er(T−t)dSt + St(−r)er(T−t)dt =

= er(T−t)[rStdt + σStdW Q
t ]− rer(T−t)St dt = 0 dt + er(T−t)StσdW Q

t

or, in short,
dFt ,T = σFt ,T dW Q

t .

Here we used the Black Scholes dynamics for S, but this is not
necessary. Any stock price model dS with drift rS would have worked.
We have shown that the forward stock price for a given maturity T is a
martingale under Q as its SDE has zero drift.
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Forward contracts IV

We can also check the dynamics of Ft ,T under the measure P, for
example in Black Scholes. Let’s calculate

dFt ,T = d(Ster(T−t)) = er(T−t)dSt + St(−r)er(T−t)dt =

= er(T−t)[µStdt+σStdW P
t ]−rer(T−t)St dt = (µ−r)er(T−t)St dt+er(T−t)StσdW P

t

or, in short,
dFt ,T = (µ− r)Ft ,T dt + σFt ,T dW P

t .

We have a special case for t = 0, and we obtain the price of the
forward contract at time 0 for maturity T :

VFWD(0,S0,K , r) = S0 − e−rT K .
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Forward contracts V

When we introduced the at-the-money-forward call or put options, we
said that these are options where the strike K is equal to the forward
stock price at time 0 for maturity T , namely K = F0,T = S0erT .

This forward stock price is defined as the value of the strike K that
makes the price of a forward contract valued at time 0 with maturity T
equal zero. In other term, we solve in K

VFWD(0,S0,K , r) = S0 − e−rT K = 0 ⇒ K = S0erT =: F0,T .
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Put Call parity and Put price I

We have derived the price of a call option, but what about a put option?
We could do this through direct integration, as we did with the call, but
we will use put call parity instead.

Put call parity is born from the observation that payoff of call minus
payoff of put is a straight line, or a “forward contract”. Indeed,

(ST − K )+ − (K − ST )
+ = max(ST − K ,0)−max(K − ST ,0) = ST − K

for all ST and K . It follows that

e−rT EQ[(ST − K )+]− e−rT EQ[(K − ST )
+] = e−rT EQ[ST − K ].

or in other terms

CallPrice - PutPrice = ForwardPrice
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Put Call parity and Put price II

From which

PutPrice = CallPrice - ForwardPrice

This is true for any model we may use for dSt . In the specific case of
Black Scholes we have

V PUT
BS (0,S0,K ,T , ν, r) = S0Φ(d1)− Ke−rTΦ(d2)︸ ︷︷ ︸

Call price

− (S0 − Ke−rT )︸ ︷︷ ︸
Forward price

or
= S0(Φ(d1)− 1)− Ke−rT (Φ(d2)− 1) = · · ·

Now note that Φ(−x) = 1−Φ(x) so that Φ(x)− 1 = −Φ(−x) leading to

· · · = Ke−rTΦ(−d2)− S0Φ(−d1)
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Put Call parity and Put price III

and we conclude

V PUT
BS (0,S0,K ,T , ν, r) = Ke−rTΦ(−d2)− S0Φ(−d1)

with the usual expressions for d1 and d2 we have seen in the case of
the call.

Finally, we compute the delta of a put option in Black-Scholes.

∆PUT
0 =

∂V PUT
BS (0,S0,K ,T , ν, r)

∂S0
= . . .

Here we use put-call parity. From PutPrice = CallPrice - ForwardPrice
we get

. . . =
∂[V CALL

BS (0,S0,K ,T , ν, r)− (S0 − Ke−rT )]

∂S0
=
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Put Call parity and Put price IV

=
∂V CALL

BS (0,S0,K ,T , ν, r)
∂S0

− ∂(S0 − Ke−rT )

∂S0
= ∆call − 1 = Φ(d1)− 1

= −Φ(−d1).

Hence the Delta of a put option in Black Scholes is −Φ(−d1) and is
always negative. The put price will decrease when the underlying
stock S0 increases.
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Dynamic Hedging I

In the process of deriving the BS formula, we have also found a way to
perfectly hedge the risk embedded in this contract.

Indeed look at the option pricing problem from the following point of
view:

• You are the bank and you just sold a call option to the client.
• At the future time T you will have to pay (ST − K )+ to your client
• You client pays you V0 for the option now, at time 0
• Clearly, if the equity goes up a lot in the future, (ST − K )+ could

be very large
• You wish to avoid any risks and decide to hedge away the risk in

this contract you sold.
• How should you do that?
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Dynamic Hedging II

The answer to this question is in our derivation above.
• You cash in V0 from the client and use it to buy, at time 0,

∂V0

∂S0
= Φ(d1(0)) =: ϕS

0 =: ∆0 stock and

ϕB
0 = (V0 −∆0S0)/B0 bank account / bond (cash).

• You then implement the self-financing trading strategy,
rebalancing continuously (hence dynamic hedging) your ϕS

t , ϕ
B
t

amounts of S and B according to

ϕS
t =

∂Vt

∂St
= Φ(d1(t)) =: ∆t stock and

ϕB
t = (Vt −∆tSt)/Bt bank account / bond (cash).
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Dynamic Hedging III

• Because the strategy is self-financing, this rebalancing can be
financed thanks to price movements of B and S and you need not
add any cash or assets from outside.

• At final maturity we know that the final value will be
VT = (ST − K )+ as we posed this as boundary condition in our
pricing problem.

• Hence by following the above strategy, set up with the initial V0
and with no subsequent cost, we end up with the payout
(ST − K )+ at maturity.

• We can then deliver this payout to our client and face no risk.
• Basically, our self financing trading strategy in the underlying S,

set up with the initial payment V0, completely replicated the claim
we sold to our client.
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Dynamic Hedging IV

• An obvious but often overlooked point it this: If we are perfectly
hedged, all the money we received from the client (V0) is spent to
set up the hedge, and we as a bank make no gain.

• That’s why in reality only partial hedges are often implememented,
in an attempt not to erode all potential profit.

The above framework is called ”delta-hedging”.

Basically one holds an amount of risky asset equal to the sensitivity of
the contract price to the risky asset itself (delta).

This strategy is possible only in markets where all risks are directly
linked to tradable assets and viceversa (roughly: ”complete markets”).
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Incomplete Markets I

Metatheorem/folklore: A market is complete if there are as many
assets as independent sources of randomness.

In reality markets are incomplete, as there are some risks that are
covered by no direct assets, and there are more risks than assets.

This can be partly addressed by including a few derivatives themselves
among the basic assets, but it is hard to keep the market complete

For example, as we will see in the volatility smile part, in a stochastic
volatility model like Heston for the stock price St under the measure Q,

dSt = rStdt +
√

VtStdWt , s0, dWdW V = ρ dt

dVt = k(θ − Vt)dt + σV
√

VtdW V
t , v0,
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Incomplete Markets I
dSt = rStdt +

√
Vt StdWt , s0, dWdW V = ρ dt

dVt = k(θ − Vt)dt + σV
√

VtdW V
t , v0,

we have that now the volatility (see box) in the stock equation, namely√
Vt , is a second stochastic differential equation driven by a second

Brownian motion W V . In Black Scholes the box would have a
deterministic constant σ.

If we hedge only with the stock price St , delta hedging does not work
because the risk associated with the randomness of the volatility is not
covered by the stock, the stock is one asset and can only cover one
risk, the risk of W , but not the risk of W V .

Thus, if our only hedging risky asset is the stock S, in a Heston model
the market is incomplete. To make the market complete we need to
add another asset to the fundamental assets we start from.
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Incomplete Markets II

For example, a specific call option C̄ with a given strike K̄ and maturity
T̄ could be added to Bt and the stock, and the market would be
complete again, because we would have two risky assets now, St and
C̄t , to hedge two sources of risk, W and W V .
A trading strategy would have to be a triple now, (ϕB, ϕS, ϕC̄).

In reality it’s not always possible to find a risky asset matching a given
risk, this is partifularly difficult or impossible for some credit risk,
liquidity risk, operational risks, etc. Real market remains incomplete.

A further problem is that continuous rebalancing does not happen.
Real hedging happens in discrete time and this will imply an hedging
error with respect to the idealized case
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Incomplete Markets III

In the end hedging is more an art than a science, and it involves many
pragmatic choices and rules of thumbs. However, a sound
understanding of the idealized case is crucial to appreciate the
subtleties in real market applications.

“Greeks” (sensitivities) are often used to deal with hedging, and we
briefly look at them now.
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The sensitivities (or greeks) I

When hedging derivatives, often sensitivities (or greeks) are used in
practice.

A sensitivity is the partial derivative of the price or of another sensitivity
with respect to one of the parameters. It tells us how much a small
change of the parameter impacts a change in the price or sensitivity
we are examining.

We have already met one of the most important sensitivities, delta.

∆(t) =
∂V (t)
∂S

which, for a call option price under Black Scholes, is equal to Φ(d1(t)),
as we have seen above. Delta measures how much the option price V
changes when there is a small change in the underlying asset price S.
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The sensitivities (or greeks) II

In general a large sensitivity with respect to a parameter means that
the trade is quite sensitive to that parameter, and the trader may
consider trades that reduce the sensitivity if she wishes to be more
prudent with respect to that parameter. If the trader is more aggressive
she may decide to trade to increase the sensitivity further.

Other sensitivities or greeks are: Time decay or Θ, negative sensitivity
to time to expiry,

Θt = − ∂V (t)
∂(T − t)

=
∂V (t)
∂t

Gamma, the sensitivity of delta to the underlying:

Γt =
∂∆(t)
∂S

=
∂2V (t)
∂S2
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The sensitivities (or greeks) III

At this point we may write an equation linking the three sensitivities just
introduced. Recall Ito’s formula we have seen earlier

dV (t ,St) =
∂V
∂t

(t ,St)dt +
∂V
∂S

(t ,St)dSt +
1
2
∂2V
∂S2 (t ,St)σ

2S2
t dt .

We can rewrite this as

dV (t ,St) = Θtdt +
1
2
Γtσ

2S2
t dt +∆tdSt

For a call option, Θ is negative, so the option position loses value in
time. Γ is positive, so Γ may counterbalance Θ if the market moves
considerably in S. In theory, this is still the ∆ hedging equation, so in
continuous time all should work as a perfect hedge, but in practice
hedging happens in discrete time and Gamma / Theta effects show up
and need to be taken into account.
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The sensitivities (or greeks) IV

Back to definitions, Vega is the sensitivity to volatility, namely

νt =
∂V (t)
∂σ

ρ is the sensitivity to interest rates r , namely ρt =
∂V (t)
∂r .

These greeks can be computed in closed form in Black Scholes for call
and put options, for example. There are further higher order greeks
Vanna, Charm, Vomma/volga, Veta, Yoghurt, Speed, Zomma, Color
Ultima, Totto... (sounds crazy I know... and one on this list is fake)

(c) 2012-24 Prof. D. Brigo SDEs in Financial Modelling Imperial College London 243 / 805



No arbitrage and option pricing / hedging The Greeks / Sensitivities

The sensitivities (or greeks) V

The higher the order of the greeks we use, the smoother we are
assuming prices to be. For example, Speed = ∂3V/∂S3 requires the
price V to be three times differentiable with respect to the underlying
S. While this may hold in simple models like Black Scholes for specific
payoffs, in general assuming excessive smoothness is not realistic,
and therefore using high order greeks has to be done very carefully,
especially when the greeks are computed with numerical methods.
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Introduction to the volatility smile

The Black-Scholes model (given here under Q, we will write W for W Q

in this part of the volatility smile, so all Brownian motions are under the
risk neutral measure)

dSt = rStdt + νSt dWt , s0, t ∈ [0,T ],

is a Geometric Brownian motion with density pSt given by the
lognormal density corresponding to

lnSt ∼ N
(
lnS0 + rt − 1

2
ν2t , ν2t

)
, (21)

or (log return) ln
St

S0
∼ N

(
rt − 1

2
ν2t , ν2t

)
,

which is

pSt (y) = plognormal
t ,ν (y) =

1
yν

√
t 2π

exp

{
− 1

2ν2t

[
ln

y
S0

− rt + 1
2ν

2t
]2
}
.

(22)
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Introduction to the volatility smile I

Recall that the price of a European call option with maturity T and
strike K paying Y = (ST − K )+ at time T is

VBS(0,S0,K ,T , ν, r) = EQ
0 [e−rT (ST − K )+] =

= S0Φ(d1(0))− Ke−rTΦ(d2(0)),

where

d1(0) :=
ln(S0/K ) + (r + ν2/2)T

ν
√

T
, d2(0) := d1(0)− ν

√
T ,

In particular ν is the volatility of the option and does not depend on K .
Important: Volatility is a characteristic of stock S underlying the
contract, and has nothing to do with the contract on S and, in
particular, it has nothing to do with the strike K of the option we choose
to trade.
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Introduction to the volatility smile

Now take two different strikes K1 and K2. Suppose that the market
provides us with the prices of the two call options
MKTCall(S0,K1,T ) and MKTCall(S0,K2,T ).

Does the market follow Black & Scholes formula in a consistent way?

Does there exist a single volatility ν such that

MKTCall(S0,K1,T ) = VBS(0,S0,K1,T , ν, r),

MKTCall(S0,K2,T ) = VBS(0,S0,K2,T , ν, r)?

If Black and Scholes is correct, this should happen.
The answer is a resounding “NO!!!”
Market option prices do not behave like this.
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Introduction to the volatility smile I

Instead two different implied volatilities ν(K1) and ν(K2) are required
to match the observed market prices if one is to use the Black Scholes
formula:

MKTCall(S0,K1,T ) = VBS(0,S0,K1,T , ν(K1), r),

MKTCall(S0,K2,T ) = VBS(0,S0,K2,T , ν(K2), r).

In other terms, each market option price requires its own Black and
Scholes implied volatility ν(K ) depending on the option strike K .

The market therefore uses BS formula simply as a metric to express
option prices as volatilities. The curve K 7→ ν(K ) is the so called
volatility smile of the T -maturity option.
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Introduction to the volatility smile

If Black and Scholes model were consistent along different strikes, this
curve would be flat, since volatility should not depend on K . Instead,
this curve is commonly seen to exhibit “smiley” or “skewed” shapes.

Figure: An example of smile curve K 7→ ν(K ) from the FX market. K is on the
horizontal axis, ν(K ) on the vertical axis
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Introduction to the volatility smile

This means that the Black Scholes formula is wrong because, again, ν
is a property of S and not of the option I decide to write on S. It should
not depend on K if the model were right.

So the solution, when the smile showed up, should have been to ditch
the Black Scholes formula looking for a new formula coming from a
better model, more in line with market option prices patterns

However, traders were so used to calculate prices and sensitivities
(greeks) with Black Scholes that they insisted in retaining the option
formula even if the model was wrong. This led to the above definition
of implied volatility where traders are willing to change ν when K
changes, even for the same S.

Still, even if we keep the Black-Scholes formula on the surface, the real
model behind the option prices will be different than Black Scholes.
We will explore some alternative models now.
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Smile modelling through different SDEs I

Once we understand that the Black-Scholes model cannot be correct if
the volatility of an option depends on its strike, we may try to use a
different model to see if this different model can account for the
drawbacks of the Black - Scholes model.

The alternative models will be able to generate a volatility smile that
can be close enough to the market smile curve for practical purposes.

Let’s look at how an alternative model for the stock dynamics dSt can
generate a smile.
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Smile modelling through different SDEs II

Alternative SDE model for dSt can generate a non-flat smile:
1 Set K to a starting value;
2 Compute the model call option price

VModel(K ) = EQ
0 [e−rT (ST − K )+]

with S modeled through an alternative dynamics

Model: dSt = rStdt + σ(t ,St) St dWt , S0 = s0

3 Invert Black Scholes formula for this strike, i.e. solve

VModel(K ) = VBS(0,S0,K ,T , ν(K ), r).

in ν(K ), thus obtaining the model implied volatility ν(K ).
4 Change K and restart from point 2.

At the end of this algorithm we have built the smile curve K 7→ ν(K ) for
this model.
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Bachelier Model I

We now start exploring alternative SDEs for dSt that can lead to a
volatility smile.

We begin with the model that was proposed in 1900 by Louis
Bachelier, PhD student of Henry Poincare. Bachelier is definitely one
of the key precursors of the mathematics of option pricing.

At the time Bachelier proposed his model, the no-arbitrage theory was
not there. So he did not know that his model should have had as a drift
the quantity rSt . Instead, he worked under the measure P and
proposed the model

dSt = µ dt + σdW P
t .
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Bachelier Model II

This is an arithmetic Brownian motion. If we were to impose the risk
neutral drift rSt to this process, following the modern theory of
no-arbitrage, we would get

dSt = µ dt + σdW P
t → dSt = rSt dt + σdW Q

t .

However, this would be a special case of the Ornstein Uhlenbeck
process rather than an arithmetic Brownian motion (ABM).
Furthermore, with such a change of drift the Radon Nykodym
derivative is not guaranteed to exist.

To bypass all these problems, we make the assumption that interest
rates are zero. r = 0. This way we avoid drift problems related to the
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Bachelier Model III

specific shape of the Bachelier model and the Bachelier model can
remain an ABM also under Q.

Bachelier Model (BaM) (r = 0) dSt = σdWt , s0.

The price of a call option is

VBaM = EQ [(ST − K )+
]
.

In the BaM we have, integrating dSt = σdWt ,

ST = s0 + σWT = s0 + σ
√

TN (0,1)

where N (0,1) =: N is a standard normal random variable. It follows
that

EQ[(ST − K )+] = EQT
[
(

s0 + σ
√

TN − K
)+

] =
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Bachelier Model IV

= EQT
(
σ
√

TN − (K − s0)
)+

= σ
√

TEQ
(

N − K − s0

σ
√

T

)+

= σ
√

T
∫ +∞

−∞

(
x − K − s0

σ
√

T

)+

pN(x)dx =

where as usual Φ is the standard normal CDF and pN is the standard
normal PDF. Now let y = K−s0

σ
√

T
so that

= σ
√

T
∫ +∞

−∞
(x − y)+ pN(x)dx = σ

√
T
∫ +∞

y
(x − y)pN(x)dx =

since the positive part is non-zero only for x > y . Now

= σ
√

T
[∫ +∞

y
xpN(x)dx − y

∫ +∞

y
pN(x)dx

]
=
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Bachelier Model V

The first integral is trivial, remembering that x dx = (1/2)d(x2):∫ +∞

y
xpN(x)dx = pN(y).

The second integral is simply∫ +∞

y
pN(x)dx = 1 − Φ(y) = Φ(−y).

Then remembering the definition of y and substituting we have

VBaM(0, s0,K ,T , σ) = (s0 − K )Φ

(
s0 − K
σ
√

T

)
+ σ

√
TpN

(
s0 − K
σ
√

T

)
.
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Bachelier Model VI

The smile K 7→ ν(K ) in the BaM is given, for a fixed σ, as the solution
ν(K ) of the following equation for seral values of K :

VBS(0, s0,K ,T , ν(K ), r)|r=0 = VBaM(0,S0,K ,T , σ).

The smile is monotonically decreasing, similarly to the smile of the
displaced diffusione model we see next when α < 0 in that model.

We mentioned that the Bachelier model for the stock St can only be
used when r = 0, as this is the only case where, under both measures,
the process remains an arithmetic Brownian motion. However, there is
another possibility. One could model forward stock prices Ft ,T , which
are known to have zero drift under Q as they are martingales, and the
zero drift property would be true by definition.
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Bachelier Model VII

One then expresses the volatility smile for the forward stock price Ft ,T
instead of the stock price itself St .
This is occasionally done, but in practice when using Bachelier we will
assume r = 0 and use the stock price S.

Example of qualitative pattern of the smile for the Bachelier model (call
options on interest rates, caplet)
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Bachelier Model VIII

In the horizontal axis we have K , in the vertical axis ν(K ).
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Displaced diffusion model I

We continue exploring alternatives to the Black Scholes SDE. The
second model we consider is the displaced diffusion model (DDM). In
this model the stock price S under the risk neutral measure is
modelled as

DDM Def St = αer t + Xt , dXt = rXtdt + σXt dWt .

To check that this model is indeed arbitrage free we need to see that
dSt has drift rSt dt . Calculate

dSt = d(αer t) + dXt = rαer tdt + rXtdt + σXt dWt .

Now, substitute Xt = St − αer t in this last equation to get

dSt = rαer tdt + r(St − αer t)dt + σ(St − αer t) dWt .
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Displaced diffusion model II

Simplifying terms, we end up with the SDE

DDM dSt = rSt dt + σ(St − αer t) dWt .

We see that the drift is the correct risk neutral drift, so this is arbitrage
free.

We also see that if α = 0 we get back Black Scholes.

To price a call or put option it’s best to resort to Eq. “DDM Def” than
“DDM”. Let’s see how a call option is priced.
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Displaced diffusion model III

VDDM(K ) = EQ
0 [e−rT (ST − K )+] = EQ

0 [e−rT (αer T + XT − K )+] =

= EQ
0 [(XT − (K − αer T ))+] = EQ

0 [e−rT (XT − K ′)+]

where we set K ′ = K − αer T . Now note that X is just a Black Scholes
model with volatility σ, so from the last price expectation we have

VDDM(K , σ) = VBS(0,S0,K ′,T , σ, r) = X0Φ(d1(0))− K ′e−rTΦ(d2(0)),

where

d1(0) :=
ln(X0/K ′) + (r + σ2/2)T

σ
√

T
, d2(0) := d1(0)− σ

√
T .
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Displaced diffusion model IV

Recalling that X0 = S0 − α, K ′ = K − αer T and substituting in the last
equation we get

VDDM(0,S0,K ,T , σ, α, r) = (S0 − α)Φ(d1(0))− (Ke−rT − α)Φ(d2(0)),

d1(0) :=
ln
(

S0−α
K−αer T

)
+ (r + σ2/2)T

σ
√

T
, d2(0) := d1(0)− σ

√
T .

This model generages a smile K 7→ ν(K ) by assigning the parameters
σ and α and solving for all K the following equation in ν(K ):

VBS(0,S0,K ,T , ν(K ), r) = VDDM(0,S0,K ,T , σ, α, r).

Displaced diffusion can generate only monotonically decreasing or
increasing smiles (depending on the sign of α). It cannot generate a V

(c) 2012-24 Prof. D. Brigo SDEs in Financial Modelling Imperial College London 264 / 805



Volatility smile modeling Displaced Diffusion Model

Displaced diffusion model V

shaped smile. Here is an example from the interest rates call options
market (caplets)
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Displaced diffusion model VI

Introducing α ̸= 0 has two effects on the smile.

First, it leads to a decreasing (α < 0) or increasing (α > 0) curve.

Second, it moves the curve upwards (α < 0) or downwards (α > 0).

More generally, ceteris paribus, increasing α shifts the volatility curve
K 7→ ν(K ) down, whereas decreasing α shifts the curve up.

Shifting a lognormal diffusion can then help in recovering skewed
volatility structures. However, such structures are often too rigid, and
highly negative slopes are impossible to recover.

Moreover, the best fitting of market data is often achieved for
decreasing implied volatility curves, which correspond to negative
values of the α parameter, and hence to a support of the stock price
density containing unrealistic negative values.
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Constant Elasticity of Variance (CEV) model I

The CEV model is given as

CEV: dSt = r Stdt + νSγ
t dWt , S0 = s0

where γ is a positive exponent, γ > 0. To avoid issues with explosion
(linear growth condition), the exponent should be between 0 and 1,
although some empirical studies pointed to an exponent γ = 3/2,
leading to explosion issues.

To use the model saefly one needs to assume γ ∈ (0,1].
There are two special cases.

First, γ = 1/2 leads to an SDE known as “Feller square-root process”.

Feller process: dSt = r Stdt + ν
√

St dWt , S0 = s0.
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Constant Elasticity of Variance (CEV) model II

With γ < 1 and in the Feller case in paticular, one needs to say what
happens at S = 0, which is usually taken as an absorbing boundary,
meaning that trajectories t 7→ St(ω) that reach S = 0 stay there. The
process avoids negative values but can end up in zero. When the
stock of a company hits zero, it means the company has defaulted.
The model can then be used to model default risk.

For the smile, the model with γ ∈ (0,1) has a monotonically
decreasing smile similar to the smile in the DDM. Here the steepness
is mainly decided by γ, whereas in DDM it was mainly decided by α.

Second, if γ = 1 we get back the Black Scholes model and the smile
goes flat at ν.
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Constant Elasticity of Variance (CEV) model III

As the CEV model with γ ∈ (0,1) only gives decreasing smiles as the
DDM, and calculations require special functions (like Bessel functions)
and are much more complicated than in DDM, DDM is usually
preferred to CEV for monotonic smiles, unless one insists in keeping S
non-negative in all scenarios, in which case CEV can be a better
choice than DDM.

Note that if r = 0 and if we were allowed to take γ = 0 we would obtain
the Bachelier model as a special case of the CEV model.
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The Mixture Diffusion Dynamics (MDD) model I

We now present a model originally due to Brigo (hello) and Mercurio,
developed from 1998 to 2021 in several versions (univariate,
multivariate, shifted, shifted means, local volatility, random volatility...),
who developed it in a number of papers and books listed below.

We know that the Black Scholes formula, that traders like so much,
comes from a GBM, dSt = rStdt + νStdW Q

t , s0 with lognormal density
plognormal

t ,ν given in Eq. (22) above. The price of say a call option in
Black Scholes is given by integration of the option payoff against this
lognormal density.

The starting idea of the mixture model is to consider lognormal
densities as in the Black Scholes model but for a number N of possible
constant deterministic volatilities σ1, . . . , σN , where we call
pi,t = plognormal

t ,σi
.
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The Mixture Diffusion Dynamics (MDD) model II

We wish to build a model

dSt = rStdt + σmix(t ,St) St dWt , S0 = s0 (23)

where σmix(t ,St) is built in such a way that the distribution of St is a
mixture of distributions of the lognormals pi,t , or in formula

pSt (y) =: pt(y) =
N∑

i=1

λipi,t(y) =
N∑

i=1

λip
lognormal
t ,σi

(y)

where λi ∈ (0,1) and
∑N

i=1 λi = 1. The λi are the weights of the
different densities pi,t on the mixture.
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The Mixture Diffusion Dynamics (MDD) model III

Set σmix(t , y)2 = 1∑
j λj pj,t (y)

∑
i λiσ

2
i pi,t(y), or more in detail

σmix(t , y)2 =

∑N
i=1 λiσ

2
i

1
σi
√

t
exp

{
− 1

2σ2
i t

[
ln y

S0
− rt + 1

2σ
2
i t
]2
}

∑N
j=1 λj

1
σj
√

t
exp

{
− 1

2σ2
j t

[
ln y

S0
− rt + 1

2σ
2
j t
]2
} ,

for (t , y) > (0,0); σmix(t , y) = σ0 for (t , y) = (0, s0).
Here we assumed constant σi but a fully rigorous version, as in B. &
Mercurio’s papers, is to take t 7→ σi(t) time dependent and to have
them share a common value σ0 in a very short initial time interval
t ∈ [0, ϵ), to take then a constant value σi shortly after t = ϵ. With this
adjustment, the SDE with σmix has a unique strong solution whose
marginal density is the desired mixture pSt =

∑
i λipi,t .
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The Mixture Diffusion Dynamics (MDD) model IV

If ϵ is small, we can ignore it for the purpose of pricing options and
assume the σi are constant everywhere. Then we have that, for
(t , y) > (0,0), we can write σ2

mix(t , y) as follows:

σ2
mix(t , y) =

N∑
i=1

Λi(t , y)σ2
i ,

where Λi(t , y) ∈ (0,1) and
∑N

i=1 Λi(t , y) = 1.
This tells us that σ2

mix(t , y) is a “weighted average” of the σ2
i ’s with

weights Λi ’s.
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The Mixture Diffusion Dynamics (MDD) model V

The weights are indeed

Λi(t , y) =
λi pi,t(y)∑
j λj pj,t(y)

.

Notice: pSt (·) has the correct no-arbitrage Q-expectation:

EQ
0 [St ] =

∫
ypSt (y)dy =

N∑
i=1

λi

∫
ypt ,i(y)dy =

N∑
i=1

λiS0ert = S0ert

as in any arbitrage free model under Q. This was already clear from
the fact that the SDE for S with σmix had drift rSt dt .
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The Mixture Diffusion Dynamics (MDD) model VI

Why is the mixture a good idea? We see the answer when we try and
calculate an option price with this model. Take for example a call
option on ST .

V Call
mix (0,K ,T ) = e−rT EQ {(ST − K )+

}
= e−rT

∫ +∞

0
(y − K )+pST (y)dy = e−rT

∫ +∞

0
(y − K )+

N∑
i=1

λipi,T (y)dy

=
N∑

i=1

λie−rT
∫

(y − K )+pi,T (y)dy =
∑
i=1

NλiV Call
BS (0,S0,K ,T , σi , r).

We see that the price of the call is a linear (actually convex)
combination of Black Scholes prices of calls with volatilities σ1, . . . , σN
with weights λ1, . . . , λN .
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The Mixture Diffusion Dynamics (MDD) model VII

So the option price becomes a mix of prices with the given weights and
volatilities. The same holds for put options and all other simple claims.

Remark [Greeks]. Due to the linearity of the derivative operator, the
same convex combination applies also to all option Greeks
(sensitivities) like Delta, Gamma, Theta, Rho.

This is an extremely flexible model, as we can fine tune the mumber of
components N according to the complexity of the smile. Playing with
the parameters σi and λi we can reproduce most market smiles. The
model has been used successfuly in the equity, FX and interest-rate
markets.
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The Mixture Diffusion Dynamics (MDD) model VIII

Remark [Why a mixture?]. When starting from general dynamics dSt ,
it is hard to come up with analytical formulas for European options.
The use of analytically-tractable densities pi,t , instead, immediately
leads to closed-form prices. Moreover, the virtually unlimited number
of model parameters can be helpful in the market calibration.
Furthermore, traders are used to quote and manage derivatives with
the lognormal distribution as a benchmark. Departures from the
lognormal distribution are to be kept at a minimum, and also motivated.
A mixture of lognormals makes the price of any derivative a linear
combination of prices, each under a different lognormal. We obtain a
linear combination of Black Scholes prices. This leads to a contained
conceptual departure from the lognormal distribution and from the
lognormal world.

(c) 2012-24 Prof. D. Brigo SDEs in Financial Modelling Imperial College London 277 / 805



Volatility smile modeling The mixture diffusion dynamics model

The Mixture Diffusion Dynamics (MDD) model IX

In the mixture dynamics model, one can show rigorously that the
resulting volatility smile curve will have a minimum in the
at-the-money-forward price S0erT .

See B. & Mercurio’s papers for a proof, which is not required in this
course.

We will show now an example of smile from the model (in red)
calibrated to the market (in blue). In this example both the market and
the model smile have the minimum near (but not exactly at) the
at-the-money-forward FX rate of 0.88. Note that in the FX market
r = rdomestic − rforeign.
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The Mixture Diffusion Dynamics (MDD) model X

Figure: USD/Euro two-month implied volatilities as of May 21, 2001. The
minimum is at S0erT ≈ 0.88
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The shifted mixture dynamics model I

Not all markets have the smile with the minimum near S0erT . This
tends to happen (not always) in the FX market but can be different in
other markets like Equity. Can we extend our model to such cases, by
adapting the mixture dynamics to volatility smiles that have the
minimum away from S0erT ? To extend our model to arbitrary mimimum
points of the smile, we introduce a shift. It’s essentially the same idea
as in the displaced diffusion model, except that here it is done on the
mixture dynamics rather than on Black Scholes.
Let us write a mixture diffusion dynamics model Xt as

dXt = rXtdt + σmix(t ,Xt)Xt dWt , X0 = x0.

Let us assume that the asset-price process St follows

St = s0αert + Xt , (24)

where α is a real constant.
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The shifted mixture dynamics model II

Differentiating both sides,

dSt = rs0αertdt + dXt = rs0αertdt + rXtdt + σmix(t ,Xt)Xt dWt =

= rs0αertdt + r(St − s0αert)dt + σmix(t ,St − s0αert)(St − s0αert) dWt

(where we used Eq. (24)) and simplifying

dSt = rStdt + σmix(t ,St − s0αert)(St − s0αert) dWt , s0
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The shifted mixture dynamics model III

The price of a call option in the shifted mixture dynamics is

V Call
shift-mix = e−rT

N∑
i=1

λi

[
S0erTΦ

(
ln S0

K +
(
r + 1

2σ
2
i

)
T

σi
√

T

)

−KΦ

(
ln S0

K +
(
r − 1

2σ
2
i

)
T

σi
√

T

)]
,

where K = K − s0αer T , S0 = s0(1 − α)
To derive this formula, note that

V Call
shift-mix = e−rT EQ[(ST − K )+] = e−rT EQ[(s0αerT + XT − K )+] =

= e−rT EQ[(XT − (K − s0αerT ))+]
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The shifted mixture dynamics model IV

where we used again (24), and now remembering that X follows a
mixture dynamics model SDE with initial condition

x0 = s0 − s0α = s0(1 − α)

(again by (24) at time 0) we have

V Call
shift-mix =

∑
i=1

NλiV Call
BS (0, s0(1 − α),K − s0αerT ,T , σi , r)

which is the formula given above.

Introducing a non-zero alpha moves the minimum of the volatility smile
away from the at-the-money forward S0erT and allows for more general
smiles.

Now we present two examples of calibration to market data.
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The shifted mixture dynamics model V

Data: Italian MIB30 equity index on March 29, 2000, at 3,21pm (most
liquid puts with the shortest maturity). We set N=3, λ3=1 −λ1 −λ2.
We minimize the squared percentage difference between model and
market mid prices. We get: λ1 = 0.201, λ2 = 0.757, σ1 = 0.019,
σ2 = 0.095, σ3 = 0.229, α = −1.852.
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The shifted mixture dynamics model VI

Data: USD/Euro two-month implied volatilities as of May 21, 2001.
We set N=2, λ2=1 −λ1. We minimize the squared percentage
difference between model and market mid prices. We get: λ1 = 0.451,
σ1 = 0.129, σ2 = 0.114, α = 0.076.
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The shifted mixture dynamics model VII

This has been a quick introduction. Missing:
• Calibrating a whole vol surface with different T ’s;
• Putting new drifts in the basic processes:

dSi
t = µi(t) Si

t dt + σi(t)Si
tdWt

Increases fitting capability of asymmetric structures
• Analysis of the transition densities and implication on future

volatility structures.
• Interest rate models... (long story)
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The shifted mixture dynamics model VIII

Published Literature:
• Brigo, D., Mercurio, F. (2000) A Mixed-up Smile. Risk,

September, 123-126.
• Brigo, D., Mercurio, F. (2001) Displaced and Mixture Diffusions

for Analytically-Tractable Smile Models. In Mathematical
Finance - Bachelier Congress 2000, Geman, H., Madan, D.B.,
Pliska, S.R., Vorst, A.C.F., eds. Springer Finance, Springer, Berlin
Heidelberg New York, to appear.

• Brigo, D., Mercurio, F. (2001) Fitting Volatility Smiles with
Analytically Tractable Asset Price Models, and
Lognormal-Mixture Dynamics and Calibration to Market
Volatility Smiles, in International Journal of Theoretical and
Applied Finance
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The shifted mixture dynamics model IX

• Brigo, D., Mercurio, F. (2001) Interest Rate Models: Theory and
Practice. Springer Finance. Springer.

• Brigo, D, Mercurio, F & Sartorelli, G (2003), Alternative Asset
Price Dynamics and Volatility Smile, Quantitative Finance, vol. 3,
no. 3, pp. 173 - 183.

• Brigo, D., Rapisarda, F. and Sridi, A. (2018). The multivariate
mixture dynamics: Consistent no-arbitrage single-asset and index
volatility smiles, IISE Transactions, 50:1, 27–44
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mixture dynamics model: shifted dynamics and correlation skew.
Annals of Operations Research, vol. 299, issue 1, No 56, pp 1435

(c) 2012-24 Prof. D. Brigo SDEs in Financial Modelling Imperial College London 288 / 805



Volatility smile modeling Brief hint at Stochastic volatility models

Stochastic volatility models I

The volatility models we introduced above are all called local volatility
models.
In these models the volatility σ(t ,St) in the SDE

dSt = rStdt + σ(t ,St)StdW Q
t , s0

is a function of t and S only, and there is no randomness entering the
stock price instant by instant except for dW .

Local volatility models suffer from the fact that their future volatility
smile tends to flatten. If you were to calculate the future smile at time
T1 for a maturity T1 + T , conditional on a value of ST1 , and you
compared it to the smile at time 0 for the maturity T , you would get a
smile that is flatter at T1.

Let’s explain this flat smile problem more in detail.
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Stochastic volatility models II

Condition to a given value for the random stock price (as seen from
time 0) ST1 , call it S̄1, then run the SDE model for the stock you are
using under Q, up to time T1 + T , starting from ST1 = S̄1 at time T1.

Get a number of scenarios for ST1+T from the SDE model as above.
These scenarios are conditional on ST1 = S̄1 because we started the
SDE at time T1 from S̄1.

Plug each scenario of ST1+T from the SDE model into the payoff
(ST1+T − K )+, and average to get the Q expectation.

This average is EQ[(ST1+T − K )+|ST1 = S̄1], now discount with e−rT

and you get the option price for the SDE model at time T1 conditional
on ST1 = S̄1.
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Stochastic volatility models III

Equate this price with a Black-Scholes formula at time T1 for maturity
T1 + T and initial stock price S̄1 and solve this equation with the
Black-Scholes volatility as the unknown. Call this volatility
ν(K ,T1,T1 + T ; S̄1).
If you use a stochastic volatility model like the Heston model below, the
two smiles

K 7→ ν(K ,0,T ;S0), K 7→ ν(K ,T1,T1 + T ; S̄1)

will be similar. If you use a local volatility model like CEV or the mixture
dynamics, the second smile will be flatter.

The reason for this is that the Brownian motion standard deviation
grows at a rate

√
t rather than t , so the randomness is slowed down by

the Brownian motion whose standard deviation grows slower than time.
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Stochastic volatility models IV

A local volatility model does not substantially change this, as it puts
simply a function of the current stock σ(t ,St) in front of the next shock
dWt but a stochastic volatility model like Heston, that we are going to
see, introducing new randomness in the volatility itself, can increase
the standard deviation again and make the smile still strong, correcting
the

√
t problem thanks to the new randomness in the volatility.

Traders don’t like the flattening problem. The issue is avoided in
stochastic volatility models (SVM). In SVMs the volatility is a second
stochastic process with new randomness. For example, the Heston
SVM reads under the measure Q

dSt = rStdt +
√

VtStdWt , s0

dVt = k(θ − Vt)dt + σV
√

VtdW V
t , v0,

dWdW V = ρ dt .
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Stochastic volatility models V

Note that here the volatility
√

Vt of S is based on a new SDE dV with a
new Brownian motion W V , possibly correlated with W via ρ but not
identical to it (unless ρ = 1). This means that new extra randomness
enters dSt on top of dW at every instant.

The process V is like the CIR model for interest rates and is mean
reverting to θ with speed k and a local variance parametrized by σV . In
a sense σV is the volatility of the (squared) volatility V (traders talk
about “vol of vol”).

This model avoids the “flat future smile” problem.
There are other stochastic volatility models like Hull-White, SABR . . .
but Heston is one of the best models given the properties of Vt .
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Summary so far and... Crises Origin, size and relevance of derivatives markets

What does it all mean

So far we have tried to follow a technical path, but it is time to
appreciate the significance of what we have done so far in a broad
context, and to revisit some of the assumptions we made.

We now ask ourselves: What are the implications of what we have
calculated on the big picture?

Quantitative Finance deals in large part with financial derivatives.
Options are examples of such derivatives. So, following our
derivation above, why are derivatives so important, so popular
and, often, unpopular? How did they start?
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Summary so far and... Crises 10 × planet GDP: Thales, Bachelier and de Finetti

Options and Derivatives

Derivatives outstanding notional as of June 2011 (BIS) is estimated at
708 trillions USD (US GDP 2011: 15 Trillions; World GDP: 79 Trillions)

708000 billions, 708,000,000,000,000, 7.08 × 1014 USD

How did it start? It has always been there. Around 580 B.C., Thales
purchased options on the future use of olive presses and made a
fortune when the olives crop was as abundant as he had predicted,
and presses were in high demand. (Thales is also considered to be
the father of the sciences and of western philosophy, as you know).
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Options and Derivatives valuation: precursors

• Louis Bachelier (1870 – 1946) (First to introduce Brownian
motion Wt , first in the modern study of Options);

• Bruno de Finetti (1906 – 1985) (and Frank Ramsey
(1903-1930)) (Fathers of the subjective interpret of probability).
BdF shows betting quotients (claim prices?) avoid sure
exploitation from gambling broker (market?) if and only if they
satisfy axioms of a probability measure.

Modern theory follows Nobel awarded Black, Scholes and Merton
(and then Harrison and Kreps etc) on the correct pricing of options.
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Summary so far and... Crises What does it all mean?

What does it all mean? Call option and Gambling

We saw earlier the call option on a stock (say ACME). This can be a
gamble against a bank, where:

• If the future price of the ACME stock in 1y is larger than the value
of ACME today, we receive from the bank the difference between
the two prices (on a given notional).

• If the future price of the ACME stock in 1y is smaller or equal than
the value of ACME today, nothing happens.

The bank will charge us for entering this wage, since we can only win
or get into a draw, whereas the bank can only lose or get to a draw.
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Figure: A one-year maturity Gamble on an equity stock. Call Option.
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Summary so far and... Crises What does it all mean?

Call option and Gambling

We have an investor buying a call option on ACME with a 1y maturity.

The Bank’s problem is finding the correct price of this option today.
This price will be charged to the investor, who may also go to other
banks.

This is the option pricing problem, main job of quants, together with
hedging, in the past.

Derivatives can be bought to protect or hedge some risk, but also for
speculation or ”gambling”.
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Black and Scholes: What does it mean?

We have derived the Black Scholes formula for a call option earlier,
and later we also saw the same calculation under different (local
volatility smile) models. Let us recall the key points.

Let St be the equity price for ACME at time t .
For the value of the ACME stock St let us assume, as before, a SDE
dSt = µStdt + σ(t ,St)StdWt or also

dSt

St︸︷︷︸ = µ︸︷︷︸ dt + σ(t ,St)︸ ︷︷ ︸ dWt︸︷︷︸
relative change instantaneous volatility New
in stock ACME ”mean” return for ACME random

between of ACME shock
t and t + dt between t and t + dt
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Black and Scholes: What does it mean?

Then we have seen there exists a formula (Black and Scholes’ or one
of the smile models formula) providing a unique fair price for the above
gamble (option) on ACME in one year.

This Black Scholes or smile model formula depends on the volatility
σ of ACME, and from the initial value S0 of ACME today, but does NOT
depend on the expected return µ of ACME.

This means that two investors with very different expectations on the
future performance of ACME (for example one investor believes ACME
will grow, the other one that ACME will go down) will be charged the
same price from the bank to enter into the option.
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The Gamble price does not depend on the investor perception of future
markets. One would think that Red Investor should be willing to pay a
higher price for the option with respect to Blue Investor. Instead, both
will have to pay the gamble according to the green scenarios, where
ACME grows with the same returns as a riskless asset

(c) 2012-24 Prof. D. Brigo SDEs in Financial Modelling Imperial College London 301 / 805



Summary so far and... Crises What does it all mean?

Derivatives prices independent of expected returns???

This seemingly counterintuitive result renders derivatives pricing
independent of the expected returns of their underlying assets.

This makes derivatives valuations quite objective, and has contributed
to derivatives growth worldwide.

Today, derivatives are used for several purposes by banks and
corporates all over the world

A mathematical result has contributed to create new markets that
reached 708 trillions (US GDP: 15 Trillions)

But keep in mind that the derivation of the Black Scholes result and of
smile models holds only under the 4 ideal conditions and actually
many more assumptions:
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The Black Scholes Merton analysis assumptions

• Short selling is allowed without restrictions
• Infinitely divisible shares
• No transaction costs
• No dividends in the stock
• No default risk of the parties in the deal
• No funding costs: Cash can be borrowed or lent at the risk

free rate r . Remove this and Valuation becomes Nonlinear
(Semi-Linear PDEs, FBSDEs, see several papers B. & Pallavicini
2011-2015)

• Continuous time and continuous trading/hedging
• Perfect market information, Complete markets
• ....

Many of the above assumptions are no longer tenable, especially after
2007-2008, but were already unrealistic well before 2008.
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Summary so far and... Crises From 1997 Nobel to crises: ... 1998, 2007, 2008...

Crisis

After Black Scholes 1973...
Market players introduced derivatives that may be much more complex
functionals of underlying assets and events than the above call option

Gamble/speculate/hedge/protect on anything?

The initial Black Scholes theory of 1973 (Nobel award 1997) has often
been extrapolated beyond its limits to address much more complex
derivatives. Such derivatives often work on different sectors: Foreign
Exchange Rates, Interest Rates, Default Events, Meteorology, Energy,
population Longevity...

Aggressive market participants extrapolating the basic theory

One of the most controversial extrapolations is Credit Derivatives and
CDOs in particular, linked to the 2008 crisis.
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Sometimes the timing of the Nobel committee is funny, and we are not
talking about the peace Nobel prize. Warning: anedoctal

1997: Nobel award to Scholes and Merton (Black had passed away).

1998: the US Long-Term Capital Management hedge fund has to be
bailed out after a huge loss. The fund had Merton and Scholes in their
board and made high use of leverage (derivatives). This leads us to...
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Crises and dangers with derivatives

• Metallgesellschaft lost $1.3 billion by entering into long term oil
contracts in 1993.

• The Barings Bank collapse of 1995, which was solely down to the
fraudulent dealings of one of its traders.

• Long-Term Capital Management’s near collapse in 1998 and
subsequent bailout overseen by the Federal Reserve. Somewhat
ironically, members of LTCM’s board of directors included Scholes
and Merton.

• In 2003, Parmalat collapsed with a EUR 14 billion accounting
hole, in what remains Europe’s biggest bankruptcy. Parmalat was
selling itself credit derivatives (credit-linked notes), placing a bet
on its own creditworthiness to conjure up an asset out of thin air.

• The 2007 subprime crisis, triggering the
• 2008 Financial crisis worldwide (8 defaults of financials in 1

month)
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Derivatives: the Barings collapse I

The collapse of Barings Bank in Feb 1995 was caused by huge losses
of a rogue trader, Nick Leeson. Leeson was head of derivatives in
Singapore. He gambled more than $1 billion in non–hedged,
unauthorized speculation trading, destroying the venerable bank’s
reserves.
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Derivatives: the Barings collapse II

After fleeing to Malaysia, Thailand and finally Germany, Leeson was
arrested in Frankfurt and extradited back to Singapore on 20
November 1995.

(c) 2012-24 Prof. D. Brigo SDEs in Financial Modelling Imperial College London 307 / 805



Summary so far and... Crises Crises: Barings collapse

Derivatives: the Barings collapse III

Among Leeson’s positions, a famous one is a short Straddle position.
This is when you sell a call and a put with the same strike, cashing in
the premium for both options.

A short straddle on the stock S with maturity T and strike K has final
payoff

Y = −(ST − K )+ − (K − ST )
+ = −|ST − K |.
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Derivatives: the Barings collapse IV

Basically you will have to pay an amount to the option buyer whatever
happens, as any move of the stock from K will trigger the positive
payoff |ST − K | you have to pay.
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Derivatives: the Barings collapse V

You cashed in the price of the call and the put at time 0, so your hope
is that the stock will move very little, so that the option premium you
cashed at time 0 will be much larger than the movement of the stock
from K at maturity T .

After a lot of rogue trading in futures, Leeson struggled to further cover
his losses and tried to make money by selling a straddle, gambling on
the fact that the stock would move little in the future. This way he could
cash-in the straddle initial price while hoping to make very small
payments in the future.

However, after he sold the straddle, the Kobe earthquake hit Asian
markets, creating large price movemebts in the straddle underlying
asset and generating big losses in Leeson’s position. To try to get
funds and keep his rogue trading going, he entered further futures
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Derivatives: the Barings collapse VI

positions but in vain. Losses kept increasing and eventually the bank
collapsed.

The Barings collapse was one of the main incidents that convinced
regulators that banks needed a risk measure for all their portfolios, and
that capital reserves proportional to this measure should be in place
when trading the relevant portfolios.
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Risk measures as a first response to crises

The introduction of Risk Measures in the late 1990’s was a response to
the Barings collapse and other incidents. The value at risk (VaR) and
later the espected shortfall (ES) were the main risk measures used to
respond to the crises. We will look at these measures in part 3.
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The 2008 crisis. Credit risk

Later on, following the 7[8] credit events happening to Financials in
one month of 2008,

Fannie Mae, Freddie Mac, Lehman Brothers, Washington Mutual,
Landsbanki, Glitnir and Kaupthing [and Merrill Lynch]

credit risk in trading could not be ignored anymore.

This led to the introduction of the credit valuation adjustment (CVA),
the first of a series of valuation adjustments that had to account for
effects often neglected before the 2008 crisis.

The crisis involved also important issues on liquidity, collateral and
interest rates, but we won’t discuss those here.

We will discuss now risk measures, in Part 3. We will not cover credit
risk, collateral, funding costs and valuation adjustments. That is
covered in the MSc Mathematics and Finance.
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PART 3: RISK MEASURES

In this part we introduce the two key risk measures
used in the industry, Value at Risk (VaR) and
Expected Shortfall (ES), providing some numerical
examples of how these measures are calculated on
option portfolios
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RISK MEASURES

In this part we look at the problem of risk measurement and
management.

So far we discussed mostly valuation and hedging. This is important
and is done under the risk neutral measure Q, as we have seen earlier.

Risk Management however is partly based on historical estimation,
and is interested in potential losses in the physical world, hence we
need to go back to the historical/physical measure P.

We first discuss briefly statistics under the measure P and then
introduce the two fundamental risk measures of Value at Risk (VaR)
and Expected Shortfall (ES).
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Time series under the measure P I

We have seen that in the Black Scholes model, under the measure P,
the stock St is

St = S0 exp

{(
µ− 1

2
σ2
)

t + σWt

}
, 0 ≤ t ≤ T .

Given a sequence of times t0, t1, t2, . . . , ti , ti+1, . . . tN , where we assume
ti+1 − ti = δ for all i , we can write, from the above equation

log
Sti+1

Sti
=

(
µ− 1

2
σ2
)
δ + σ(Wti+1 − Wti ) ∼ N

((
µ− 1

2
σ2
)
δ, σ2δ

)
where we used the usual Wti+1 − Wti ∼ N (0, ti+1 − ti) = N (0, δ).

The above formula tells us that the log-returns log(Sti+1/Sti ) are
Gaussian in Black Scholes. Is this true for real financial data?
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Time series under the measure P II

This can be assessed with sample estimators and with a QQ plot.

We introduced at the beginning of the course the skewness and
excess kurtosis of a random variable X as

E[(X − µ)3]

σ3 ,
E[(X − µ)4]

σ4 − 3,

both quantities being zero if X ∼ N (µ, σ2) is Gaussian. So, the first
thing we can do if presented with some stock data history
st0 , st1 , st2 , . . . , stN is to take log returns

xt1 = log
st1
st0

, xt2 = log
St2
St1

, . . . , xtN = log
stN

stN−1

and to check the sample skewness and kurtosis of the x data.
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Time series under the measure P III

There are both unbiased and biased estimators of skewness and
excess kurtosis in the literature. Once we choose an estimator, we
apply it to the data. If we have that Skewness is significantly different
from zero, the probability density function of the data (histogram) will
be highly asymmetric, so that our log returns of the stock cannot be
normal.

If we have that excess kurtosis is significantly smaller than zero, then
the distribution is less dispersed than a normal, and the tails will be
thinner than a normal.

If we have that excess kurtosis is significantly larger than zero, then
the distribution is more dispersed than a normal, and the tails will be
fatter than a normal.
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Time series under the measure P IV

Financial time series, for example for stock prices, often exhibit fat
tails, i.e. tails that are fatter than a normal. This means that extreme
events, which correspond usually to tails of the loss distribution, could
have their probability underestimated if modeled as normals.

We can check this with financial data in a couple of examples.
5 years of S&P500 returns 13/3/2017–13/3/2022

If we look at the related Excel spreadsheet (available), Excel has a
function “Skew” to compute the skewness, and “Kurt” to compute the
excess kurtosis. For log-returns of S&P500 over 5 years we get

mean = 0.00044; STD = 0.01212; skew = −1.1279; exc kurt = 21.46.

We can transform the daily volatility in an annualized one by
multiplying by the square root of the number of (252 working) days in a
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Time series under the measure P V

year. Remember, log-returns are independent, so the variance of their
sum over one year is the sum of their variances. This means that to
get the annual variance from the daily one we need to multiply by 252,
whereas for the standard deviation we have the square root. So

Historical Volat = Annualized STD =
√

252 0.01212 = 0.1925 = 19.25%.

This is σ in the Black Scholes model estimated under the measure P.
We notice that both skewness and kurtosis are quite different from 0.
The kurtosis, in particular, is quite large. We can expect then tails that
are much thicker than the normal distribution and we can expect
asymmetry. The histogram of the data confirms this:
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Time series under the measure P VI
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Time series under the measure P I

We re-do the exercise to illustrate how the properties may depend on
the particular dataset and especially on the time window of the
historical data. We now download from Yahoo finance the S&P500
close prices from March 9, 2021 to March 9, 2022 (1 year of data). We
get, for the log returns,

mean = −0.0004; STD = 0.00912; skew = 0.29; exc kurtosis = 0.65.

The daily mean return is quite close to zero. The daily standard
deviation is almost 1%.

Historical Volatility = Annualized STD =
√

252 0.00912 = 0.145 = 14.5%.

This is σ in the Black Scholes model estimated under the measure P.
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Time series under the measure P I

When we looked at smile modeling, we saw the implied volatility, which
is the volatility σimplied that reproduces the market option price (a
Q-expectation) when put in the Black Scholes formula.
On the date 9 March 2022, the implied volatility from S&P500 options
was σimp = 31.8%.

In general, implied volatilities tend to be higher than historical
volatilties.

However, if we measure the historical volatility only on the last ten days
of the sample, the historical volatility becomes σhist = 30%. If we
measure it only on the last 30 days, σhist = 24% (see spreadsheet).
The historical volatility depends a lot on the history time window on
which we calculate it (e.g. 10 days vs 1 month vs 1 year). In all cases,
however, in our example, σhist < σimplied , and in most cases this holds.
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Time series under the measure P I

Going now to skewness and excess kurtosis, both numbers are
positive. Skew is positive, contrary to the 5y case, whereas kurtosis is
positive but much smaller than in the 5y case, so our data are closer to
normal now. An histogram may confirm this.
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Time series under the measure P II

Histogram is bulky as we only used 1 year of data. We can see that
the distribution is more spread than a Gaussian, that it is skewed to the
right (right tail longer) and tails are fatter than Gaussian.
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Time series under the measure P III

However, if we compare with the 5y histogram, tails are less spread.

A powerful tool that can visualize how far we are from a (standard)
normal distribution is the QQ plot. This plots the quantiles of a
distribution against the quantiles of another distribution, typically a
standard normal.

If the two distributions are equal, their quantiles are equal and we get
the straight line y = x .

If the two distributions are related by a linear transformation, like a
non-standard normal vs a normal, N (µ, σ2) = µ+ σN (0,1) vs N (0,1),
then the QQ plot is a straight line but not y = x .
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Time series under the measure P IV

If the two distributions are not equal nor related by a linear
transformation, the QQ plot will depart from a straight line the more the
two distributions percentiles, and tails in particular, are different. In
general, departure from a linear pattern points to fat tails.

Let’s look at the 1y dataset first. From skewness and kurtosis we know
that we are not in presence of normal returns. We can look at a QQ
plot of the log-return data x against a standard normal.
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Time series under the measure P V

We see that while the curve is not exactly sitting on a straight line, the
departure is not dramatic. Then we can still use the Black Scholes with
its normal returns as an approximation for risk management purposes
with this dataset.
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Time series under the measure P VI

The situation is quite different with the 5y dataset. The QQ plot in that
case is
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Time series under the measure P VII

Here using Black Scholes, implying normal returns, would be more
problematic as the departure from a straight line is more dramatic.

The fat tails in the 5y dataset are confirmed both by the high Kurtosis
and by the QQplot, which give consistent findings.
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Time series under the measure P VIII

We can summarize both examples in a table

Data mean hist vol hist vol impl skew kurt QQ
set last whole Plot

2 weeks sample vol
1y - 0.0004 30% 14.5% 31.8% 0.29 0.65 line

5y 0.00044 27.12% 19.25% 31.8% -1.13 21.46 curved

Table: S&P500 log-returns statistics, 1y dataset from Yahoo finance, period
9 March 2021 - 9 March 2022. 5y dataset from Federal Reserve, period
13 March 2017 - 13 March 2022.
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Time series under the measure P IX

For the 5y dataset the model should have fat tails.

Some of the models we have seen, like the mixture dynamics, have
fatter tails than the Gaussian and are more consistent both with P
(historical skewness and kurtosis) and Q data (market volatility smile).
We have seen these models only under Q, but it is easy to formulate
them under P by changing their drift to µSt dt .

We can use a mixture dynamics to see if it can achieve similar patterns
to the 5y data. We can choose a mixture dynamics as follows under
the measure P

(c) 2012-24 Prof. D. Brigo SDEs in Financial Modelling Imperial College London 332 / 805



Properties of financial time series under the measure P Histograms and QQ Plots

Time series under the measure P X

λ1 λ2 σ1 σ2 E [ln S1d
S0

]
√

252STD[ln S1d
S0

] skew kurt
0.9 0.1 0.1 0.9 0.0004 0.30 -0.23 21.08

Table: One example of mixture lognormal dynamics achieving a large
Kurtosis. We mix two lognormals. S0 = 100, µ = 0.1511; Statistics of
simulated log-returns over one day

We can show the histogram plot of the mixture return density (green)
against a density of a normal with the same mean and variance
(dashed black)
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Time series under the measure P XI
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Time series under the measure P XII

The plot does not allow to appreciate the difference in the tails due to
scale. We zoom on the fat tails on the right:
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Time series under the measure P XIII

On the left hand side we have the mixture dynamics daily return
QQplot. On the right hand side we have the 5 year dataset QQplot.
They follow a roughly similar pattern.
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Time series under the measure P XIV

This shows the mixture dynamics has the potential to model fat tails
distributions.

This is just an example. In reality one can do a precise maximum
likelihood estimation of the model to historical data. Also, as we have
seen previously, one can alternatively fit the model to option smile data
under the measure Q. In that case the drift has to be replaced by rStdt .

This is a key example of how model selection may be guided by
empirical analysis of data.
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Risk Measures: A historical perspective I

This historical perspective is from Brian McHugh’s review (2011)

This is an introduction into ’Risk Measures’, particularly focusing on
Value-at-Risk (VaR) and Expected Shortfall (ES) measures. A brief
history of risk measures is given, along with a discussion of key
contributions from various authors and practitioners.
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What do we mean by ”Risk”? I

Risk is defined by the dictionary as ’a situation involving exposure to
danger’. It is related to the randomness of uncertainty. Risk is also
described as ’the possibilty of financial loss’ and this is the definition
that will be discussed here.

Risk management, described by Kloman1 as ’a discipline for living with
the possibility that future events may cause adverse effects’, is of vital
importance to the appropriate day to day running of financial
institutions.

Here, downside risk (the probability of loss or less than expected
returns) will be the focus of discussion as it is the most crucial area for
risk managers. In particular, Value at Risk (VaR) and Expected
Shortfall (ES) methodologies of measuring risk will be analysed.
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What do we mean by ”Risk”? II

The question that comes to mind is where does this risk come from,
and of course there is no single answer.

Risk can be created by a great number of sources, both directly and
indirectly, it propogates from government policies, war, inflation,
technological innovations, natural phenomena, and many others.

There are a number of risks faced by financial institutions everyday,
these include market risk, credit risk, operational risk, liquidity risk, and
model risk.
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What do we mean by ”Risk”? III

• Market risk includes the unexpected moves in the underlying of
the financial assets (stock prices, interest rates, fx rates...)

• Credit risk propogates from the creditworthiness of a counterparty
in a contract and the possibility of losses caused by its default.

• Operational risk: possibility of losses occured by internal
processes, people, and systems or from other sources externally.

• Liquidity risk stems from the inability, in some cases, to buy or sell
financial instruments in sufficient time as to minimise losses.

• Model risk: inaccurate use of valuation and pricing models, for
instance inaccurate distributions or unrealistic assumptions.
Negative interest rates? (eg Vasicek, Hull White), Models with thin
tails instead of fat tails? Bad future volatility structures?
Unrealistic correlation patterns? (see discussion on LMM above).
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What do we mean by ”Risk”? IV

• Finally, all such risks may interact in complex ways and their
mutual dependence and contagion is a key aspect of modern
research. As these risks are not really completely separable, this
classification is purely indicative and not substantial.

1H. F. KLOMAN (1990), Risk Management Agonistes, Risk Analysis 10:201-205.
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A brief history of VaR and Expected Shorfall I

The origins of VaR and risk measures can be traced back as far 1922
to capital requirements the New York Stock Exchange imposed on
member firms according to Holton2.

However, Markowitz’s seminal paper ’Porfolio Theory’ (1952), which
developed a means of selecting portfolios based on an optimization of
return given a certain level of risk, was the first convincing if stylized
and simplistic method of measuring risk. His idea was to focus
portfolio choices around this measurement.
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A brief history of VaR and Expected Shorfall II

Risk management methodologies really took off from this point and
over the next couple of decades new ideas, such as the Sharpe Ratio,
the Capital Asset Pricing Model (CAPM) and Arbitrage Pricing Theory
(APT), were being proposed and implemented.

Along with this came the introduction of the Black-Scholes
option-pricing model in 1973, which lead to a great expansion of the
options market, and by the early 1980s a market for over-the-counter
(OTC) contracts had formed.

The related theory had important precursors in Bachelier (1900) and
de Finetti (1931)3
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A brief history of VaR and Expected Shorfall III

Perhaps the greatest consequence of the financial innovations of the
1970s and 1980s was the proliferation of leverage, and with these new
financial instruments, opportunities for leverage abounded.

Think of a forward contract with payoff ST − K that is at the money
forward, K = erT S0. Its price at time 0 is
V0 = S0 − e−rT K = S0 − S0 = 0. So it costs nothing to enter this
forward contract even on a huge notional, and yet this may lead to very
large profit or losses in the future if the stock moves a lot.

Similarly for interest rate swaps, credit default swaps, oil swaps, and a
number of other derivatives.
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A brief history of VaR and Expected Shorfall IV

Along with academic innovation came technological advances.
Information technology companies like Reuters, Telerate, and
Bloomberg started compiling databases of historical prices that could
be used in valuation techniques.

Financial instruments could be valued quicker with new hi-tech
methods such as the Monte Carlo pricing for complex derivatives, and
thus trades were being made quicker.

We have now reached super-human speed with high frequency
trading, so debated that the EU is considering banning it.

However, in addition to all these innovations and advances came
catastrophes in the financial world such as:
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A brief history of VaR and Expected Shorfall V

• The Barings Bank collapse of 1995, which was solely down to the
fraudulent dealings of one of its traders.

• Metallgesellschaft lost $1.3 billion by entering into long term oil
contracts in 1993.

• Long-Term Capital Management’s near collapse in 1998 and
subsequent bailout overseen by the Federal Reserve. Somewhat
ironically, members of LTCM’s board of directors included Scholes
and Merton.
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A brief history of VaR and Expected Shorfall VI

For more information on these financial disasters and others see
Jorion (2007).4 Organizations were now more than ever increasingly in
need for a single risk measure that could be applied consistently
across asset categories in hope that financial disasters such as these
could be prevented. However, even this wouldn’t be enough, as the
Lehman collapse of 2008 has shown. We’ll discuss why later.

Q: ”What is Basel?”

A: ”A city in Europe? Perhaps switzerland?”

The Basel Committee on Banking Supervision was central to the
introduction and implementation of VaR on a worldwide scale. The
Committee itself does not possess any overall supervising authority,
but rather gives standards, guidelines, and recommendations for
individual national authorities to undertake.
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A brief history of VaR and Expected Shorfall VII

The first Basel Accord of 1988 on Banking Supervision attempted to
set an international minimum capital standard, however, according to
McNeil at al.5 this accord took an approach which was fairly coarse
and measured risk in an insufficiently differentiated way.
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A brief history of VaR and Expected Shorfall VIII

The G-30 (consultative group on international economic and monetary
affairs) report in 1993 titled ’Derivatives: Practices and Principles’
addressed the growing problem of risk management in great detail.

It was created with help from J.P. Morgans’ RiskMetrics system, which
measured the firm’s risk daily.

The report gave recommendations that portfolios be marked-to-market
daily and that risk be assessed with both VaR and stress testing.

While the G-30 Report focused on derivatives, most of its
recommendations were applicable to the risks associated with other
traded instruments.
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A brief history of VaR and Expected Shorfall IX

For this reason, the report largely came to define the new risk
management of the 1990’s and set an industry-wide standard.

The report is also interesting, as it may be the first published document
to use the word ”value-at-risk”.

Expected shortfall (ES) is a seemingly more recent risk measure,
however, Rappoport (1993) 6 mentions a new approach called Average
Shortfall in J.P. Morgan’s Fixed Income Research Technical Document,
which first noted application of the theory of Expected Shortfall in
finance.

The later paper of Artzner et al. (1999)7 introduces four properties for
measures of risk and calls the measures satisfying these properties as
’coherent’.
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A brief history of VaR and Expected Shorfall X

While such ”coherent” risk measures become ill defined in presence of
liquidity risk (especially the proportionality assumption), this was the
catalyst for the need of a new ’coherent’ risk measure.

As ES was practically the only operationally manageable coherent risk
measure, ES was proposed as a coherent alternative to VaR.

2G. A. HOLTON (2002), working paper. History of Value-at-Risk: 1922-1998.
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Value at Risk VaR definition and intuition

Value at Risk I

Value at risk (VaR) is a single, summary, statistical measure of
possible portfolio losses. It aggregates all of the risks in a portfolio into
a single number suitable for use in the boardroom, reporting to
regulators, or disclosure in an annual report, and it is the most widely
used risk measure in financial institutions according to McNeil et al.

In addition to this, VaR estimates not only serve as a summary
statistic, but are also often used as a tool to manage and control risk
with institutions changing their market exposure to maintain their VaR
at a prespecified level.

The theory behind VaR is quite simplistic, actually too simplistic: VaR
is defined as

the loss level that will not be exceeded with a certain confidence level
over a certain period of time.
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Value at Risk VaR definition and intuition

Value at Risk II

Again, this is related to the idea of downside risk, which measures the
likelihood that a financial instrument or portfolio will lose value.

Downside risk can be measured by quantiles, which are the basis of
the mathematics behind VaR. We now introduce a formal definition of
VaR.
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Value at Risk VaR definition and intuition

Value at Risk III

VaR is related to the potential loss on our portfolio, due to downside
risk, over the time horizon H. Define this loss LH as the difference
between the value of the portfolio today (time 0) and in the future H.

LH = Portfolio0 − PortfolioH .

For the scope of this course, we will assume that the loss LH is a
continuous random variable. This will avoid a number of technical
subtleties that would lengthen the exposition considerably.
Consistently with earlier notation, we may call Π(t ,T ) the sum of all
future cash flows in [t ,T ], discounted back at t , for our portfolio. These
are random cash flows and not yet prices. Price of the portfolio at t is

Portfoliot = EQ
t [Π(t ,T )].

T is usually the final maturity of the portfolio, and typically H << T .
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Value at Risk VaR definition and intuition

Value at Risk IV

For example, if the portfolio is just a stock forward contract where at
maturity we pay fixed K and receive the stock ST , then the payout is
written, as we have seen earlier, for t ≤ T , as

Π(t ,T ) = D(t ,T )(ST − K ).

If our portfolio is for example an amount A of a forward contract on a
first stock S(1) with strike K1 and maturity T1 and an amount B of put
options on a second stock S(2) with strike K2 and maturity T2 > T1 we
get, t < T1:

Π(t ,T2) = A D(t ,T1)(S
(1)
T1

− K1) + B D(t ,T2)(K2 − S(2)
T2

)+.
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Value at Risk VaR definition and intuition

Value at Risk V

VaRH,α with horizon H and confidence level α is defined as that
number such that

P[LH < VaRH,α] = α

or,

P[EQ
0 [Π(0,T )]− EQ

H [Π(H,T )] < VaRH,α] = α

so that our loss at time H is smaller than VaRH,α with P-probability α.

In other terms, it is that level of loss over a time H that we will not
exceed with P-probability α. It is the α P-percentile of the loss
distribution at time H.

From this last equation, notice the interplay of the two probability
measures.
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Value at Risk VaR definition and intuition

Value at Risk VI

From the dialogue by Brigo (2011). ”Counterparty Risk FAQ: Credit
VaR, PFE, CVA, DVA, Closeout, Netting, Collateral, Re-hypothecation,
WWR, Basel, Funding, CCDS and Margin Lending”. See also the book
by Brigo, Morini and Pallavicini: ”Credit, Collateral and Funding”, Wiley,
March 2013.

A: VaR is calculated through a simulation of the basic financial
variables underlying the portfolio under the historical probability
measure, commonly referred as P, up to the risk horizon H. At the
risk horizon, the portfolio is priced in every simulated scenario of
the basic financial variables, including defaults, obtaining a
number of scenarios for the portfolio value at the risk horizon.
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Value at Risk VaR definition and intuition

Value at Risk VII

Q: So if the risk horizon H is one year, we obtain a number of
scenarios for what will be the value of the portfolio in one year,
based on the evolution of the underlying market variables and on
the possible default of the counterparties.

A: Precisely. A distribution of the losses of the portfolio is built based
on these scenarios of portfolio values. When we say ”priced” we
mean to say that the discounted future cash flows of the portfolio
after the risk horizon are averaged conditional on each scenario at
the risk horizon but under another probability measure, the Pricing
measure, or Risk Neutral measure, or Equivalent Martingale
Measure if you want to go technical, commonly referred as Q.

Q: Not so clear... [Looks confused]
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Value at Risk VaR definition and intuition

Value at Risk VIII

A: [Sighing] All right, suppose your portfolio has a call option on
equity, traded with a Corporate client, with a final maturity of two
years. Suppose for simplicity there is no interest rate risk, so
discounting is deterministic. To get the Var, roughly, you simulate
the underlying equity under the P measure up to one year, and
obtain a number of scenarios for the underlying equity in one year.

Q: Ok. We simulate under P because we want the risk statistics of
the portfolio in the real world, under the physical probability
measure, and not under the so called pricing measure Q.
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Value at Risk VaR definition and intuition

Value at Risk IX

A: That’s right. And then in each scenario at one year, we price the
call option over the remaining year using for example a Black
Scholes formula. But this price is like taking the expected value of
the call option payoff in two years, conditional on each scenario for
the underlying equity in one year. Because this is pricing, this
expected value will be taken under the pricing measure Q, not P.
This gives the Black Scholes formula if the underlying equity
follows a geometric brownian motion under Q.
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Value at Risk VaR drawbacks and Expected Shortfall

VaR drawbacks and Expected Shortfall I

As we explained in the introduction to risk measures, VaR has a
number of drawbacks. We list two of them now, starting from the most
relevant.

VaR drawback 1: VaR does not take into account the tail structure
beyond the percentile.

Consider the following two cases.
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Value at Risk VaR drawbacks and Expected Shortfall
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Value at Risk VaR drawbacks and Expected Shortfall

VaR drawbacks and Expected Shortfall I

From the picture above we see that we may have two situations where
the VaR is the same but where the risks in the tail are dramatically
different.

In the first case, the VaR singles out a 99% percentile, after which a
slightly larger loss follows with 1% probability mass. The bank may be
happy to know the 99% percentile in this case and to base its risk
decision on that.

In the second case, the VaR singles out the same 99% percentile, after
which an enormously much larger loss concentration follows with
probability 1%. For example, this is now so large to easily collapse the
bank. Would the bank be happy to ignore this potential huge and
devastating loss, even if it has a small 1% probability?
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Value at Risk VaR drawbacks and Expected Shortfall

VaR drawbacks and Expected Shortfall II

Probably not, and in this second case the bank would not base its risk
analysis on VaR at 99%.

The VaR at 99% does not capture this difference in the two
distributions, and if the bank does not explore the tail structure, it
cannot know the real situation.

The most dangerous situation is the bank computing VaR and thinking
it is in the first situation when it is actually in the second one.
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Value at Risk VaR drawbacks and Expected Shortfall

VaR drawbacks and Expected Shortfall III

VaR drawback 2: VaR is not sub-additive on portfolios.
Suppose we have two portfolios P1 and P2, and a third portfolio
P = P1 + P2 that is given by the two earlier portfolios together.
VaR at a given confidence level and horizon would be sub-additive if

VaR(P1 + P2) ≤VaR(P1)+ VaR(P2) (VaR subadditivity. Is it true? )

ie the risk of the total portfolio is smaller than the sum of the risks of its
sub-portfolios (benefits of diversification, among other things).

However, this is not true. It may happen that

VaR(P1 + P2) >VaR(P1)+ VaR(P2) in some cases.

While such cases are usually difficult to see in practice, it is worth
keeping this in mind.
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Value at Risk VaR drawbacks and Expected Shortfall

VaR drawbacks and Expected Shortfall IV

As a remedy to this sub-additivity problem (and only partly to the first
drawback) Expected Shortfall (ES) has been introduced.

ES requires to compute VaR first, and then takes the expected value
on the TAIL of the loss distribution for values larger than VaR,
conditional on the loss being larger than Value at Risk.

ES is sub-additive (solves drawback 2).

ES looks at the tail after VaR, but only in expectation, without
analyzing the tail structure carefully. Hence, it is only a partial solution
to drawback 1.
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Expected Shortfall Definition

Expected Shortfall Definition I

Recalling that we defined the loss LH as the difference between the
value of the portfolio today (time 0) and in the future H.

LH = Portfolio0 − PortfolioH ,

ES for this portfolio at a confidence level α and a risk horizon H is

ESH,α = EP[LH |LH > VaRH,α]

By definition, ES is always larger than the corresponding VaR.
Note that ES is defined through a conditional expectation. Recall that,
by definition of conditional expectation,

ESH,α = EP[LH |LH > VaRH,α] =
EP[LH1{LH>VaRH,α}

]

P{LH > VaRH,α}
=
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Expected Shortfall Definition

Expected Shortfall Definition II

=
EP[LH1{LH>VaRH,α}

]

1 − P{LH ≤ VaRH,α}
=

EP[LH1{LH>VaRH,α}
]

1 − α

as, by definition, probability that Loss is below VaR at a given
confidence level is equal to the confidence level itself.
Be aware of the fact that ES has several other names, and there are
other risk measures that are defined very similarly. Names you may
hear are:
Conditional value at risk (CVaR), average value at risk (AVaR), and
expected tail loss (ETL).
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Expected Shortfall Drawbacks of ES

Expected Shortfall drawbacks I

Drawback 1 of ES: tail structure. Go back to drawback 1 of VaR and
look at the Figure there.
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Expected Shortfall Drawbacks of ES

Expected Shortfall drawbacks II

ES does not fully solve this problem. It takes the average of the tail, so
it will signal that the second portfolio is more risky than the first, but it
won’t show how the risk is structured. It is therefore an improvement
over VaR but it is a blunt instrument to assess the risk in the tail.

Drawback 2 of ES (and drawback 3 of VaR): Liquidity risk.
Another problem of ES (and VaR) is that it is homogeneous with
respect to the portfolio size. Namely, if k is a positive constant, then

VaR(k Portfolio) = k VaR(Portfolio)
and
ES(k Portfolio) = k ES(Portfolio).

This is unrealistic and completely neglects liquidity risk and market
impact. Selling one million shares is more than one million times risky
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Expected Shortfall Drawbacks of ES

Expected Shortfall drawbacks III

than selling one share. Placing the order for selling one million shares
will move the whole market and change the share price (theory of
maket impact/market microstructure) with potential additional losses
due to said market impact, whereas placing the order for one share
willl not move the market. Liquidity risk strongly disagrees with the
homogeneous assumption.

For example, let Ford shares be trading at $24 each. Placing the order
for selling one million shares will alert the market that one important
market player thinks Ford will be losing value, as they are trying to sell
a huge amount of shares. The market will react instantly and the bid
price will go down to $23. This will cause additional loss to the market
player who will face a loss of $1 for each sold share because this
player will receive $23 instead of $24 for each sold share. Instead, if a
player places the order to sell one share, the price will not move from
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Expected Shortfall Drawbacks of ES

Expected Shortfall drawbacks IV

$24, as one single share does not signal a trend. It follows that one
million times the impact of selling one share is zero, whereas the
impact of selling a block of one million shares will be $1 million.
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Risk measures: numerical examples and codes

Risk Measures: Numerical examples and software
codes

In this part we will look at numerical examples of VaR and ES applied
to financial portfolios, with software code provided, so that you can
play with the code and come up with your own examples. The code will
be available in Octave/Matlab or Python. We will loook at

• Short Straddle (remember the Barings collapse)
• Risk Reversal
• Bull call spread
• Options on different correlated stocks

The mock exams will have further problems on risk measures.
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Risk measures: numerical examples and codes VaR and ES: Short Straddle

Value at Risk and ES: Short Straddle I

Given a stock St , consider a payoff where we sell a call option with
strike K and a put option with the same strike, both with maturity T .
The payoff is Y = −(ST − K )+ − (K − ST )

+ = −|ST − K |.
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Risk measures: numerical examples and codes VaR and ES: Short Straddle

Value at Risk and ES: Short Straddle II
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Risk measures: numerical examples and codes VaR and ES: Short Straddle

Value at Risk and ES: Short Straddle III

If we include the inital price of Y in the payoff itself, the initial price we
pay will be negative, as the payoff is always negative or zero, meaning
that we will receive a positive cash flow at time 0 from selling the two
options. We would then have to shift the payoff plot upwards of an
amount equal to the initial price to include the initial price of the trade
in the overall payoff.

The above short straddle is famous because it is one of the trades of
Leeson that led to the collapse of Barings bank back in 1995. A trader
entering a short straddle with payoff Y expects the stock to move very
little, so that the initial premium she receives from selling the two
options is much larger than the actual payoff that she will have to pay
at maturity.
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Risk measures: numerical examples and codes VaR and ES: Short Straddle

Value at Risk and ES: Short Straddle IV

Note that the more the stock moves away from K (typically K = S0),
the larger |ST − K | becomes, and thus the trader holding the short
straddle Y = −|ST − K | will have to pay more money at maturity.

A trader should enter a short straddle position only if confident that the
stock S will not move much.

The maximum gain is the price of the two options the trader sells
initially. The maximum loss is potentially unlimited.
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Risk measures: numerical examples and codes VaR and ES: Short Straddle

Value at Risk and ES: Short Straddle V

The risk factor of this portfolio is the stock price

dSt = µStdt + σStdW P
t , S0 = s0

given here under the measure P.
Assume the options have maturity 1y and we take a risk horizon
H = 0.25y (3 months, 3m).
We know from the Black Scholes formulas that we have seen earlier
that the price of the payoff Y at time 0 is minus the price of the call with
strike K minus the price of the put, namely

−[S0Φ(d1(0,K ))−Ke−rTΦ(d2(0,K ))]+[S0Φ(−d1(0,K ))−Ke−rTΦ(−d2(0,K ))].

The price of the payoff 3m in the future will be, setting
T̄ = T − 3m = T − 0.25,
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Risk measures: numerical examples and codes VaR and ES: Short Straddle

Value at Risk and ES: Short Straddle VI

−[S3mΦ(d1(3m,K ))−Ke−r T̄Φ(d2(3m,K ))]+[S3mΦ(−d1(K ))−Ke−r T̄Φ(−d2(K ))]

where

d1,2(t ,K ) =
ln(St/K ) +

(
r ± 1

2σ
2) (T − t)

σ
√

T − t
.

For the loss at 3m, this is the portfolio price at time 0 minus the portfolo
price at time 3m. The only random quantity in the loss will be S3m. We
write L3m(S3m) =

−[S0Φ(d1(0,K ))−Ke−rTΦ(d2(0,K ))]+[S0Φ(−d1(0,K2))−K2e−rTΦ(−d2(K2))]

+S3mΦ(d1(3m,K ))−Ke−r T̄Φ(d2(3m,K ))+Ke−r T̄Φ(−d2(K ,3m))−S3mΦ(−d1(K )).
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Risk measures: numerical examples and codes VaR and ES: Short Straddle

Value at Risk and ES: Short Straddle VII

We need to simulate many scenarios of S3m up to 3m under the
measure P and plug all scenarios in L3m(S3m), getting many scenarios
for L3m. From these scenarios we can isolate the α percentile, giving
VaR, and average the loss conditional on it being larger than VaR,
getting expected shortfall.

Simulating S up to 3m is easy as we know its distribution:

S3m = S0 exp((µ−
σ2

2
)0.25+σW3m) = S0 exp((µ−

σ2

2
)0.25y+σ

√
0.25yN (0,1))

where we used that W3m is normally distributed with variance 0.25.
It is enough therefore to sample N scenarios from the standard normal
distribution N (0,1), plug each scenario in the exponent of the above
formula, get N scenarios for S3m and with those get N scenarios for
L3m(S3m). Once we have these N scenarios we can select the correct
percentiles for VaR and ES.
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Risk measures: numerical examples and codes VaR and ES: Short Straddle

Value at Risk and ES: Short Straddle VIII

Suppose indeed that we wish to get the α = 99% = 0.99 confidence
level VaR for a 3m risk horizon. Assume: S0 = 100,K = 100,
r = 1% = 0.01, T = 1y , µ = 5%, σ = 0.5 = 50%, N = 100000
We use a Matlab/Octave code I made available.

General note. Octave is freeware, can be downlowaded and installed
for free and I find it more convenient for prototyping than R or Python.
It is very good at vectorizing operations and very conveninent for plots
and graphs. However, given the emphasis on Python and the fact that
you have studied it as part of your education at Imperial, I have written
Python codes equivalent to the Octave ones you find here. These
Python codes are listed at the end of this slides set. They will also be
made available to you as source codes.
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Risk measures: numerical examples and codes VaR and ES: Short Straddle

Value at Risk and ES: Short Straddle IX

I recommend that you play with the codes, change some parameters
and see how the risk measures change, understand why, and even
code risk measures for different combinations of put and call options.
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Risk measures: numerical examples and codes VaR and ES: Short Straddle

Value at Risk and ES: Short Straddle

pkg load s t a t i s t i c s
S0 =100; k=100; Sigma =0.5 ; r =0.01; miu =0.05;
T=1;
conf idence =0.99;
n=100000;
% c a l l and put a t t ime 0
d1c =( log (S0 / k1 )+ ( r +0.5*Sigma ˆ 2 ) * T ) / ( Sigma*T ˆ 0 . 5 ) ;
d1p=( log (S0 / k2 )+ ( r +0.5*Sigma ˆ 2 ) * T ) / ( Sigma*T ˆ 0 . 5 ) ;
c0=S0* normcdf ( d1c , 0 , 1 )

−k1 *exp( − r *T ) * normcdf ( d1c−Sigma*T ˆ 0 . 5 , 0 , 1 ) ;
p0=−S0* normcdf ( −d1p , 0 , 1 )

+k2 *exp( − r *T ) * normcdf ( −d1p+Sigma*T ˆ 0 . 5 , 0 , 1 ) ;
v0=−c0−p0 ;
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Risk measures: numerical examples and codes VaR and ES: Short Straddle

Value at Risk and ES: Short Straddle

% computing c a l l and put p r i ces a f t e r h years
h= 0 .25 ;
T=T−h ;
Zt=normrnd (0 ,1 ,1 , n ) ;
St=S0*exp ( ( miu −0.5*Sigma ˆ 2 ) * h ) * exp ( Zt . * Sigma * ( h ˆ 0 . 5 ) ) ;
c t =zeros (1 , n ) ;
p t=zeros (1 , n ) ;
for i =1:n ;
d1cnew=( log ( St ( i ) / k1 )+ ( r +0.5*Sigma ˆ 2 ) * T ) / ( Sigma*T ˆ 0 . 5 ) ;
d1pnew=( log ( St ( i ) / k2 )+ ( r +0.5*Sigma ˆ 2 ) * T ) / ( Sigma*T ˆ 0 . 5 ) ;
c t ( i )= St ( i ) * normcdf ( d1cnew , 0 , 1 )

−k1 *exp( − r *T ) * normcdf ( d1cnew−Sigma*T ˆ 0 . 5 , 0 , 1 ) ;
p t ( i )=− St ( i ) * normcdf ( −d1pnew , 0 , 1 )
+k2 *exp( − r *T ) * normcdf ( −d1pnew+Sigma*T ˆ 0 . 5 , 0 , 1 ) ;

end ;
v t =−ct −p t ;
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Risk measures: numerical examples and codes VaR and ES: Short Straddle

Value at Risk and ES: Short Straddle

% vvar i s Loss 3m
vvar=v0− v t ;
vvar=sort ( vvar ) ;
i v a r = round ( conf idence *n ) ;
var = vvar ( i v a r ) ;
ESv=mean( vvar ( f loor ( ( conf idence ) * n ) : n ) ) ;
% output histograms
f igure ( 1 ) ;
hist ( vvar , 1 0 0 ) ;
xlabel ( ’P&L ’ ) ;
ylabel ( ’ Frequencies ’ ) ;
t i t l e ( ’ Histogram of L3m of P o r t f o l i o ’ ) ;
var
ESv
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Risk measures: numerical examples and codes VaR and ES: Short Straddle

VaR and ES: Short Straddle I

σ = 0.5: Call0 = 20.144; Put0 = 19.149.
V0 = −Call0 − Put0 = −39.294.
Ceteris paribus:
σ = 0.5 = 50% =⇒ VaR = 41.501; ES = 55.786;
σ = 0.7 = 70% =⇒ VaR = 69.180; ES = 95.157;
σ = 0.2 = 20% =⇒ VaR = 13.380; ES = 17.424;

Please note how your risk measure depends crucially on the volatility
σ. If your assessement of future volatility is wrong being too low, you
will suffer much bigger losses (Leeson’s case).

Suppose you think the volatility will stay at 20%, so you expect a loss
over three months to be below 13.38 millions with 99% confidence .
But if the volatility is instead 50% your loss will be below the much
larger 41.501 millions that could break the bank.
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Risk measures: numerical examples and codes VaR and ES: Short Straddle

VaR and ES: Short Straddle II

Leeson however didn’t even have VaR or ES measures, so he couldn’t
run the above scenarios. Not that this would have stopped him, but a
risk controller looking at the VaR/ES figures might have.

In the next plots we look at the density of the Loss3m, namely we plot

x 7→ pLoss3m(x),

its 99th percentile and the expectation of the loss tail beyond the 99th
percentile, conditional on the loss beyond the 99th percentile.

Note that the loss distribution has no left tail. This is because the
maximum gain (negative loss) you can make is the initial premium of
the options, whereas your maximum loss (right tail) is unlimited.
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VaR and ES: Short Straddle III
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VaR and ES: Short Straddle IV
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Value at Risk and ES: Risk Reversal I

Given a stock St , consider a payoff given by a call option with strike K1
minus a put option with strike K2 < K1, both with maturity T . The
payoff is Y = (ST − K1)

+ − (K2 − ST )
+.
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Risk measures: numerical examples and codes VaR and ES: Risk Reversal

Value at Risk and ES: Risk Reversal II

If we include the inital price of Y in the payoff itself, the initial price may
be positive or negative depending on the strikes and other parameters.
We would then have to shift the plot of the initial price to include the
initial price of the trade in the overall payoff.

The above risk reversal is called a “bull risk reversal” or “long risk
reversal”. This refers to the fact that a trader buying this is bullish (e.g.
is confident) on a price increase for the underlying stock, expecting a
large gain.
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Value at Risk and ES: Risk Reversal III

Indeed, this payoff allows one to profit with ST − K1 when the stock
goes above K1 at maturity, to draw and get 0 if the stock stays between
K1 and K2, and to lose K2 − ST if the stock goes below K2. A bullish
trader will expect the first scenario to happen.

Please note that while the potential profit is infinite, as S can grow
arbitrarily large in principle, the potential loss is limited, as S can at
worst hit zero, so the maximum loss from the payoff is K2 − 0, which
may however be quite substantial in practice.

Given the potential for a loss, this portfolio will be obviously cheaper
than a pure call options with strike K1, and some aggressive investors
willing to face a limited loss may be willing to pay the put in a bad
scenario in order to reduce the option price for potentially benefiting
from the call.

(c) 2012-24 Prof. D. Brigo SDEs in Financial Modelling Imperial College London 393 / 805



Risk measures: numerical examples and codes VaR and ES: Risk Reversal

Value at Risk and ES: Risk Reversal IV

Essentially the trader buys the call with a view to benefit from a stock
price increase and pays for the call initially by selling a put option.

When the risk reversal is used as an aggressive “bull” trade, the trader
is essentially putting on a trade for close to no cost or even a credit
when the put is more expensive than the call. If the trader is correct,
and the stock continues increasing, the short put will become
worthless while the long call will increase in value, generating a good
profit.

The above use is speculative, but Risk reversals can be used also for
protection: it can protect a trader who is short or indebted at the
underlying stock (and will thus have to pay the future value of the stock
price) from a rising stock price at a limited cost.
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Value at Risk and ES: Risk Reversal V

The risk factor of this portfolio is the stock price

dSt = µStdt + σStdW P
t , S0 = s0

given here under the measure P.
Assume the options have maturity 5y and we take a risk horizon
H = 1y .
We know from the Black Scholes formulas that we have seen earlier
that the price of the payoff Y at time 0 is the price of the call with strike
K1 minus the price of the put with strike K2, namely

S0Φ(d1(0,K1))−K1e−rTΦ(d2(0,K1))+[S0Φ(−d1(0,K2))−K2e−rTΦ(−d2(0,K2))].

The price of the payoff at one year in the future will be, T̄ = T − 1y ,

S1yΦ(d1(1y ,K1))−K1e−r T̄Φ(d2(1y ,K1))+[S1yΦ(−d1(K2))−K2e−r T̄Φ(−d2(K2))]
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Value at Risk and ES: Risk Reversal VI

where

d1,2(t ,K ) =
ln(St/K ) +

(
r ± 1

2σ
2) (T − t)

σ
√

T − t
.

For the loss at 1y, this is the portfolio price at time 0 minus the portfolo
price at time 1y . The only random quantity in the loss will be S1y . We
write L1y (S1y ) =

S0Φ(d1(0,K1))−K1e−rTΦ(d2(0,K1))+ [S0Φ(−d1(0,K2))−K2e−rTΦ(−d2(K2))]

−
(

S1yΦ(d1(1y ,K1))− K1e−r T̄Φ(d2(1y ,K1))+

+[S1yΦ(−d1(K2))− K2e−r T̄Φ(−d2(K2))]
)
.
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Value at Risk and ES: Risk Reversal VII

We need to simulate many scenarios of S1y up to 1y under the
measure P and plug all scenarios in L1y (S1y ), getting many scenarios
for L1y . From these scenarios we can isolate the α percentile, giving
VaR, and average the loss conditional on it being larger than VaR,
getting expected shortfall.

Simulating S up to 1y is easy as we know its distribution:

S1y = S0 exp((µ−σ2/2)1y+σW1y ) = S0 exp((µ−σ2/2)1y+σ
√

1yN (0,1))

where we used the fact that W1y is normally distributed with variance 1.

It is enough therefore to sample N scenarios from the standard normal
distribution N (0,1), plug each scenario in the exponent of the above
formula, get N scenarios for S1y and with those get N scenarios for
L1y (S1y ). Once we have these N scenarios (say N = 10000) we can
select the correct percentiles for VaR and ES.
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Value at Risk and ES: Risk Reversal VIII

Suppose indeed that we wish to get the α = 95% = 0.95 confidence
level VaR for a 1y risk horizon. Assume: S0 = 100,K1 = 90,K2 = 110,
r = 1% = 0.01, T = 5y , µ = 5%, σ = 0.2 = 20%, N = 10000
We use a Matlab/Octave code I made available.
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Value at Risk and ES: Risk Reversal

pkg load s t a t i s t i c s
S0 =100; k1=110; k2=90; Sigma =0.2 ; r =0.01; miu =0.05;
T=5;
conf idence =0.95;
n=10000;
% c a l l and put a t t ime 0
d1c =( log (S0 / k1 )+ ( r +0.5*Sigma ˆ 2 ) * T ) / ( Sigma*T ˆ 0 . 5 ) ;
d1p=( log (S0 / k2 )+ ( r +0.5*Sigma ˆ 2 ) * T ) / ( Sigma*T ˆ 0 . 5 ) ;
c0=S0* normcdf ( d1c , 0 , 1 )

−k1 *exp( − r *T ) * normcdf ( d1c−Sigma*T ˆ 0 . 5 , 0 , 1 ) ;
p0=−S0* normcdf ( −d1p , 0 , 1 )

+k2 *exp( − r *T ) * normcdf ( −d1p+Sigma*T ˆ 0 . 5 , 0 , 1 ) ;
v0=c0−p0 ;
c0
p0
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Value at Risk and ES: Risk Reversal

% computing c a l l and put p r i ces a f t e r one year
T=T−1;
Zt=normrnd (0 ,1 ,1 , n ) ;
St=S0*exp ( miu −0.5*Sigma ˆ 2 ) * exp ( Zt . * Sigma ) ;
c t =zeros (1 , n ) ;
p t=zeros (1 , n ) ;
for i =1:n ;
d1cnew=( log ( St ( i ) / k1 )+ ( r +0.5*Sigma ˆ 2 ) * T ) / ( Sigma*T ˆ 0 . 5 ) ;
d1pnew=( log ( St ( i ) / k2 )+ ( r +0.5*Sigma ˆ 2 ) * T ) / ( Sigma*T ˆ 0 . 5 ) ;
c t ( i )= St ( i ) * normcdf ( d1cnew , 0 , 1 )

−k1 *exp( − r *T ) * normcdf ( d1cnew−Sigma*T ˆ 0 . 5 , 0 , 1 ) ;
p t ( i )=− St ( i ) * normcdf ( −d1pnew , 0 , 1 )
+k2 *exp( − r *T ) * normcdf ( −d1pnew+Sigma*T ˆ 0 . 5 , 0 , 1 ) ;

end ;
v t =ct −p t ;
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Value at Risk and ES: Risk Reversal

% vvar i s Loss 1y
vvar=v0− v t ;
vvar=sort ( vvar ) ;
i v a r = round ( conf idence *n ) ;
var = vvar ( i v a r ) ;
ESv=mean( vvar ( f loor ( ( conf idence ) * n ) : n ) ) ;
% output histograms
f igure ( 1 ) ;
hist ( vvar , 1 0 0 ) ;
xlabel ( ’P&L ’ ) ;
ylabel ( ’ Frequencies ’ ) ;
t i t l e ( ’ Histogram of L1y o f P o r t f o l i o 1 ’ ) ;
var
ESv
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Value at Risk and ES: Risk Reversal

Running the code gives the following L1y density.

(c) 2012-24 Prof. D. Brigo SDEs in Financial Modelling Imperial College London 402 / 805



Risk measures: numerical examples and codes VaR and ES: Risk Reversal

Value at Risk and ES: Risk Reversal

Running the code gives the following L1y density (new scale).
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Value at Risk and ES: Risk Reversal I

Above we discussed a bull or long risk reversal.

One can also have a bear or short risk reversal. This happens when
one sells the call and buys the put, leading to the payoff

Y = (K2 − ST )
+ − (ST − K1)

+.

Exercise: draw the payoff of a bear risk reversal; explain why a trader
might buy this, what this trader would expect to happen to the
underlying stock; how this can be used for speculation or protection in
different circustances. You could also adapt the code above to assess
value at risk and expected shortfall of a bear risk reversal.

Risk reversals are very popular in the FX market, but are used also in
the equity markets.
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Value at Risk and ES: Bull call spread I

A bull call spread payoff is the difference between a call with smaller
strike and a call with a larger strike. The underlying asset and the
option maturities are the same.

In formula: if K1 > K2, then

Y = (ST − K2)
+ − (ST − K1)

+.

This can also be written as

Y = (K1 − K2)1ST>K1 + (S − K2)1K2<ST≤K1 + 0 1S≤K2 .

This contingent claim consists of one long call with a lower strike price
and one short call with a higher strike.
Note that the initial price of Y would be positive to us, since it is an
in-the-money call minus an out-of-the-money call. This means that to
purchase this payoff we need to pay.
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Value at Risk and ES: Bull call spread II

The payoff of a bull call spread, excluding the initial payment needed to
buy the product, looks like

If we include the initial price we pay for purchasing the option, this will
shift the plot down of that price

.
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Value at Risk and ES: Bull call spread III

Who would buy this? A bull call spread profits when the underlying
stock rises in price. Profit is limited as the stock price rises above the
strike price K1, and the loss is also limited as the stock price falls
below the strike price K2.
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Value at Risk and ES: Bull call spread IV

In this sense it is safer than a risk reversal, as the loss is floored after
the stock drops below K2, but the potential profits are also capped as
the stock rises above K1. Hence this contract will be sought by a trader
who does not want excessive risk and who is expecting the stock to
increase.

Basically this contract is less expensive than a call option with stike K2,
as it reduces the price of the call by selling another call with a higher
strike K1.
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Value at Risk and ES: Bull call spread I

The risk factor of this portfolio is the stock price

dSt = µStdt + σStdW P
t , S0 = s0

given here under the measure P.
Assume the options have maturity 5y and we take a risk horizon
H = 1y .
We know from the Black Scholes formulas that we have seen earlier
that the price of the payoff Y at time 0 is the price of the call with strike
K2 minus the price of the call with strike K1, namely

S0Φ(d1(0,K2))−K2e−rTΦ(d2(0,K2))− [S0Φ(d1(0,K1))−K1e−rTΦ(d2(0,K1))].

The price of the payoff at one year in the future will be, T̄ = T − 1y

S1yΦ(d1(1y ,K2))−K2e−r T̄Φ(d2(1y ,K2))− [S1yΦ(d1(K1))−K1e−r T̄Φ(d2(K1))]

(c) 2012-24 Prof. D. Brigo SDEs in Financial Modelling Imperial College London 409 / 805



Risk measures: numerical examples and codes VaR and ES: Bull call spread

Value at Risk and ES: Bull call spread II

where

d1,2(t ,K ) =
ln(St/K ) +

(
r ± 1

2σ
2) (T − t)

σ
√

T − t
.

For the loss at 1y, this is the portfolio price at time 0 minus the portfolo
price at time 1y . The only random quantity in the loss will be S1y . We
write L1y (S1y ) =

S0Φ(d1(0,K2))− K2e−rTΦ(d2(0,K2))− [S0Φ(d1(0,K1))− K1e−rTΦ(d2(K1))]

−
(

S1yΦ(d1(1y ,K2))− K2e−r T̄Φ(d2(1y ,K2))

−[S1yΦ(−d1(K1))− K1e−r T̄Φ(−d2(K1))]
)
.
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Value at Risk and ES: Bull call spread III

We need to simulate many scenarios of S1y up to 1y under the
measure P and plug all scenarios in L1y (S1y ), getting many scenarios
for L1y . From these scenarios we can isolate the α percentile, giving
VaR, and average the loss conditional on it being larger than VaR,
getting expected shortfall.

Simulating S up to 1y is easy as we know its distribution:

S1y = S0 exp((µ−σ2/2)1y+σW1y ) = S0 exp((µ−σ2/2)1y+σ
√

1yN (0,1))

where we used the fact that W1y is normally distributed with variance 1.

It is enough therefore to sample N scenarios from the standard normal
distribution N (0,1), plug each scenario in the exponent of the above
formula, get N scenarios for S1y and with those get N scenarios for
L1y (S1y ). Once we have these N scenarios (say N = 40000) we can
select the correct percentiles for VaR and ES.
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Value at Risk and ES: Bull call spread IV

Suppose indeed that we wish to get the α = 95% = 0.95 confidence
level VaR for a 1y risk horizon. Assume: S0 = 100,K2 = 90,K1 = 110,
r = 1% = 0.01, T = 5y , µ = 5%, σ = 0.2 = 20%, N = 40000
We use a Matlab/Octave code I made available.
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Value at Risk and ES: Bull Call spread

Running the code gives the following L1y density.
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Value at Risk and ES: Bull Call spread

Same but with σ = 0.4 instead of σ = 0.2.
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Value at Risk and ES: Bull Call spread I

In this case increasing the volatility has decreased the risk measure.
When we increase randomness of the underlying, it becomes likely
that more underlying scenarios approach or even cross the strikes K1
and K2. Scenarios approaching or crossing K1 will lead to higher
values for the future payoff, and thus to lower losses. On the contrary,
scenarios approaching or crossing K2 will lead to lower values for the
future payoff, and to higher losses.

A careful analysis of the risk of the options separately (try VaR and ES
for call with strike K1 and then VaR and ES for call with strike K2)
shows that, in the range of parameters we are using, the K1 option risk
increases more with the volatility than the K2 option risk. As we are
looking at plus K2 option minus K1 option, this means roughly that risk
will go down as we increase the vol, because the effect will be stronger
in increasing K1 than K2 and we are negative K1.
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Value at Risk and ES: Bull Call spread II

The effect of the two options combined will be to decrease the risk,
ceteris paribus, when the volatility increases.

One can also have a bear spread call. This happens when one sells
the call with the lower strike and buys the call with the higher strike,
leading to the payoff

Y = (ST − K1)
+ − (ST − K2)

+

= 0 1{ST≤K 2} + (K2 − ST )1{K2<ST<K1} − (K1 − K2)1{ST≥K1}.

Note that the bear spread initial value is negative, as we buy an out of
the money call option and sell an in-the-money put option.
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Value at Risk and ES: Bull Call spread III

This means that when we purchase Y we will also receive an initial
premium, as the cost is negative to us. This shifts the payoff up of that
price amount, if we include it in the payoff.

Exercise: draw the payoff of a bear call spread; explain why a trader
might buy this, what this trader would expect to happen to the
underlying stock; how this can be used for speculation or protection in
different circustances. You could also adapt the code above to assess
value at risk and expected shortfall of a bear risk reversal.
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VaR and ES: Options on different correlated stocks I

We now consider a portfolio with a call option on a first stock S(1) with
strike K1 and a put option on a second stock S(2) with strike K2, both
options with maturity T .

Y = (S(1)
T − K1)

+ + (K2 − S(2)
T )+.

d S(1)
t = µ1S(1)

t dt + σ1S(1)dW (1)
t , s(1)

0 ,

d S(2)
t = µ2S(2)

t dt + σ2S(2)dW (2)
t , s(2)

0 ,

dW 1dW 2 = ρ dt .

Recall that ρ can be interpreted as an instantaneous correlation
between changes in S1 and S2,

“corr”(dS1
t ,dS2

t ) = ρ.
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VaR and ES: Options on different correlated stocks II

We assume

S(1)
0 = 120, S(2)

0 = 80, µ1 = 0.05, µ2 = 0.02, σ1 = 0.5, σ2 = 0.2, ρ = range of values

T = 2y , K1 = 116, K2 = 86, r = 0.01, H = 0.25y = 3m, conf lev 95%, N = 40000.

We will look at a couple cases and then calculate several cases based
on different values of the correlation ρ, ceteris paribus.

Our aim is to see the impact of changing ρ and σ on VaR and ES.
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VaR and ES: Options on different correlated stocks III

We know from the Black Scholes formulas that we have seen earlier
that the price of the payoff Y at time 0 is the price of the call on the first
stock with strike K1 plus the price of the put on the second stock with
strike K1, namely

S(1)
0 Φ(d1(0,K1))−K1e−rTΦ(d2(0,K1))+K2e−rTΦ(−d2(0,K2))−S(2)

0 Φ(−d1(0,K2)).

The price of the payoff at H = 3m = 0.25y in the future will be

S(1)
H Φ(d1(H,K1))−K1e−r T̄Φ(d2(H,K1))+K2e−r T̄Φ(−d2(H,K2))−S(2)

H Φ(−d1(H,K2)),

where T̄ = T − 0.25y and

d1,2(H,Ki) =
ln(S(i)

H /Ki) +
(
r ± 1

2σ
2) (T − H)

σ
√

T − H
.
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VaR and ES: Options on different correlated stocks IV

For the loss at time H, this is the portfolio price at time 0 minus the
portfolo price at time H. The only random quantity in the loss will be
the stocks S1,2

H . We write LH(S
1,2
H ) =

S(1)
0 Φ(d1(0,K1))−K1e−rTΦ(d2(0,K1)) +K2e−rTΦ(−d2(K2))−S(2)

0 Φ(−d1(K2))

−S(1)
H Φ(d1(H,K1))+K1e−r T̄Φ(d2(H,K1))−K2e−r T̄Φ(−d2(K2))+S(2)

H Φ(−d1(K2)).
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VaR and ES: Options on different correlated stocks V

We need to simulate many scenarios of S(1,2)
H up to H under the

measure P and plug all scenarios in LH(S
(1,2)
H ), getting many

scenarios for LH . From these scenarios we can isolate the α
percentile, giving VaR, and average the loss conditional on it being
larger than VaR, getting expected shortfall.

Simulating S(1,2)
H up to H is easy as we know its distribution:

S(1)
H = S(1)

0 exp((µ1−σ2
1/2)H+σ1W (1)

H ) = S(1)
0 exp((µ1−σ2

1/2)H+σ1
√

HN1)

S(2)
H = S(2)

0 exp((µ2−σ2
2/2)H+σ2W (2)

H ) = S(2)
0 exp((µ2−σ2

2/2)H+σ2
√

HN2)
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VaR and ES: Options on different correlated stocks VI

where [N1,N1] is a bivariate normal random variable with zero means,
variances equal to 1, and correlation or covariance ρ:

[N1,N2] ∼ N
(
[0, 0],

[
1 ρ
ρ 1

])
.

This comes from the fact that [W (1)
H ,W (2)

H ] is jointly normally distributed
with mean [0, 0] and variance/ covariance matrix

H
[

1 ρ
ρ 1

]
.

It is enough therefore to sample N bivariate scenarios from the
bivariate normal distribution [N1,N2], plug each scenario in the
exponents of the above formulas for the two stocks, get N scenarios
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VaR and ES: Options on different correlated stocks VII

for [S(1)
H ,S(2)

H ] and with those get N scenarios for LH(S
(1,2)
H ). Once we

have these N scenarios we can select the correct percentiles for VaR
and ES.

If you don’t have a generator for correlated normal ranom variables,
you can manage by correlating indipendent realizations from a single
random number generator.

Assume you wish to have N1 and N2 but you only have one generator
of standard normals. You generate independent realizations N 0

1 and
N 0

2 from the same generator, by repeated simulation, and then mix
them as follows to obtain the correlated samples for N1 and N2:

N1 = N 0
1 , N2 = ρN 0

1 +
√

1 − ρ2N 0
2 .

It is immediate to check that N1 and N2 are jointly normal with zero
means, unit variances and correlation ρ.
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VaR and ES: Options on different correlated stocks VIII

Calculations are through the Matlab/Octave code I make available
below. Let’s look at three key correlation cases and explain the pattern.

ρ −1 0 1
VaR 30.9 26.1 17.4
ES 34.6 29.5 18.0

ES − VaR 3.7 3.4 0.6

Both risk measures decrease when ρ increases. This means that total
positive correlation is less risky, for our portfolio, than total negative.
The total effect of ρ on VaR is 30.9-17.4 = 13.5 and
(30.9 − 17.4)/17.4 = 0.78. Correl impacts on VaR is 78%.
For ES total effect we have 34.6-18 = 16.6, and (34.6 − 18)/18 = 0.92,
Correlation impacts on ES is 92%. We also note that negative correl
has larger ES − VaR, meaning the tail is deeper, more risk.

(c) 2012-24 Prof. D. Brigo SDEs in Financial Modelling Imperial College London 425 / 805



Risk measures: numerical examples and codes VaR and ES: Options on different correlated stocks

VaR and ES: Options on different correlated stocks IX

ρ −1 0 1
VaR 30.9 26.1 17.4
ES 34.6 29.5 18.0

ES − VaR 3.7 3.4 0.6

CASE 1. ρ = −1 =⇒ totally negative correlation, when S1 goes down,
S2 goes up. When S1 goes down, this decreases the value of the call
as it moves towards out of the money. At the same time S2 can go only
up, due to the extreme negative correlation. When S2 goes up, the put
is worth less as it also moves towards out of the money. So when the
call loses money, the put does too due to the negative correlation. This
means that we will face larger losses compared to the case where the
correlation is less negative or positive, because portfolioH will be
smaller when we subtract it from portfolio0, leading to a bigger loss.
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VaR and ES: Options on different correlated stocks X

CASE 2. ρ = −1 =⇒ totally negative correlation. In this other case,
due to total negative correlation, when S1 goes up, S2 goes down.
Then the call becomes more valuable as it gets more in the money,
while the put also becomes more valuable as it goes more in the
money. In this case we have a doubly positive option value in H that
subtracts a lot to the value of the portfolio at time 0,
LossH =portfolio0−portfolioH , creating a small or even negative loss.
However, remember that for risk measures we care about large values
of the loss, not negative or small, so the previous CASE 1 is the one
that matters for VaR and ES.

Note also that ρ = −1 results in the largest ES −VaR difference, which
points to a deeper loss-distribution tail.
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VaR and ES: Options on different correlated stocks XI
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VaR and ES: Options on different correlated stocks XII

ρ −1 0 1
VaR 30.9 26.1 17.4
ES 34.6 29.5 18.0

ES − VaR 3.7 3.4 0.6

CASE 1: ρ = 0 =⇒ zero correlation, when S1 goes down, S2 can go
either up or down, the changes are unrelated. When S1 goes down,
this decreases the value of the call. At the same time S2 can either up
or down. When S2 goes up, the put is worth less, when it goes down,
the put is worth more. So when the call loses money, the put can either
lose or gain money. Clearly this is less risky than the previous case.
The scenarios that contribute to a larger loss are those where S1 goes
down and S2 goes up, but due to the zero correlation these scenarios
are less than in the case ρ = −1, and the loss will be smaller overall.
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VaR and ES: Options on different correlated stocks XIII

Note also that ρ = 0 results in a smaller ES − VaR difference wrt
ρ = −1, which points to a less deep loss-distribution tail.
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VaR and ES: Options on different correlated stocks
XIV
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VaR and ES: Options on different correlated stocks XV

ρ −1 0 1
VaR 30.9 26.1 17.4
ES 34.6 29.5 18.0

ES − VaR 3.7 3.4 0.6

CASE1: ρ = 1 =⇒ total positive correlation, when S1 goes down, S2

will go down too as they are totally correlated. When S1 goes down,
this decreases the value of the call. At the same time S2 goes down
and this increases the value of the put. So when the call loses money,
the put makes money. Clearly this is less risky than the previous two
cases, because in every scenario where the call has a loss, the put
offsets that with a gain.
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VaR and ES: Options on different correlated stocks
XVI

CASE2: ρ = 1 =⇒ total positive correlation, when S1 goes up, S2 will
go up too as they are totally correlated. When S1 goes up, this
increases the value of the call. At the same time S2 goes up and this
decreases the value of the put. So when the call makes money, the put
loses money. Clearly this is less risky than the previous two cases,
because in every scenario where the call has a loss, the put offsets
that with a gain and vice versa.

Note also that ρ = 1 results in the smallest ES − VaR difference, 0.6 vs
previous 3.7 and 3.4, which points to a very thin loss-distribution tail.
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VaR and ES: Options on different correlated stocks
XVII
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VaR and ES: Options on different correlated stocks
XVIII

Note how different the shape of the loss distribution is in the two cases
ρ = −1 and +1. Especially the right tail.

Recall that in the case +1 the put and the call offset each other in all
scenarios, bringing the right tail of the loss to an abrupt halt.
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VaR and ES: Options on different correlated stocks
XIX

Now we let ρ span the interval [−1,1], ceteris paribus, and we see how
VaR and ES change with ρ. For the impact of ρ on VaR and ES, we
can look at the following table (V=VaR, E=ES) and plots

ρ −1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
V 30.9 30.3 29.2 28.2 27.4 26.1 24.9 23.3 21.7 19.8 17.4
E 34.6 34.0 32.8 31.9 30.9 29.5 28.0 26.4 24.4 21.9 18.0
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VaR and ES: Options on different correlated stocks XX
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VaR and ES: Options on different correlated stocks
XXI
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VaR & ES: Options on correlated assets - Codes

pkg load s t a t i s t i c s
S10 =120; S20 =80; k1=116; k2=86;
Sigma1 =0.5 ; Sigma2 =0.2 ;
T=2; r =0.01; miu1 =0.05; miu2 =0.02;
rho = 0;
n=40000; conf idence =0.95; h = 0 .25 ;
% c a l l and put p r i ce a t t ime 0
d1c =( log (S10 / k1 )+ ( r +0.5*Sigma1 ˆ 2 ) * T ) / ( Sigma1*T ˆ 0 . 5 ) ;
d1p=( log (S20 / k2 )+ ( r +0.5*Sigma2 ˆ 2 ) * T ) / ( Sigma2*T ˆ 0 . 5 ) ;
c0=S10* normcdf ( d1c , 0 , 1 )

−k1 *exp( − r *T ) * normcdf ( d1c−Sigma1*T ˆ 0 . 5 , 0 , 1 ) ;
p0=−S20* normcdf ( −d1p , 0 , 1 )

+k2 *exp( − r *T ) * normcdf ( −d1p+Sigma2*T ˆ 0 . 5 , 0 , 1 ) ;
v0=c0+p0 ;
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VaR & ES: Options on correlated assets - Codes

% computing the p r i ces a t t =h
T=T−h ;
Z10t=normrnd (0 ,1 ,1 , n ) ;
Z20t=normrnd (0 ,1 ,1 , n ) ;
Z1t = Z10t ; Z2t = rho * Z10t + ((1 − rho ˆ 2 ) ˆ 0 . 5 ) * Z20t ;
S1t=S10*exp ( ( miu1 −0.5*Sigma1 ˆ 2 ) * h )

*exp ( Z1t . * Sigma1 * ( h ˆ 0 . 5 ) ) ;
S2t=S20*exp ( ( miu2 −0.5*Sigma2 ˆ 2 ) * h )

*exp ( Z2t . * Sigma2 * ( h ˆ 0 . 5 ) ) ;
c t =zeros (1 , n ) ; p t=zeros (1 , n ) ;
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VaR & ES: Options on correlated assets - Codes

for i =1:n ;
d1cnew=( log ( S1t ( i ) / k1 )+ ( r +0.5*Sigma1 ˆ 2 ) * T )

/ ( Sigma1*T ˆ 0 . 5 ) ;
d1pnew=( log ( S2t ( i ) / k2 )+ ( r +0.5*Sigma2 ˆ 2 ) * T )

/ ( Sigma2*T ˆ 0 . 5 ) ;
c t ( i )= S1t ( i ) * normcdf ( d1cnew , 0 , 1 )

−k1 *exp( − r *T ) * normcdf ( d1cnew−Sigma1*T ˆ 0 . 5 , 0 , 1 ) ;
p t ( i )=−S2t ( i ) * normcdf ( −d1pnew , 0 , 1 )
+k2 *exp( − r *T ) * normcdf ( −d1pnew+Sigma2*T ˆ 0 . 5 , 0 , 1 ) ;

end ;
v t = c t +p t ;
vvar=v0− v t ;
vvar=sort ( vvar ) ;
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VaR & ES: Options on correlated assets - Codes

i v a r = round ( conf idence *n ) ;
var = vvar ( i v a r ) ;
ESv=mean( vvar ( f loor ( ( conf idence ) * n ) : n ) ) ;
% output histogram
f igure ( 1 ) ;
hist ( vvar , 1 0 0 ) ;
xlabel ( ’P&L ’ ) ;
ylabel ( ’ Frequencies ’ ) ;
t i t l e ( ’ Histogram of Loss H ’ ) ;
rho
var
ESv
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Volatilities and correlations I

More generally, volatilities, correlation, dynamics and statistical
dependencies have a very important impact on risk.

For very large portfolios it is difficult to obtain intuition on why some risk
patterns are observed, as there are too many assets and parameters.

A rigorous quantitative analysis of risks is fundamental to have a safe
result. However, the assumptions underlying the analysis need to be
kept in mind and stress-tested
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PART 4: NUMERICAL SOLUTION OF SDEs I

PART 4: NUMERICAL SOLUTION OF SDEs

In the numerical examples of option pricing and risk measures we
always used the Black Scholes model.

But what if we were to use a smile model? How would we simulate, for
example, the stock price up to the risk horizion t = H? With Black
Scholes this is easy, we know the solution

SH = S0 exp((µ− σ2/2)H + σ
√

H N (0,1))

and we only need a standard normal generator to simulate this.
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PART 4: NUMERICAL SOLUTION OF SDEs II

In this part we look at how we can simulate a SDE that does not have
a closed form solution, or whose solution may involve difficult special
functions (CEV) or Fourier transforms methods (Heston), or where the
solution of the SDE is not known despite its marginal probability law
being known (mixture dynamics). If you noticed, in the mixture
dynamics case we know the SDE solution is distributed as a mixture of
lognormals but we never solved the SDE, because we don’t know how
to solve it. So we need a numerical method for some payoffs more
complex than combinations of calls and put.
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Euler scheme for numerical solutions of SDEs I

We illustrate the schemes for one dimensional SDEs. The Heston
model, having two SDEs, would require a two-dimensional scheme,
but this is easily generalized from the one dimensional scheme.
We start with the Euler Scheme for the general SDE

dXt = µ(t ,Xt)dt + σ(t ,Xt)dWt , X0 = Z

where Z is a random variable independent of W , or a deterministic
constant.
The Euler scheme idea is very simple and consists of replacing
differentials with increments. Take a time grid

t0 = 0, t1, t2, . . . , tn = T
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Euler scheme for numerical solutions of SDEs II

where T is the final time of the simulation, the final time where we
need the SDE solution. Let the time step be ∆t = ti+1 − ti = δ for all i
and write ∆Wti = Wti+1 − Wti , ∆Xti = Xti+1 − Xti
Hence the SDE becomes

∆Xti = µ(ti ,Xti )∆ti + σ(ti ,Xti )∆Wti , X0 = Z

and, writing
∆Wti = Wti+1 − Wti ∼

√
δNi(0,1)

where Ni(0,1) is a standard normal and all normals with different i ’s
are independent (because Brownian increments are independent).
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Euler scheme for numerical solutions of SDEs III

Hence

Xti+1 = Xti + µ(ti ,Xti )∆ti + σ(ti ,Xti )
√
δNi(0,1), X0 = Z .

This is the Euler scheme. Iteratively, given scenarios for Xti allows you
to get a scenario for Xti+1 by simulating a standard normal Ni(0,1),
everything else in the equation is known by the previous steps. The
inital step in each scenario is sampling the distribution Z as X0 or
taking the constant value of the initial condition if it is deterministic.

Assume we plan to simulate N scenarios of the SDE above. For our
notation, we denote the j-th scenario of the SDE solution by X j , where
the upper index does not denote power but scenario. We can write the
scheme as

X j
ti+1

= X j
ti + µ(ti ,X

j
ti )∆ti + σ(ti ,X

j
ti )
√
δN j

i (0,1), X j
0 = Z j .
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Euler scheme for numerical solutions of SDEs IV

The Euler scheme converges under the sufficient conditions for
existence and uniqueness of the global solution of our SDE (Lipschitz
continuity and linear growth). Its output has an order of convergence of
1/2, meaning that if we denote the output of an Euler scheme with
step ∆t by X∆t

T , and compare it with the real solution XT , we have that
there exists a positive real number δ0 such that

E{|X∆t
T − XT |} ≤ C(T )(∆t)1/2 for all ∆t ≤ δ0

where C(T ) > 0 is a constant (strong convergence of order 1/2).
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Euler scheme for geometric Brownian motion I

As an example, we simulate the geometric brownian motion with an
Euler scheme, and compare the distribution of the numerical solution
with the exact lognormal distribution we know.

dSt = µ Stdt + σ StdWt , S0 = s0,

with s0 a deterinistic constant becomes

Sj
ti+1

= Sj
ti + µ Sj

ti ∆ti + σSj
ti

√
δN j

i (0,1), Sj
0 = sj

0.

We use the following parameters:

S0 = 100, µ = 0.05, σ = 0.2, T = 1y , ∆t =
1

200
, N = 40000

We show the distribution of the Euler simulated scheme versus the
distribution of the one-shot simulated scheme, as we know the SDE
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Euler scheme for geometric Brownian motion II

solution in one year and we can simulated it directly one-shot without
time steps. This is what we do in the option risk measures examples.

Also, we show the mean and the standard deviation for the log-return
distribution. Recall that

lnSt ∼ N
(
lnS0 + µt − 1

2
σ2t , σ2t

)
,

or (log return) ln
St

S0
∼ N

(
µt − 1

2
σ2t , σ2t

)
,

the log-return over t = h is normal with the given mean and standard
deviation. As mean and standard deviation characterize the normal
distribution, a good check for the scheme is to visualize the histogram
and to check the log returns mean and standard deviation.
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Euler scheme for geometric Brownian motion III

We also check the log-returns skewness and excess kurtosis for log
both the Euler and the one-shot schemes and both should be zero.
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Euler scheme for geometric Brownian motion IV

Figure: Histogram of S1y for Euler (blue) and one-shot (orange)
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Euler scheme for geometric Brownian motion V

Figure: Histogram of S1y for Euler (orange) and one-shot (blue)
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Euler scheme for geometric Brownian motion VI

Figure: Histogram of difference between Euler Scheme and One Shot
Scheme solutions at one year
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Euler scheme for geometric Brownian motion VII

Results Euler Scheme:

Data mean stdev skewness kurtosis
set log-return log-return log-return log-return

Theoretical 4.6352 0.2 0 0
One-shot simulation 4.6358 0.2004 0.0167 0.0182

Euler simulation 4.6351 0.1995 -0.0073 -0.0099

Table: Statistics of log stock log(S1y ) from theory, Euler Scheme and
One-shot simulation
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Euler scheme for dXt = m dt + σXtdWt I

As a second example, we simulate the SDE of Problem 1 of Mock
exam 1.

dXt = m dt + σXtdWt , X0 = x0

where m ∈ R, σ > 0 and x0 ∈ R are deterministic.
We don’t have a solution for this SDE, so we apply an Euler Scheme.
This reads

X j
ti+1

= X j
ti + m∆ti + σX j

ti

√
δN j

i (0,1), X j
0 = x0.

We take as values m = 1, σ = 0.4, x0 = 0. We take n = 40000
scenarios with time step ∆t = 1/200 and final time T = 2y .
The histogram of the probability density function of the solution X2y
looks like this
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Euler scheme for dXt = m dt + σXtdWt II

Figure: Histogram of S2y for Euler scheme
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Euler scheme for dXt = m dt + σXtdWt III

mean stdev skewness kurtosis
E [S2y ] STDEV[S2y ]

Theoretical 2 0.6805 NA NA
Euler simulation 1.998 0.6712 1.2123 2.4994

Table: Statistics of stock S2y from theory and Euler Scheme

Note that the simulated density is all in the positive axis. This might
lead to think that the SDE solution is always positive. This is not true in
general. We can see that for m = 0 the SDE becomes a Geometric
Brownian motion with zero drift, so that the solution would be generally
positive, but the initial condition X0 = 0 gives us Xt = 0 for all t in this
case: Xt = X0 exp(−σ2/2 t + σWt) vanishes for all t for X0 = 0. But let
us try a negative drift. Set m = −1 and keep all other parameters
equal.
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Euler scheme for dXt = m dt + σXtdWt IV

Figure: Histogram of S2y for Euler scheme
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Euler scheme for dXt = m dt + σXtdWt V

We can see that the density now is entirely in the negative axis, so
Xt < 0.

mean stdev skewness kurtosis
E [S2y ] STDEV[S2y ]

Theoretical -2 0.6805 NA NA
Euler simulation -1.998 0.6712 -1.2123 2.4994

Table: Statistics of stock S2y from theory and Euler Scheme

Results are the same, only signs change.
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Euler scheme for dXt = m dt + σXtdWt VI

So it seems that with X0 = 0, the numerical results suggest that:

m > 0 ⇒ Xt > 0, m = 0 ⇒ Xt = 0, m < 0 ⇒ Xt < 0.

However, we have only numerical results suggesting this, we have not
proven it.

It is possible to prove it with a comparison theorem, but this is beyond
the scope of this course. The theorem states that, under some
conditions that our SDE satisfies, the solution is increasing in m. Given
that for m = 0 the solution is 0, our result follows.

See for example Theorem 1.1 in

Yamada, T. (1973). On a comparison theorem for solutions of
stochastic differential equations and its applications. J. Math. Kyoto
Univ. 13-3 (1973) pp 497-512.
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t dWt

Study of dXt = (−3kXt + 3X 1/3
t σ2)dt + 3σX 2/3

t dWt I

Consider the SDE

dXt = (−3kXt + 3X 1/3
t σ2)dt + 3σX 2/3

t dWt (25)

with deterministic initial condition x0 = 0.5, where k > 0 and σ > 0 are
real constants and W is a standard Brownian motion.

a) Say whether the theorem with sufficient conditions for existence
and uniqueness of a strong solution of SDEs given in these
lecture notes applies to this SDE.
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t σ2)dt + 3σX2/3

t dWt

Study of dXt = (−3kXt + 3X 1/3
t σ2)dt + 3σX 2/3

t dWt II

b) Study this SDE numerically using an Euler scheme, without
checking the conditions for the Euler scheme to converge.
Simulate the SDE using an Euler scheme up to T = 1, one year,
with a time step of 1 working day, ∆t = 1/250. We assume k = 1,
σ = 0.05, x0 = 0.5. Plot the density of the solution at T = 1,
namely the density of XT using a histogram from the simulation,
and comment on its shape. Is it a skewed or symmetric
distribution? Are the tails fat? You may answer these questions
also by calculating the sample skewness and sample excess
kurtosis from the simulated solution.
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t σ2)dt + 3σX2/3

t dWt

Study of dXt = (−3kXt + 3X 1/3
t σ2)dt + 3σX 2/3

t dWt III

c) Solve the stochastic differential equation. Hint: to solve the SDE,
use the transformation Yt = X 1/3

t and solve the SDE for Y , getting
back X from Y . If you need to use Ito’s formula, it might happen
that the transformation and the SDE do not satisfy some
assumptions required to apply Ito’s formula. Comment on this, and
then apply the formula anyway, formally, to find a formal solution.

d) If we change the initial condition to x0 = 0, does the original SDE
(25) admit the solution Xt = 0 for all t , on top of the solution you
found in c)? Are the two solutions different? What does this say
with regard to question a)?

e) Going back to the case x0 = 0.5, once you have solved for X in c),
see if you can simulate X “one shot” over one year by simulating
Y , without any time steps in-between, just a single one-year step
from time 0.
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Study of dXt = (−3kXt + 3X 1/3
t σ2)dt + 3σX 2/3

t dWt IV

f) To make sure you have a consistent picture, compare the two
densities of XT , one-shot and one-day time steps, coming from e)
and b), and comment on the differences if any. Plot the two
histograms to visualize how close they are.
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t σ2)dt + 3σX2/3

t dWt

Study of dXt = (−3kXt + 3X 1/3
t σ2)dt + 3σX 2/3

t dWt V

Solutions:

a) The theorem does not apply because the cubic root is not a
Lipschitz function. So we cannot ensure through that theorem that the
SDE has a unique solution.

b) The Euler scheme for the proposed SDE is, denoting Xi = Xti ,
∆t = ti − ti−1 with t0 = 0, tN = 1,

Xi+1 = Xi − 3kXi∆t + 3X 1/3
i σ2∆t + 3σX 2/3

i (Wi+1 − Wi), X0 = x0.

Remembering properties of brownian motion and denoting scenario j
with an upper index j we have

X j
i+1 = X j

i − 3kX j
i ∆t + 3(X j

i )
1/3σ2∆t + 3σ(X j

i )
2/3N j

i , X0 = x0.
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Euler-Maruyama numerical schemes for SDEs Example: study of dXt = (−3kXt + 3X1/3
t σ2)dt + 3σX2/3

t dWt

Study of dXt = (−3kXt + 3X 1/3
t σ2)dt + 3σX 2/3

t dWt VI

where N j
i are all i.i.d. realizations from a standard normal.

We simulate the scheme starting from x0 = 0.5 and using n = 40000
scenarios. The Python code gives the following density.
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t σ2)dt + 3σX2/3

t dWt

Study of dXt = (−3kXt + 3X 1/3
t σ2)dt + 3σX 2/3

t dWt VII
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Euler-Maruyama numerical schemes for SDEs Example: study of dXt = (−3kXt + 3X1/3
t σ2)dt + 3σX2/3

t dWt

Study of dXt = (−3kXt + 3X 1/3
t σ2)dt + 3σX 2/3

t dWt VIII

The sample skewness and kurtosis are, using the relevant python
routines,

Skew Euler: 0.6578196539807093
Kurtosis Euler: 0.6529821724338789

We see therefore that the Skew is positive, which is confirmed by a
visual inspection of the density, that is skewed to the right. We see that
there is excess Kurtosis, meaning the tails are fatter than the
Gaussian. We will comment more on this after solving the next point.
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Euler-Maruyama numerical schemes for SDEs Example: study of dXt = (−3kXt + 3X1/3
t σ2)dt + 3σX2/3

t dWt

Study of dXt = (−3kXt + 3X 1/3
t σ2)dt + 3σX 2/3

t dWt IX

c) To solve the SDE we do as follows.

Yt = X 1/3
t

We use Ito’s formula but with a warning, the transformation we are
taking, the cubic root, is not twice continuously differentiable with
respect to x in x = 0. So there can be issues, and X = 0 in particular
might be a problem. We will still apply Ito’s formula formally and see
what happens.

dY = 1/3X−2/3dX + 1/2 1/3 (−2/3)X−5/39σ2X 4/3dt

dY = 1/3X−2/3(−3kXdt + 3X 1/3σ2dt + 3σX 2/3dWt)− σ2X−1/3dt

dY = 1/3(−3kX 1/3dt + 3σdWt)

dY = −kX 1/3dt + σdWt
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Euler-Maruyama numerical schemes for SDEs Example: study of dXt = (−3kXt + 3X1/3
t σ2)dt + 3σX2/3

t dWt

Study of dXt = (−3kXt + 3X 1/3
t σ2)dt + 3σX 2/3

t dWt X

so, concluding:
dY = −kYdt + σdWt

which is a linear SDE we know how to solve.

Yt = y0e−kt + σ

∫ t

0
e−k(t−u)dWu.

As Xt = Y 3
t we get

Xt =

(
x1/3

0 e−kt + σ

∫ t

0
e−k(t−u)dWu

)3

.

So to simulate XT one shot we need to simulate the quantity between
round brackets for t = T = 1 year and then raise that to the power 3.
The quantity between round brackets is Normal, as it’s a constant plus
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Euler-Maruyama numerical schemes for SDEs Example: study of dXt = (−3kXt + 3X1/3
t σ2)dt + 3σX2/3

t dWt

Study of dXt = (−3kXt + 3X 1/3
t σ2)dt + 3σX 2/3

t dWt XI

a Wiener integral, and by Ito’s isometry we can find its variance at time
t as

σ2/(2k)(1 − e−2kt)

and
Xt ∼

(
N (x1/3

0 e−kt , σ2/(2k)(1 − e−2kt))
)3

.

d) If we set x0 = 0, we see that the right hand side of the SDE (25)
computed at X = 0 is 0. This means we have dXt = 0 and so the
solution does not change. In the case X0 = 0, the solution Xt = 0 for all
t is not found by the method in point c). Indeed, in that method we used
Ito’s formula without the twice differentiability assumptions for drift and
diffusion coefficient being satisfied at x = 0. Also, we couldn’t establish
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Euler-Maruyama numerical schemes for SDEs Example: study of dXt = (−3kXt + 3X1/3
t σ2)dt + 3σX2/3

t dWt

Study of dXt = (−3kXt + 3X 1/3
t σ2)dt + 3σX 2/3

t dWt XII

that the equation has a unique solution. Thus, for x0 = 0, we have at
least two solutions, the solution Xt = 0 and the solution found in c):

Xt = 0, Xt =

(
σ

∫ t

0
e−k(t−u)dWu

)3

e) It is easy to simulate one shot over one year from the solution in c):

Xt ∼
(
N (x1/3

0 e−kt , σ2/(2k)(1 − e−2kt))
)3

.

Or

X j
t =

(
x1/3

0 e−kt +
√

σ2/(2k)(1 − e−2kt) N j
)3

where N j are i.i.d. standard normals.
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t σ2)dt + 3σX2/3

t dWt

Study of dXt = (−3kXt + 3X 1/3
t σ2)dt + 3σX 2/3

t dWt XIII

f) We run the simulation in e) one shot and we get the density

Visual inspection tells us that the two densities are very close. We can
also plot one on top of the other
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Study of dXt = (−3kXt + 3X 1/3
t σ2)dt + 3σX 2/3

t dWt XIV
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Exam 1 Problem 1. SDEs: dX = m dt + σX dW

Problems with solutions I

We now present a few solved problems similar to those to be expected
at the exam.
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Exam 1 Problem 1. SDEs: dX = m dt + σX dW

Mock Exam 1 I

Problem 1. Consider the SDE dXt = m dt + σXtdWt , X0 = x0 where
m ∈ R, σ > 0 and x0 ∈ R deterministic.
a) Prove that the SDE admits a unique solution.
b) For the solution X find E(XT ) & Var(XT ) for any given T > 0.
c) If Y = X 3

t , find the SDE satisfied by Y . Write down the drift, diffusion
coefficient and initial condition for the Y SDE.
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Exam 1 Problem 1. SDEs: dX = m dt + σX dW

Mock Exam 1 II

Solutions. a) A sufficient condition for existence and uniqueness of a
strong solution is that we have two conditions regarding Lipschitz
continuity and linear growth. We know from the theory that for the SDE
dXt = µ(t ,Xt)dt + σ(t ,Xt)dWt , X0 = Z with Z independent of
σ({Wt , t ≤ T )} and E[Z 2] < +∞, and with µ : [0,T ]× R → R (the
drift) and σ : [0,T ]× R → R (the diffusion coefficient) being
measurable, if we have global Lipschitz continuity

|µ(t , x)−µ(t , y)|+|σ(t , x)−σ(t , y)| ≤ K |x−y | for all t ∈ [0,T ] and all x ∈ R

and linear growth

|µ(t , x)|+ |σ(t , x)| ≤ K ′(1 + |x |)| for all t ∈ [0,T ] and all x ∈ R

for two constants K ,K ′, then our SDE has a unique global solution Xt .
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Exam 1 Problem 1. SDEs: dX = m dt + σX dW

Mock Exam 1 III

Let’s check our conditions. In our case µ(t , x) = m, σ(t , x) = σx are
both measurable functions (being constant and linear respectively),
X0 = Z = x0 is deterministic, and thus trivially independent of W and
with finite mean square E(Z 2) = x2

0 < ∞, and we can see that

|µ(t , x)− µ(t , y)|+ |σ(t , x)− σ(t , y)| = 0 + σ|x − y |for all t and x

so that the Lipschitz condition is satisfied by taking K = σ, whereas

|µ(t , x)|+ |σ(t , x)| = |m|+ σ|x | ≤ max(|m|, σ)(1 + |x |) for all t and x

shows that also the linear growth condition is satisfied with
K ′ = max(|m|, σ). Hence our SDE admits a unique global solution.
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Exam 1 Problem 1. SDEs: dX = m dt + σX dW

Mock Exam 1 IV

b) We integrate both sides of the SDE bewtween 0 and T .∫ T

0
dXt =

∫ T

0
mdt +

∫ T

0
σXtdWt .

We get

Xt − x0 = m t + σ

∫ T

0
σXtdWt .

Now we take expected value on both sides, remembering that the Ito
integral has zero mean.

E [Xt ]− x0 = m t + σ0 =⇒ E [Xt ] = x0 + mt .
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Exam 1 Problem 1. SDEs: dX = m dt + σX dW

Mock Exam 1 V

For the variance, we know that Var(Xt) = E(X 2
t )− E(Xt)

2. We are
missing E(X 2

t ). We use Ito’s formula to get d(X 2
t ). Set ϕ(t , x) = x2 and

compute

d(X 2
t ) = dϕ(t ,Xt) =

∂ϕ

∂t
dt +

∂ϕ

∂X
dXt +

1
2
∂2ϕ

∂X 2 dXt dXt

= 0 dt + 2XtdXt +
1
2

2dXtdXt = 2Xt(m dt + σXtdWt) + σ2X 2
t dt

where dXdX = (m dt + σXdW )(m dt + σXdW ) = σ2X 2
t dt

(recall dt dt = 0, dt dW = 0, dW dW = dt). We thus have

d(X 2
t ) = (2mXt + σ2X 2

t )dt + 2σX 2
t dWt .
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Exam 1 Problem 1. SDEs: dX = m dt + σX dW

Mock Exam 1 VI

Integrate both sides between 0 and T :∫ T

0
d(X 2

t ) =

∫ T

0
(2mXt + σ2X 2

t )dt +
∫ T

0
2σX 2

t dWt

to get

X 2
T − x2

0 =

∫ T

0
(2mXt + σ2X 2

t )dt +
∫ T

0
2σX 2

t dWt .

Take expected value on both sides, recalling that the Ito integral has
zero mean:

E [X 2
T ]− x2

0 =

∫ T

0
(2mE [Xt ] + σ2E [X 2

t ])dt + 0.
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Exam 1 Problem 1. SDEs: dX = m dt + σX dW

Mock Exam 1 VII

Here we used a Fubini type theorem, moving the expected value inside
the time integral. We know E(Xt) = x0 + m t from our previous
calculation, so that

E [X 2
T ]− x2

0 =

∫ T

0
(2m[x0 + m t ] + σ2E [X 2

t ])dt .

Set m2(t) = E [X 2
t ] for all t , so that the last integral equation reads

m2(T )− x2
0 =

∫ T

0
(2m[x0 + m t ] + σ2m2(t))dt .

Now, to proceed further, we differentiate both sides with respect to T .
We get

d
dT

m2(T ) = 2m[x0 + m T ] + σ2m2(T ).
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Exam 1 Problem 1. SDEs: dX = m dt + σX dW

Mock Exam 1 VIII

This is a linear-affine ODE that we have seen in the introduction. From
the standard solution, keeping in mind that m2(0) = x2

0 , we get

m2(T ) = eσ2T

[∫ T

0
e−σ2u2m(x0 + mu)du + x2

0

]
.

= eσ2T

[
e−σ2T (−σ2(2mx0 + 2m2T )− 2m2)

σ4 +
σ22mx0 + 2m2

σ4 + x2
0

]

=
2m
σ4 (m + x0σ

2)(eσ2T − 1)− 2m2

σ2 T + eσ2T x2
0

where we used integration by parts. We can now calculate
Var(XT ) = E(X 2

T )− E(XT )
2 = m2(T )− (x0 + mT )2. Complete the

calculations.
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Exam 1 Problem 1. SDEs: dX = m dt + σX dW

Mock Exam 1 IX

c) We now apply Ito’s formula with φ(t , x) = x3. We have ∂φ
∂t = 0,

∂φ
∂x = 3x2, ∂2φ

∂x2 = 6x . We have

dYt = dφ(t ,Xt) =
∂φ

∂t
dt +

∂φ

∂X
dXt +

1
2
∂2φ

∂X 2 dXt dXt

= 0 dt + 3X 2
t dXt +

1
2

6XtdXdX = . . .

Now we know from the previous point that dXdX = σ2X 2
t dt so that

. . . = 3mX 2
t dt + 3σX 3

t dWt + 3σ2X 3
t dt

dYt = 3X 2
t (m + σXt)dt + 3σX 3

t dWt .

Recalling that Y = X 3, X = Y 1/3, we can write the SDE in Y as

dY = 3Y 2/3
t (m + σY 1/3

t )dt + 3σYtdWt , Y0 = x3
0 .
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Exam 1 Problem 1. SDEs: dX = m dt + σX dW

Mock Exam 1 X

The drift for Y ’s SDE is µ(t , y) = 3y2/3(m + σy1/3) while the diffusion
coefficient is σ(t , y) = 3σy . We also have the initial condition
Y0 = X 3

0 = x3
0 which is deterministic.
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Exam 1 Problem 2. Straddle Option Pricing - Black Scholes.

Mock Exam 1 I

Problem 2. Option pricing in Black Scholes (long Straddle).
Consider a stock market where the stock price S follows the dynamics
dSt = rStdt + σStdWt under the risk neutral measure Q, with initial
stock price s0 > 0, deterministic. The risk free rate r is a non-negative
deterministic constant. Consider a straddle payoff on S, with maturity
T and strike K = S0erT , namely

Y = (ST − K )+ + (K − ST )
+.

a) Make a plot of the payoff as a function of ST . Explain what kind of
investor would buy this payoff. What would the investor rely on, to
make money, when buying this product?
b) Calculate the price of the straddle at time 0. You can use the
formula for a call option in Black-Scholes without deriving it, if you
remember it, but derive the put from the call using parity.
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Exam 1 Problem 2. Straddle Option Pricing - Black Scholes.

Mock Exam 1 II

c) How does the straddle price above change with σ? In particular,
calculate the Vega of the straddle, namely if V is the straddle price,
compute Vega = ∂V

∂σ and discuss your findings.
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Exam 1 Problem 2. Straddle Option Pricing - Black Scholes.

Mock Exam 1 III

Problem 2 Solutions.
a) Recalling how the call and put payoffs work, the straddle payoff
Y = (ST − K )+ + (K − ST )

+ is equal to ST − K if ST ≥ K and to
K − ST if ST < K . It is immediate to see that this is the same as
Y = |ST − K |. The plot is therefore an absolute value plot centered in
K .
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Exam 1 Problem 2. Straddle Option Pricing - Black Scholes.

Mock Exam 1 IV

The payoff becomes larger the farther away ST moves from S0erT .
This means that a straddle payoff makes money if the stock S moves
away from S0 a lot. An investor will therefore buy a straddle if she
expects the stock price to be very volatile. In this case she will gain the
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Exam 1 Problem 2. Straddle Option Pricing - Black Scholes.

Mock Exam 1 V

large absolute difference between the stock at maturity and K . It
doesn’t matter if the stock moves up or down, the important point for
the straddle investor is that it moves. On the contrary, if the stock
moves very little the straddle makes very little money.

An investor who expects the market to move very little should sell
rather than buy a straddle. This way the investor cashes in the initial
straddle price from the client but will have to pay a very little payoff at
maturity if the stock moves very little. In the limit case where the stock
at maturity is ST = K = S0erT , the straddle payoff |ST − K | will be
worth 0, so the investor selling the straddle will cash in a large price at
time 0 and will pay nothing at maturity T .
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Exam 1 Problem 2. Straddle Option Pricing - Black Scholes.

Mock Exam 1 VI

b) As the straddle payoff is call plus put payoffs, the price VStr (0) at
time 0 will be the price of a call plus the price of a put. Indeed,

VStr (0) = EQ[e−rT ((ST − K )+ + (K − ST )
+)] =

= EQ[e−rT (ST − K )+] + EQ[e−rT (K − ST )
+] = V call(0) + V put(0).

This is completely general and holds whichever model we use for S. In
point b) we are given the Black Scholes model, so we can compute the
price as a sum of call and put in Black Scholes. Recall that (and if you
don’t recall it then derive it as we have done in the lectures)

V CALL
BS (0,S0,K ,T , σ, r) = s0Φ(d1)− Ke−rTΦ(d2)

where Φ is the CDF of a standard normal and where

d1 =
ln(s0/K ) + (r + σ2/2)T

σ
√

T
, d2 = d1 − σ

√
T
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Exam 1 Problem 2. Straddle Option Pricing - Black Scholes.

Mock Exam 1 VII

Now we can derive the price of a put option by put-call parity. Write the
argument and the derivation here, as it has been done in the lecture,
using the put call parity and the price of a forward contract. We get

V PUT
BS (0,S0,K ,T , σ, r) = Ke−rTΦ(−d2)− s0Φ(−d1).

We can now calculate the straddle price as

V STR
BS (0) = V CALL

BS (0) + V PUT
BS (0) =

= s0Φ(d1)− Ke−rTΦ(d2) + Ke−rTΦ(−d2)− s0Φ(−d1) =

= s0(2Φ(d1)− 1)− Ke−rT (2Φ(d2)− 1)

where we used the fact that Φ(−x) = 1 − Φ(x).
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Exam 1 Problem 2. Straddle Option Pricing - Black Scholes.

Mock Exam 1 VIII

Substitute K = s0erT , also in d1,2 to obtain the final price

V STR
BS (0) = 2s0

(
Φ

(
σ
√

T
2

)
− Φ

(
−σ

√
T

2

))

c) To explain how the price of the straddle changes with σ let’s first
compute the straddle Vega, as requested. We have

Vega =
∂V STR

BS (0)
∂σ

=
∂

∂σ

(
s0(2Φ(d1)− 1)− Ke−rT (2Φ(d2)− 1)

)
=

= 2 s0

(
∂

∂σ
Φ(d1)

)
− 2Ke−rT

(
∂

∂σ
Φ(d2)

)
= . . .
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Exam 1 Problem 2. Straddle Option Pricing - Black Scholes.

Mock Exam 1 IX

Now the only terms depending on σ are Φ(d1) and Φ(d2).

∂

∂σ
Φ(d1) = ϕ(d1)

∂

∂σ
d1 = ϕ(d1)

∂

∂σ

(
ln(s0/K ) + (r + σ2/2)T

σ
√

T

)

= ϕ(d1)
(σ2/2 − r)T − ln(s0/K )

σ2
√

T

where ϕ is the PDF of the standad normal, Φ′ = ϕ. Similarly,

∂

∂σ
Φ(d2) = ϕ(d2)

∂

∂σ
d2 = ϕ(d2)

∂

∂σ

(
ln(s0/K ) + (r − σ2/2)T

σ
√

T

)
=

= ϕ(d2)
− ln(s0/K )− (r + σ2/2)T

σ2
√

T
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Exam 1 Problem 2. Straddle Option Pricing - Black Scholes.

Mock Exam 1 X

The straddle vega is thus

Vega = 2 s0ϕ(d1)
(σ

2

2 − r)T − ln s0
K

σ2
√

T
− 2Ke−rTϕ(d2)

− ln s0
K − (r + σ2

2 )T

σ2
√

T

= 2 s0ϕ(d1)
(σ

2

2 − r)T − ln s0
K

σ2
√

T
+ 2Ke−rTϕ(d2)

ln s0
K + (r + σ2

2 )T

σ2
√

T

Now recall that K = s0erT and substitute in the vega expression to get

Vega = 2s0

√
T

2

(
ϕ

(
σ
√

T
2

)
+ ϕ

(
−σ

√
T

2

))
.

Now note that ϕ is always positive, being the normal probability density
function. It follows that, since also σ, T and s0 are positive, vega is
always positive.
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Exam 1 Problem 2. Straddle Option Pricing - Black Scholes.

Mock Exam 1 XI

A positive vega means ∂V Str
BS

∂σ > 0, and if a function has a positive
derivative with respect to a variable, it is increasing with respect to that
variable. It follows that with positive vega, V Str

BS is increasing in the
volatility σ.

We conclude that the straddle price will increase with the stock
volatility σ. The larger the volatility, the larger the straddle price. This is
consistent with our intuition on the payoff given in point a) above.
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Exam 1 Problem 3. Straddle Option Pricing - Displaced Diffusion.

Mock Exam 1 I

Problem 3. Option pricing Displaced Diffusion (long Straddle).
Consider a stock market where the stock price S follows the displaced
diffusion (DD) dynamics

dSt = rStdt + σ(St − αert)dWt , s0,

where α is a deterministic shift, under the risk neutral measure Q, with
initial stock price s0 > 0, deterministic. The risk free rate r is a
non-negative deterministic constant. Consider a straddle payoff on S,
with maturity T and strike K = S0erT , namely

Y = (ST − K )+ + (K − ST )
+.

a) Compute the straddle price at time 0 in the DD model.
b) Check that in the limit case α = 0 you get back the Black Scholes
price of a straddle.
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c) Can you comment if, ceteris paribus, adding the shift α increases or
decreases the Straddle price compared to the pure Black Scholes
case? More generally, what is the impact of α on the straddle price?
How is the price sensitive to α?
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Problem 3 Solutions.
a) For the displaced diffusion (DD) model, it is convenient to write it as
in the lectures. We write

St = αer t + Xt , dXt = rXtdt + σXtdWt , X0 = s0 − α

where the dynamics of X is under Q (W is a Brownian motion under
Q). It is immediate to check that with this definition we have

dSt = rStdt + σ(St − αert)dWt , s0

as given in the problem.
We can now compute the straddle price in the DD model as

V Str
DD = EQ[e−rT ((ST − K )+ + (K − ST )

+)] =
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= EQ[e−rT ((XT + αer T − K )+ + (K − XT − αer T )+)] =

= EQ[e−rT (XT + αer T − K )+] + EQ[e−rT (K − XT − αer T )+] =

= EQ[e−rT (XT − K ′)+] + EQ[e−rT (K ′ − XT )
+], K ′ = K − αer T .

The first expectation is a call option for the stock X with strike K ′.
Given that X follows a Black Scholes model with volatility σ and initial
stock price x0 = s0 − α, we can use a Black Scholes call option
formula for this. We have EQ[e−rT (XT − K ′)+] =

= x0Φ(d ′
1)− K ′e−rTΦ(d ′

2) = (s0 − α)Φ(d ′
1)− (K − αer T )e−rTΦ(d ′

2),

where

d ′
1,2 =

ln x0
K ′ + (r ± 1

2σ
2)T

σ
√

T
=

ln s0−α
K−αer T + (r ± 1

2σ
2)T

σ
√

T
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Recall that the put option is obtained by put-call parity (which holds for
all models, as it is model independent) as

V PUT
DD = V CALL

DD − (S0 − Ke−rT )

so that

V STR
DD = V CALL

DD + V PUT
DD = V CALL

DD + V CALL
DD − (S0 − Ke−rT ) =

= 2V CALL
DD − (S0 − Ke−rT ),

so that the straddle price at time 0 is

V STR
DD = 2(s0 − α)Φ(d ′

1)− 2(K − αer T )e−rTΦ(d ′
2)− s0 + Ke−rT
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Substituting K = s0erT , also in d ′
1,2, we get

V STR
DD = 2(s0 − α)Φ(d̄ ′

1)− 2(s0erT − αer T )e−rTΦ(d̄ ′
2)− s0 + s0erT e−rT

= 2(s0 − α)(Φ(d̄ ′
1)− Φ(d̄ ′

2))

where
d̄ ′

1,2 = ±1
2
σ
√

T

b) We first compute the straddle price in a Black Scholes model. (This
has been done in Problem 2 above, follow the same steps). We obtain

V STR
BS = 2s0(Φ(d̄ ′

1)− Φ(d̄ ′
2)) = 2s0(Φ(d̄ ′

1)− Φ(d̄ ′
2))

d̄ ′
1,2 = ±1

2
σ
√

T .
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Consider now, from point a) above,

V STR
DD = 2(s0 − α)(Φ(d̄ ′

1)− Φ(d̄ ′
2)) = . . .

by substituting α = 0 we obtain

. . . = 2s0(Φ(d̄ ′
1)− Φ(d̄ ′

2))

which is exactly the Black Scholes straddle price V STR
BS (0) above.

c) Compare the two prices

V STR
BS = 2s0

(
Φ

(
σ
√

T
2

)
− Φ

(
−σ

√
T

2

))
=: 2s0A,

V STR
DD = 2(s0 − α)A, A =

(
Φ

(
σ
√

T
2

)
− Φ

(
−σ

√
T

2

))
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We see that the price comparison between the two models depends
on the sign of α. Given that

A = Φ

(
σ
√

T
2

)
− Φ

(
−σ

√
T

2

)
> 0,

as Φ is increasing, we obtain that

V STR
DD > V STR

BS ⇐⇒ 2(s0 − α)A > 2s0A ⇐⇒ α < 0,

where we divided both sides for the positive quantity A. So with
negative shift α < 0 the straddle price will be larger than the basic
Black Scholes price. With positive α, the straddle price will be smaller
than the Black Scholes case. For α = 0 we recover the Black Scholes
case.
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We now analyze the impact of the shift α on the price. From the
formula for V STR

DD we see that the price is linear in α. We can easily
compute

∂V STR
DD
∂α

=
∂2(s0 − α)A

∂α
= −2A < 0

from which we see that the straddle price is decreasing with respect to
the shift α. Thus, we conclude that increasing the shift α will decrease
the straddle price, and decreasing the shift will increase the straddle
price.
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Problem 4: Risk Measures.
Consider the dynamics of an equity asset price S in the Black and
Scholes model, under both probability measures P (the Physical or
Historical measure) and Q (the risk neutral measure).

a) Define Value at Risk (VaR) for a time horizon T with confidence
level α for a general portfolio.

b) Compute VaR for horizon T and confidence level α for a portfolio
with N units of equity, where the equity price follows the Black Scholes
process above.

c) Explain at least one drawback of VaR as a risk measure

d) Is the equity dynamics you used for VaR the same you would have
used to price an equity call option in Black Scholes?
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Problem 4: Solutions.
a)
VaR is related to the potential loss on our portfolio over the time
horizon T . Define this loss LT as the difference between the value of
the portfolio today (time 0) and in the future T .

LT = Portfolio0 − PortfolioT .

VaR with horizon T and confidence level α is defined as that number
q = qT ,α such that

P[LT < q] = α

so that our loss at time T is smaller than q with P-probability α.
In other terms, it is that level of loss over a time T that we will not
exceed with probability α. It is the α P-percentile of the loss distribution
over T .
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b)
In Black Scholes the equity process follows the dynamics

dSt = µStdt + σStdWt ,

where µ, σ are positive constants and W is a brownian motion under
the physical measure P.
We know that ST can be written as

ST = S0 exp

{(
µ− 1

2
σ2
)

T + σWT

}
, (26)

and recalling the distribution of WT ,

ST = S0 exp

{(
µ− 1

2
σ2
)

T +
√

TσN (0,1)
}

(27)
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so that in our case LT = N(S0 − ST ), namely

LT = NS0

(
1 − exp

{(
µ− 1

2
σ2
)

T +
√

TσN (0,1)
})

Hence

α = P[LT < q] = P
[(

1 − exp

{(
µ− 1

2
σ2
)

T +
√

TσN (0,1)
})

<
q

NS0

]

= P
[(

µ− 1
2
σ2
)

T +
√

TσN (0,1) > ln

(
1 − q

NS0

)]

= P

N (0,1) >
ln
(

1 − q
NS0

)
−
(
µ− 1

2σ
2)T

√
Tσ

 =
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= 1 − Φ

 ln
(

1 − q
NS0

)
−
(
µ− 1

2σ
2)T

√
Tσ


= Φ

−
ln
(

1 − q
NS0

)
−
(
µ− 1

2σ
2)T

√
Tσ


So we have obtained

α = Φ

−
ln
(

1 − q
NS0

)
−
(
µ− 1

2σ
2)T

√
Tσ


or

Φ−1(α) = −
ln
(

1 − q
NS0

)
−
(
µ− 1

2σ
2)T

√
Tσ
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and therefore

exp

(
−
√

TσΦ−1(α) +

(
µ− 1

2
σ2
)

T
)

=

(
1 − q

NS0

)

q = NS0

[
1 − exp

(
−
√

TσΦ−1(α) +

(
µ− 1

2
σ2
)

T
)]
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c) VaR is not subadditive, hence it does not recognize the benefit of
diversification. Also, VaR ignores the structure of the loss distribution
after the percentile. So if 99% VaR is 10 billions, we can have the
remaining 1% loss concentrated

(i) either on 10.1 billions,
(ii) or on 10 trillions,

as two stylized cases, without VaR being able to tell us anything on
whether we are in case (i) or (ii).

d) No the dynamics is not the same, to price an option we need to use
the risk neutral dynamics, where the drift parameter µ of S is replaced
by the risk free rate r of the bank account.
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Problem 1. Consider the Ito SDE

dXt = m(Xt − a)dt + σ(Xt − a)dWt , x0

where a is a and m are deterministic constants, σ > 0 and x0 is
deterministic. We assume x0 > a.
a) Does this equation admit a unique global solution?
b) Write the equation in Stratonovich form
c) If the Equation admits solutions, find a solution. Extra points if you
give two possible ways to get a solution.
d) Compute the following probability for the solution you found in
point c): P{Xt > x0}.
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Solutions. a) We can check the sufficient conditions for global
existence and uniqueness given by measurable drift and diffusion
coefficient, finite second moment for the initial condition, and Lipschitz
continuity and linear growth.
First of all the equation has drift µ(t , x) = m(x − a) and diffusion
coefficent σ(t , x) = σ(x − a). Both are trivially measurable functions,
as they are linear.
The initial condition is deterministic, so that the condition on the
second moment E [X 2

0 ] < ∞ is trivially satisfied, given that X 2
0 = x2

0 is a
finite deterministic constant.
Next we check the Lipschitz condition and linear growth conditions:

|µ(t , x)− µ(t , y)|+ |σ(t , x)− σ(t , y)| = |mx − my |+ |σx − σy | =

= m|x − y |+ σ|x − y | ≤ K |x − y |
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for all x , y and all t provided that K = max(m, σ). Hence Lipschitz
continuity holds. For linear growth,

|µ(t , x)|+ |σ(t , x)| = |m(x − a)|+ |σ(x − a)| =

≤ |m+σ||x−a| ≤ |m+σ|(|a|+|x |) ≤ max(|a|,1)|m+σ|(1+|x |) = K ′(1+|x |)

for all t and x if we set K ′ = max(|a|,1)|m + σ|. So the linear growth
condition is satisfied. It follows that the equation admists a unique
global solution.

b) To write the SDE in stratonovich form we recall the transformation
rule. The following two SDEs

dXt = f (Xt)dt + v(Xt)dWt → dXt = f̃ (Xt)dt + v(Xt) ◦ dWt
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f̃ = f − 1
2

v
∂v
∂x

have the same solution X . In our case f (x) = m(x − a) and
v(x) = σ(x − a). We see immediately that ∂v

∂x = σ and

f̃ (x) = m(x − a)− 1
2
σ(x − a)σ.

So the equivalent Stratonovich SDE with the same solution is

dXt = (m − σ2

2
)(Xt − a)dt + σ(Xt − a) ◦ dWt .

c) We established in a) that the equation has a unique solution.
We can approach the solution in two ways.
First, we can try to solve the SDE using the Stratonovich form. For the
Strat form, the formal rules of calculus hold. So we can perhaps try to
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simplify the SDE by taking logs. Set Yt = ln(Xt − a). This is only
possible if Xt > a. We will have to check this a-posteriori, once the
solution is found. Differentiating

dYt =
1

Xt − a
◦ d(Xt − a) =

1
Xt − a

◦ dXt =

=
1

Xt − a
((m− σ2

2
)(Xt −a)dt +σ(Xt −a)◦dWt) = (m− σ2

2
)dt +σ ◦dWt .

So

dYt = (m − σ2

2
)dt + σ ◦ dWt .
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This last equation is the same in Ito form, since the diffusion coefficient
does not depend on Y . So we can write in Ito form

dYt = (m − σ2

2
)dt + σdWt .

This is an arithmetic Brownian motion and is easily integrated as∫ T

0
dYt =

∫ T

0
(m − σ2

2
)dt +

∫ T

0
σdWt

leading to

YT = Y0 + (m − σ2

2
)T + σWT .
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To go back to Xt , we recall that Yt = ln(Xt − a) from which

Xt = eYt + a = exp(Y0 + (m − σ2

2
)T + σWT ) + a

= exp(Y0) exp((m−σ2

2
)T+σWT )+a = (x0−a) exp((m−σ2

2
)T+σWT )+a

Now we can check that Xt > a as requied to do the log transformation.
We know that x0 > a so that x0 − a > 0 and the exponential is also
positive. Hence Xt is the sum of a positive term plus a, and as such is
larger than a as required.
A second metod to derive the solution without going the Stratonovich
way would be to note that we can set Zt = Xt − a and derive the Ito
SDE for Z .
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dZt = d(Xt − a) = dXt − 0 = m(Xt − a)dt + σ(Xt − a)dWt =

= mZtdt + σZtdWt .

Hence
dZt = mZtdt + σZtdWt , Z0 = x0 − a

is a Geometric Brownian Motion and we know how to integrate it (take
log, apply Ito’s formula, write all the steps). We obtain

Zt = Z0 exp((m − σ2/2)t + σWt).

As Xt = Zt + a, we obtain

Xt = a + (x0 − a) exp((m − σ2/2)t + σWt).
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We can see that this coincides with the solution obtained with the
Stratonovich transformation.

d) Compute

P[Xt > x0] = P[a + (x0 − a) exp((m − σ2/2)t + σWt) > x0] =

P[(x0 − a) exp((m − σ2/2)t + σWt) > x0 − a] = . . .

Now as x0 − a > 0, we can divide both sides of the inequality inside
the probability by x0 − a without changing the verse of the inequality.
We get

. . . = P[exp((m−σ2/2)t +σWt) > 1] = P[(m−σ2/2)t +σWt > 0] = . . .
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where we took log on both sides, which does not change the inequality
as log is a strictly increasing function. Then

. . . = P[σWt > −(m − σ2/2)t/σ] = P[
√

tN (0,1) > −(m − σ2/2)t/σ] =

= P
[
N (0,1) > −(m − σ2/2)t

σ
√

t

]
= . . .

where we used that Brownian motion Wt ∼ N (0, t) ∼
√

tN (0,1). Then

. . . = 1 − P

[
N (0,1) ≤ −(m − σ2/2)

√
t

σ

]
= . . .
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where we used the fact that for any event A, P[Ac] = 1 − P[A] where
Ac is the complement of A.

. . . = 1 − Φ

(
−(m − σ2/2)

√
t

σ

)
= Φ

(
(m − σ2/2)

√
t

σ

)

where Φ is the CDF for the standard normal and we usd the property
Φ(−x) = 1 − Φ(x).
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Problem 2. We now consider a portfolio with a call option on a first
stock S(1) with strike K1 and a put option on a second stock S(2) with
strike K2, both options with maturity T . The final payoff of the portfolio
is

Y = (S(1)
T − K1)

+ + (K2 − S(2)
T )+.

The risk-free rate is assumed to be a positive deterministic constant
r > 0.
a) Assume both stocks follow a Black Scholes model. Specifically, the
stocks dynamics under the measure P are

d S(1)
t = µ1S(1)

t dt + σ1S(1)dW (1)
t , s(1)

0 ,

d S(2)
t = µ2S(2)

t dt + σ2S(2)dW (2)
t , s(2)

0 ,

dW 1dW 2 = ρ dt .
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Recall that ρ can be interpreted as an instantaneous correlation
between changes in S1 and S2,

“corr”(dS1
t ,dS2

t ) = ρ.

Write the stocks dynamics under the risk neutral measure Q.
b) Calculate the price VBS of the portfolio at time 0. You can use the
formula for a call option in Black Scholes without deriving it, but for the
put option derive it with put-call parity from the call.
c) Does the price VBS of the portfolio depend on the correlation ρ?
Elaborate and provide intuition on your answer. Also, calculate the
sensitivity ∂VBS

∂ρ .
d) How is the portfolio price sensitive to the volatility of the second
stock? Calculate ∂VBS

∂σ2
. Take the special case of at-the-money-forward

options, namely K1 = s(1)
0 erT and K2 = s(2)

0 erT , and find the sensitivity
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∂VBS
∂σ2

in this special case. Describe how the portfolio price changes
with σ2 in this special case.
e) How is the portfolio price sensitive to both volatilities σ1 and σ2 of
the two stocks? Calculate ∂2VBS

∂σ1 ∂σ2
. Explain your answer.
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Solutions Problem 2.
a) Under the risk neutral measure Q, the drift rates µ1 and µ2 are
replaced by the risk-free rate r . We thus get

d S(1)
t = rS(1)

t dt + σ1S(1)dW (1),Q
t , s(1)

0 ,

d S(2)
t = rS(2)

t dt + σ2S(2)dW (2),Q
t , s(2)

0 ,

dW 1,QdW 2,Q = ρ dt

where W Q are Brownian motions under Q.
b) We can price Y with the risk neutral expectation of the discounted
payoff.

VBS = EQ[e−rT Y ] = EQ[e−rT [(S(1)
T − K1)

+ + (K2 − S(2)
T )+]]
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= EQ[e−rT (S(1)
T − K1)

+e−rT (K2 − S(2)
T )+]

= EQ[e−rT (S(1)
T − K1)

+] + EQ[e−rT (K2 − S(2)
T )+].

The first expectation is the Black Scholes price of a call option on stock
S1. We know this is

EQ[e−rT (S(1)
T − K1)

+] = s(1)
0 Φ(d1

1 )− K1e−rTΦ(d1
2 )

where

d1
1,2 =

ln(s(1)
0 /K1) + (r ± σ2

1/2)T

σ1
√

T
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The second expectation is the price of a put option on she stock S2.
We derive this from the price of the call through put-call parity. Put call
parity tells use that

EQ[e−rT (K2 − S(2)
T )+] = V PUT2

BS = V CALL2
BS − (s(2)

0 − K2e−rT ),

or
V PUT2

BS = s(2)
0 Φ(d2

1 )− K2e−rTΦ(d2
2 )− (s(2)

0 − K2e−rT ),

= K2e−rTΦ(−d2
2 )− s(2)

0 Φ(−d2
1 )

where

d2
1,2 =

ln(s(2)
0 /K2) + (r ± σ2

2/2)T

σ2
√

T
.
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Adding call and put, VBS = V CALL1
BS + V PUT2

BS , or

VBS = s(1)
0 Φ(d1

1 )− K1e−rTΦ(d1
2 ) + K2e−rTΦ(−d2

2 )− s(2)
0 Φ(−d2

1 ).

c) Inspecting carefully the formula for VBS we see that ρ appears
nowhere. This means that the portfolio price does not depend on ρ and
we get ∂V

∂ρ = 0.
Why is that? The reason is in the shape of the payoff, which can be
decomposed additively in the sum of two options, each depending only
on one stock. In other terms, there is never an expectation involving
both stocks at the same time, so that the joint statistics of the two
stocks doesn’t play a role, and the correlation does not play a role.
Indeed, given that
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VBS = EQ[e−rT (S(1)
T − K1)

+] + EQ[e−rT (S(2)
T − K2)

+]

we see that the first expectation will depend only on the first stock
statistics, whereas the second only on the second stock. There is no
term depending on both stocks together.

d) Compute ∂VBS
∂σ2

as

∂

∂σ2

(
s(1)

0 Φ(d1
1 )− K1e−rTΦ(d1

2 ) + K2e−rTΦ(−d2
2 )− s(2)

0 Φ(−d2
1 )
)

= 0 +
∂

∂σ2

(
K2e−rTΦ(−d2

2 )− s(2)
0 Φ(−d2

1 )
)
= . . .
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as the first option does not depend on σ2, which is only found in the d2

terms.
. . . = K2e−rT ∂

∂σ2
Φ(−d2

2 )− s(2)
0

∂

∂σ2
Φ(−d2

1 ) =

= −K2e−rTϕ(−d2
2 )

∂

∂σ2
(d2

2 ) + s(2)
0 ϕ(−d2

1 )
∂

∂σ2
(d2

1 ) = . . .

where we used the chain rule d
dσΦ(f (σ)) = Φ′(f (σ)) df

dσ and the fact that
Φ′ = ϕ, the probability density function of the standard normal.

. . . = −K2e−rTϕ(−d2
2 )

∂

∂σ2

(
ln(s(2)

0 /K2) + (r − σ2
2/2)T

σ2
√

T

)

+s(2)
0 ϕ(−d2

1 )
∂

∂σ2

(
ln(s(2)

0 /K2) + (r + σ2
2/2)T

σ2
√

T

)
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Calculating the derivatives we obtain

∂VBS

∂σ2
= −K2e−rTϕ(−d2

2 )

(
(−σ2

2/2 − r)T − ln(s(2)
0 /K2)

σ2
2

√
T

)

+s(2)
0 ϕ(−d2

1 )

(
(σ2

2/2 − r)T − ln(s(2)
0 /K2)

σ2
2

√
T

)

In the special at-the-money-forward (ATMF) case K1 = s(1)
0 erT and

K2 = s(2)
0 erT the above formula specializes to

∂VBS

∂σ2
|ATMF = s(2)

0 ϕ(−d2
2 )

√
T

2
+ s(2)

0 ϕ(−d2
1 )

√
T

2
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= s(2)
0

√
T

2

(
ϕ
(
σ2

√
T/2

)
+ ϕ

(
−σ2

√
T/2

))
> 0

meaning that VBS|ATMF increases with σ2, as its derivative is positive.
The portfolio value will increase when σ2 increases and will decrease
when σ2 decreases.

e) It is immediate to see that the second derivative

∂2VBS

∂σ1∂σ2
= 0.

Indeed, we have computed previously ∂VBS
∂∂σ2

and by inspection we can
see that this derivative does not depend on σ1. Thus

∂2VBS

∂σ1∂σ2
=

∂

∂σ1

(
∂VBS

∂σ2

)
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=
∂

∂σ1
(quantity without σ1) = 0.

The reason for this is similar to the reason we have seen in point c).
The price is the sum of two prices: the first price depends only on σ1
(the call) while the second price depends only on σ2 (the put). There is
no term depending on σ1 and σ2 jointly, so that when we differentiate
we never find both variables and the derivative is zero.
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Problem 3. Consider a portfolio long a call option on a first stock S(1)

with strike K1 and short a put option on a second stock S(2) with strike
K2, both options with maturity T . The final payoff of the portfolio is

Y = (S(1)
T − K1)

+ − (K2 − S(2)
T )+.

The risk-free rate is assumed to be a positive deterministic constant
r > 0. We assume the strikes are the at-the-money-forward strikes
a) Assume that the market volatilty smile curve is roughly constant for
the first stock, and is decreasing for the second one. Choose suitable
models for the first and second stock that are consistent with this
pattern.

b) With the chosen models, price the portfolio at time 0.
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c) If the market smile pattern for the second stock had been V shaped,
what smile model would have you chosen for the second stock? You
are not requested to calculate the price with the chosen model, only to
discuss the model.
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Problem 3: Solutions. a) A constant market volatility smile curve is in
line with the Black Scholes model, so we can choose Black Scholes for
the first Stock. Under the risk neutral measure Q, we write:

d S(1)
t = rS(1)

t dt + σ1S(1)dW (1),Q
t , s(1)

0 .

A decreasing smile curve is consistent with three models we have
seen: Bachelier, Displaced Diffusion with negative shift and CEV with
exponent smaller than one. Any of these models can be chosen. It is
preferable to choose a model with more parameters so as to be able to
explain the market smile better. Bachelier only has one parameter, the
absolute volatility σ, whereas both CEV and DD have two parameters.
We know that DD is more tractable, so we chooose the displaced
diffusion model for the second stock,

d S(2)
t = rS(2)

t dt + σ2(S
(2)
t − αert)dW (2),Q

t , s(2)
0 ,
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dW 1,QdW 2,Q = ρ dt

where W Q are Brownian motions under Q.

b) To price the portfolio we compute

V = EQ[e−rT Y ] = EQ{e−rT [(S(1)
T − K1)

+ − (K2 − S(2)
T )+]}

= EQ{e−rT (S(1)
T − K1)

+ − e−rT (K2 − S(2)
T )+} =

= EQ{e−rT (S(1)
T − K1)

+} − EQ{e−rT (K2 − S(2)
T )+}

so that the price is the call price on S1 with Black Scholes minus the
Put price on S2 with DD.
The call price is easy and it is the usual Black Scholes call price (write
down the formula, no need to derive it if you remember it).

(c) 2012-24 Prof. D. Brigo SDEs in Financial Modelling Imperial College London 541 / 805



Exam 2 Problem 3. Option pricing with smile - 2 stocks

Mock Exam 2 V

For the put price, we use put-call parity.

V PUT2
DD = V CALL2

DD − (s(2)
0 − K2e−rT )

We now compute

V CALL2
DD = EQ{e−rT (S(2)

T − K2)
+} = . . .

We know from the lectures that it is often convenient to write the
displaced diffusion model as

S(2)
t = Xt + αert , dXt = rXtdt + σ2XtdW (2),Q

t , X0 = S(2)
0 − α.

This leads to

. . . = EQ{e−rT (XT+αerT
T −K2)

+} = EQ{e−rT (XT−K ′)+}, K ′ = K2−αerT .
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The last expectation is a call option in the Black Scholes model X and
is given by the standard call option price formula

V CALL2
DD = EQ{e−rT (XT − K ′)+} = x0Φ(d ′

1)− K ′e−rTΦ(d ′
2) =

= (s0−α)Φ(d ′
1)−(K2−αerT )e−rTΦ(d ′

2), d ′
1,2 =

ln
s(2)0 −α

K2−αerT + (r ± 1
2σ

2
2)T

σ2
√

T

We can get the put by parity,

V PUT2
DD = V CALL2

DD − (s(2)
0 − K2e−rT )

= (s(2)
0 − α)Φ(d ′

1)− (K2 − αerT )e−rTΦ(d ′
2)− (s(2)

0 − K2e−rT )

Finally, to obtain the whole portfolio price we need to add the call on S1
with Black Scholes,
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V = s(1)
0 Φ(d1

1 )−K1e−rTΦ(d1
2 )+(s(2)

0 −α)Φ(d ′
1)− (K2 −αerT )e−rTΦ(d ′

2)

−(s(2)
0 − K2e−rT )

where

d1
1,2 =

ln
s(1)0
K1

+ (r ± 1
2σ

2
1)T

σ1
√

T

c) The only model we discussed in detail that has a V shaped smile is
the mixture dynamics model, so in this case we would choose that
model. Another option would be using a stochastic volatility model like
Heston, but we have not discussed this model in detail.
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Problem 4. Risk measures on a portfolio with two stocks.
Consider two stocks in a market with zero interest rate r = 0. We
assume both stocks follow a Bachelier model under the measure P:

d S(1)
t = µ1 dt + σ1dW (1)

t , s(1)
0 ,

d S(2)
t = µ2 dt + σ2dW (2)

t , s(2)
0 ,

dW 1dW 2 = ρ dt

where W ’s are Brownian motions under P.
a) Consider a portfolio long an amount N1 of stock S(1), short an
amount N2 of stock S(2), both with maturity T , and long a zero coupon
bond with maturity T and notional NB. The portfolio payoff at maturity
T is

Y = N1S(1)
T − N2S(2)

T + NB.
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Compute the value at risk of this portfolio when ρ = 0 (i.e. the two
Brownian motions W 1 and W 2 are independent and so are the two
stocks), for a risk horizon H < T at a confidence level α.
b) Thinking of the Barings collapse, describe a situation that could put
the bank at serious risk when trading this portfolio. For example, would
an extremely large N1 with small N2,NB be dangerous? Large N2 with
small N1,NB? Large NB with small N1,2? Analyze the three cases and
discuss.
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Problem 4: solutions. a) Recall the definition: VaR is related to the
potential loss on our portfolio over the time horizon H. Define this loss
LH as the difference between the value of the portfolio today (time 0)
and in the future H.

LH = Portfolio0 − PortfolioH .

VaR with horizon H and confidence level α is defined as that number
q = qH,α such that

P[LH < q] = α

so that our loss at time H is smaller than q with P-probability α.
We know that S(1,2)

H can be written as

S(1,2)
H = S(1,2)

0 + µ1,2H + σ1,2W (1,2)
H , (28)
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and recalling the distribution of W (1,2)
H ,

S(1,2)
H = S(1,2)

0 + µ1,2H +
√

Hσ1,2N1,2(0,1) (29)

where N1 and N2 are independent standard normals. Let us calculate
the price of our portfolio at time 0. The stock and bond positions are
trivial, there is no option, so we can write the portfolio price using the
stock prices at time 0, S(1)

0 and S(2)
0 , and the bond price at time 0,

e−rT . We get

Portfolio0 = N1S(1)
0 − N2S(2)

0 + NBe−rT .

Similarly, at time t = H we can write the portfolio price using the stock
prices at time H, S(1)

H and S(2)
H , and the bond price at time H, e−r(T−H).

PortfolioH = N1S(1)
H − N2S(2)

H + NBe−r(T−H).
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Then
LH = Portfolio0 − PortfolioH =

= N1(S
(1)
0 − S(1)

H )− N2(S
(2)
0 − S(2)

H )− NB(e−r(T−H) − e−rT )

The only random parts in this portfolio are S(1)
H and S(2)

H . Let us
consider

X = −N1S(1)
H + N2S(2)

H ,

K = N1S(1)
0 − N2S(2)

0 − NB(e−r(T−H) − e−rT ).

This way
LH = X + K

where X is random and K is deterministic.

X = −N1S(1)
H + N2S(2)

H

(c) 2012-24 Prof. D. Brigo SDEs in Financial Modelling Imperial College London 549 / 805



Exam 2 Problem 4. Risk measures - 2 stocks & Bachelier model

Mock Exam 2 VI

= −N1(S
(1)
0 + µ1H +

√
Hσ1N1) + N2(S

(2)
0 + µ2H +

√
Hσ2N2)

Then
LH = X + K = −N1(µ1H +

√
Hσ1N1)+

+N2(µ2H +
√

Hσ2N2)− NB(e−r(T−H) − e−rT ) =

= Z + C

where
Z = −N1

√
Hσ1N1 + N2

√
Hσ2N2

C = −N1µ1H + N2µ2H − NB(e−r(T−H) − e−rT ).

Z is random while C is deterministic. Let’s derive the distribution of Z .
If N1 is a standard normal, also −N1 is a standard normal. We can
thus say that
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Z1 := −N1
√

Hσ1N1 = N1
√

Hσ1(−N1) ∼

∼ Normal1(0,N2
1 Hσ2

1)

and
Z2 := N2

√
Hσ2N2 ∼ Normal2(0,N2

2 Hσ2
2).

As the two normals are independent,

Z = Z1 + Z2 = Normal1(0,N2
1 Hσ2

1) + Normal2(0,N2
2 Hσ2

2) ∼

∼ Normal(0,N2
1 Hσ2

1 + N2
2 Hσ2

2) ∼
√

N2
1 Hσ2

1 + N2
2 Hσ2

2 Normal(0,1)

as the sum of two independent normals is a normal with mean the sum
of the means and with vaiance the sum of variances.
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As LH = Z + C, we get

LH ∼ C +
√

N2
1 Hσ2

1 + N2
2 Hσ2

2 Normal(0,1)

We can now calculate

α = P[LH < q] = P
[
C +

√
N2

1 Hσ2
1 + N2

2 Hσ2
2 Normal(0,1) < q

]

= P

Normal(0,1) <
q − C√

N2
1 Hσ2

1 + N2
2 Hσ2

2



= Φ

 q − C√
N2

1 Hσ2
1 + N2

2 Hσ2
2

 .
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From

α = Φ

 q − C√
N2

1 Hσ2
1 + N2

2 Hσ2
2


apply Φ−1 to both sides to get

Φ−1(α) =
q − C√

N2
1 Hσ2

1 + N2
2 Hσ2

2

and q = VaRα,H = Φ−1(α)
√

N2
1 Hσ2

1 + N2
2 Hσ2

2 + C

and, recalling the expression of C,

VaRα,H = Φ−1(α)
√

N2
1 Hσ2

1 + N2
2 Hσ2

2+
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−N1µ1H + N2µ2H − NB(e−r(T−H) − e−rT ).

Now recall that we are assuming zero interest rates, r = 0. This means
that the VaR is

VaRα,H = Φ−1(α)
√

N2
1 Hσ2

1 + N2
2 Hσ2

2 − N1µ1H + N2µ2H.

In other terms, the bond component of VaR

NB(e−r(T−H) − e−rT ) = NB(1 − 1) = 0

and this is due to the interest rate being 0. Indeed, with zero interest
rates the bond has constant value

P(t ,T ) = e−r(T−t) = e0 = 1
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so that holding a bond position adds no risk, as the bond never
changes value.

b) Thinking of the Barings collapse, we see what kind of positions
would lead to a huge VaR.
We first assume the position in the first stock to be very large
compared to the other two positions. In other terms

N1 >> N2, N1 >> NB.

write
VaRα,H = Φ−1(α)N1

√
Hσ2

1 + (N2/N1)2Hσ2
2+

−N1

(
µ1H − N2

N1
µ2H +

NB

N1
(e−r(T−H) − e−rT )

)
.
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As N1 >> N2, N1 >> NB, the ratios N2/N1 and NB/N1 will be close to
0. In the limits where N1 is extremely large these ratios are negligible,
and the VaR becomes close to

VaRα,H ≈ Φ−1(α)N1

√
Hσ2

1 − N1µ1H = N1
√

H(Φ−1(α)σ1 − µ1
√

H).

A very large positive VaR is dangerous, while a very negative VaR
would be good. Therefore, all depends on the sign of
Φ−1(α)σ1 − µ1

√
H. If this is positive, namely σ1 > µ1

√
H

Φ−1(α)
, then very

large N1 will be very dangerous, leading to large potential losses.
As an example, suppose we are taking a 99% confidence VaR, with a
1 year risk horizon. H = 1y , α = 0.99. We have Φ−1(0.99) = 2.33 and
we are in danger with large N1 if

σ1 >
µ1

2.33
or µ1 < 2.33σ1.
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So if the instantaneous trend (drift) of the first stock is smaller than a
given proportion 2.33 of the volatility of the same stock, we can be in
trouble. Note that we are long the first stock, so if the first stock goes
up we are good, whereas if it goes down we face a loss. The stock is
more likely to go up if its instantaneous growth rate, or drift, is positive
and large. Indeed, we see that if µ1 ≥ 2.33σ1 our VaR will be zero or
negative even for very large N1, meaning that we are not in trouble.
This would be because our huge position N1 is on a stock that has
positive trend that dominates the volatility (times 2.33) of that stock. So
we expect the stock to grow rather than decrease, statistically, and we
can have a negative or zero VaR from this long position.
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A similar analysis carries out when N2 is exceedingly large compared
to N1 and N2. We get

N2 >> N1, N2 >> NB.

Write
VaRα,H = Φ−1(α)N2

√
(N1/N2)2Hσ2

1 + Hσ2
2+

+N2

(
−N1

N2
µ1H + µ2H − NB

N2
(e−r(T−H) − e−rT )

)
.

As N2 >> N1, N2 >> NB, the ratios N1/N2 and NB/N2 will be close to
0. In the limits where N2 is extremely large these ratios are negligible,
and the VaR becomes close to

VaRα,H ≈ Φ−1(α)N2

√
Hσ2

2 + N2µ2H = N2
√

H(Φ−1(α)σ2 + µ2
√

H).
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The dangerous situation is when VaR is positive and very large. This
now happens in all cases, if we assume that both the volatility and the
expected growth term (drift) µ2 are positive.
The risk is only absent if we have a negative term

Φ−1(α)σ2 + µ2
√

H < 0 ⇐⇒ µ2 < −Φ−1(α)σ2√
H

.

We see that µ would have to be negative and below a negative value
proportional to the volatility for the position. Again, if α = 0.99 and
H = 1 we get that VaR is negative or zero (no danger) if

µ2 < −2.33σ2.

So extremely large positions in the second stock with small positions in
the first stock and the bond can lead to extremely large VaR in all
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cases, unless the drift of the second stock is negative and below a
given negative proportion of the volatility.
Indeed, note that we are short the second stock, so that we will face a
huge loss if the second stock increases and we will avoid the loss if the
second stock goes down. For the stock to go down, statistically, it
needs a negative drift and this has to be below a given proportion of
the volatility.

Finally, we consider the case where NB >> N1, NB >> N2.

VaRα,H = NB

Φ−1(α)

√(
N1

NB

)2

Hσ2
1 +

(
N2

NB

)2

Hσ2
2+

−N1

NB
µ1H +

N2

NB
µ2H − (e−r(T−H) − e−rT )

)
.
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We see that as NB grows exceedinly large compared to N1 and N2 we
get

VaRα,H ≈ −NB

(
e−r(T−H) − e−rT

)
= −NBe−rT (erH − 1).

Now we assumed r = 0, so this last term is zero, and the VaR is zero.
There is no risk in holding very large bond positions with zero interest
rates. What would happen if r > 0? This is not required for the
solution, but let’s discuss it anyway. If r > 0 and we are left only with
the bond position, this would give us always a negative VaR, meaning
no danger, given that the term in brackets is always positive, given
H > 0 and r > 0. Indeed, as we have a long position in the bond and
the bond always increases value in time, as P(t ,T ) = e−r(T−t) is
increasing in t for r > 0, we are good.
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Hence a long bond position with zero or positive rates is never
dangerous for VaR in the modeling context of this problem. Negative
rates, on the other hand, r < 0, would make the position dangerous.
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Consider the Ito SDE

dXt =
1
3
(Xt)

1/3dt + (Xt)
2/3dWt , X0 = x0

where the initial condition is a deterministic constant.
a) Do not try to prove existence and uniqueness of a solution a priori,
invoking a theorem. Try to find one explicit solution using calculus and
then check it is fine a posteriori. Hint: you may tranform in Stratonovich
form and then use separation of variables and / or change of variables.
b) Check a posteriori that the solution you found satisfies the given Ito
SDE.
c) Take the case X0 = 0. Show that the solution is not unque by
providing a second solution. [Hint: you can find easily a constant
second solution in this case.] Why was it reasonable not to expect
uniqueness in the first place?
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Problem 1: Solutions.
a) Consider

dXt =
1
3
(Xt)

1/3dt + (Xt)
2/3dWt , X0 = x0.

σ(x) = (x)2/3. The equivalent Stratonovich SDE is obtained by
changing the drift by

1
3

x1/3 → 1
3

x1/3 − 1
2
σ(x)

d
dx

σ(x) =

=
1
3

x1/3 − 1
2
(x)2/3 2

3
x−1/3 =

1
3
(x)1/3 − 1

3
(x)1/3 = 0.

So the equivlent Stratonovich SDE has zero drift,

dXt = X 2/3
t ◦ dWt .
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Now we know that the Stratonovich SDE obeys the formal rules of
calculus. Let’s try to solve the SDE by separating variables:

dXt

X 2/3
t

= 1 ◦ dWt

Integrate both sides ∫ Xt

X0

dX
X 2/3 =

∫ t

0
1 ◦ dWt

leading to
3(X 1/3

t − X 1/3
0 ) = Wt

and therefore
X 1/3

t =
Wt

3
+ X 1/3

0
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Taking the cube on both sides, our solution is

Xt =

(
X0

1/3 +
Wt

3

)3

.

b) Let’s check this is correct. Write

Xt =

(
X0

1/3 +
Wt

3

)3

= Z 3
t , Zt = X0

1/3 +
Wt

3
.

Let’s differentiate Xt as a function of Zt using Ito’s formula.

dXt = 3Z 2dZ +
1
2

6Z dZdZ = 3Z 2dZ + 3Z dZdZ
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i.e.
dXt = 3Z 2dZ +

1
3

Ztdt

As X = Z 3, we have Z = X 1/3 and

dXt = 3X 2/3
t d

(
X0

1/3 +
Wt

3

)
︸ ︷︷ ︸

Zt

+
1
3

X 1/3
t dt

or
dXt =

1
3

X 1/3
t dt + X 2/3

t dWt

which is our initial Ito SDE.
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c) Consider

dXt =
1
3
(Xt)

1/3dt + (Xt)
2/3dWt , X0 = 0.

Let’s try a constant solution Xt = k , for a constant k . Given that X0 = 0
and that the solution is constant in time, we need to have k = 0. Then
dXt = dk = d0 = 0 and the SDE reads

0 =
1
3
(0)1/3dt + (0)2/3dWt

leading to the identity
0 = 0
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so that the equation is satisfied and indeed Xt = 0 is a solution. Hence
in the case X0 = 0 we have at least two solutions: the previous solution
we found

Xt =

(
X0

1/3 +
Wt

3

)3

=

(
Wt

3

)3

.

The new solution we found is

Xt = 0.

The two solutions are clearly different.
It was reasonable not to expect uniqueness as the drift and diffusion
coefficients x1/3 and x2/3 do not satisfy the Lipschitz plus linear growth
condition. In particular, note that the coefficients do not admit first
derivative in zero, as the derivative grows larger and larger as we
approach zero from either direction. This means the growth near zero
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for cubic root functions is much stronger than linear. We therefore don’t
expect to have both existence and uniqueness to be guaranteed.
Indeed, while we found existence, there is no uniqueness.
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Problem 2. Consider an asset or Nothing option (ANO) and the related
cash-or-nothing option (CNO) with final maturity T and strike K on an
equity stock with price S in a market with constant and deterministic
interest rates r ≥ 0. Define Y AN = ST 1{ST>K}, Y CN = K 1{ST>K} as the
final payoff of the ANO and CNO options at maturity T , respectively.
Assume that the stock price S follows a Black Scholes model, so that it
is a geometric Brownian motion under the risk neutral measure, with
volatility σ and with deterministic initial value s0 at time 0, namely

dSt = rStdt + σStdWt , S0 = s0

where r , σ are positive constants and W is a brownian motion under
the risk neutral measure Q.
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a) Draw the payoffs of the ANO and CNO as functions of the
underlying stock ST . Discuss what kind of investor would find a ANO
attractive and what investor would find a CNO attractive and why.
b) Consider the payoff of a portfolio long one ANO and short one CNO
on the same stock with the same strike K and maturity T . Is this
portfolio payoff equivalent to a familiar option payoff? Which option?
Show the detailed reasoning.
c) Derive a formula for the price of the CNO.
d) Derive a formula for the price of the ANO. Hint: you may be helped
by combining solutions of b) and c) above.
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Problem 2 Solutions.
a) The ANO payoff is

Y AN = ST 1{ST>K} =

{
ST if ST > K
0 if ST ≤ K

.

The CNO payoff is

Y CN = K 1{ST>K} =

{
K if ST > K
0 if ST ≤ K

.

The ANO is an option that pays the stock at maturity only if the stock is
above a threshold K , and pays nothing otherwise. Clearly, this is an
option that is attractive to someone who foresees the stock to grow or
stay above the level K in the future. Here are two examples of
investors who would be interested in a ANO, both valid as an answer.
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(i) ANO can be used by someone who is short the stock. Suppose you
are short selling the stock with maturity T . At time T , you will have to
pay ST times the amount of stock you have been short-selling to the
client. If ST grows too much, you will have to pay too much money. If
you are not comfortable paying stock prices above the level K , you can
buy an amount of ANO with strike K equal to the amount of stock you
have been short selling. This way, at maturity, if ST is above K , you will
receive ST from the ANO you purchased and you can pay your client
to whom you owe ST using the ANO income. If ST is below K the
payment you have to make to your client is below the threshold level K
and you are ok, which is fine since in this case the ANO gives you
nothing.

(ii) ANO can also be a speculative investment for a trader who strongly
believes the stock price will grow above K . Why would such a trader
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prefer the ANO to directly buying the stock? This is because the ANO
will be cheaper. Indeed, the stock will pay ST at time T in any market
condition. The ANO will pay the stock at time T also as ST but only if
ST > K . In this sense the ANO is less likely to pay than the stock itself,
because for ST ≤ K the stock will still pay ST but the ANO will pay 0,
whereas for ST > K they both pay ST . So the payoff of the ANO is
lower or equal to the payoff of the stock at maturity T in all scenarios,
and therefore the ANO price will be smaller than the stock price. Thus
a speculative investor who wants to speculate on the stock, and is
confident this will rise above K , can buy a ANO, which is cheaper than
the stock itself.
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For the CNO we provide two examples but one is enough.
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(i) The CNO is like a bond, it gives you a constant payoff K at maturity
but only if the stock is above a level K . This will be attractive to people
who are confident the stock will be above K at maturity T . Note that
the CNO is less expensive that a zero coupon bond with the same
maturity and notional K . The bond payoff is K at maturity always,
whereas the CNO will be K only if ST > K . This will translate in a
lower price of the CNO than the bond, because there are scenarios
where the CNO will pay nothing, whereas the bond will always pay K
and hence is worth more.

(ii) The CNO can be sold to raise cash at time 0 (cashing the initial
CNO price) by an investor who is confident that the stock price will
never exceed K . This way, the investor cashes in the option price at
time 0 and, if they are right and ST ≤ K , they will pay nothing at
maturity, realizing a profit.
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b) The portfolio payoff would be

Y = ST 1{ST>K}−K 1{ST>K} = (ST−K )1{ST>K} = (ST−K )1{ST−K>0} = . . .

This latest payoff is equal to S − K if S − K is positive, and zero
otherwise. This is a call option:

. . . = (ST − K )+.

c) Compute

V CN
BS (0) = EQ

[
e−rT K 1{ST>K}

]
= e−rT KEQ [1{ST>K}

]
= e−rT KQ(ST > K )
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since from basic probability we know that EQ[1A] = Q(A). We are now
left with computing Q(ST > K ). We recall the SDE for S under the risk
neutral measure Q:

dSt = rStdt + σStdWt , S0.

Ito’s formula for the natural logarithm lnSt gives easily (exercise, write
this in detail)

d ln(St) = (r − σ2/2)dt + σdWt

from which, writing in integral form and recalling that W0 = 0

lnST − lnS0 = (r − σ2/2)T + σWT ∼ (r − σ2/2)T + σ
√

TN (0,1)

Now we write
Q(ST > K ) = Q(lnST > lnK ) = ...

(c) 2012-24 Prof. D. Brigo SDEs in Financial Modelling Imperial College London 579 / 805



Exam 3 Problem 2: Asset/Cash or nothing options in Black Scholes

Mock Exam 3 X

because logarithm is an increasing function; by substituing our
expression for lnST

... = Q(lnS0 + (r − σ2/2)T + σ
√

TN (0,1) > lnK ) =

= Q(σ
√

TN (0,1) > − ln(S0/K )− (r − σ2/2)T ) =

= Q
(
−N (0,1) <

ln(S0/K ) + (r − σ2/2)T
σ
√

T

)
=

= Φ

(
ln(S0/K ) + (r − σ2/2)T

σ
√

T

)
= Φ(d2(0))

where Φ is the cdf of the standard normal and where we used the fact
that the opposite of a standard normal is still a standard normal.
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The final price of the CNO is

V CN
BS (0) = e−rT KΦ(d2).

We can now confirm that this is smaller than the price of a bond with
maturity T and notional K , an mentioned in point a)(i) for the CNO.
Indeed, this bond would be worth

VBond = EQ[e−rT K ] = e−rT K > e−rT KΦ(d2) = V CN
BS (0)

as Φ is smaller than one, being a CFD.

d) We have shown earlier that the payoff of a ANO minus the payoff of
a CNO is equal to a call option,

(ST − K )+ = Y AN − Y CN .
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It follows that EQ (e−rT (ST − K )+
)
=

= EQ
(

e−rT (Y AN − Y CN)
)
= EQ

(
e−rT Y AN

)
− EQ

(
e−rT Y CN

)
or

V CALL
BS (0) = V AN

BS (0)− V CN
BS (0).

Going back to our formula for the CNO we know that

V CN
BS (0) = e−rT KQ(ST > K ) = e−rT KΦ(d2(0)).

Recall the BS formula for a Call option, written at time 0

V CALL
BS (0) = S0Φ(d1)− e−rT KΦ(d2).

Hence
V CALL

BS (0) = S0Φ(d1(0))− V CN
BS (0).
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Since we have seen a few lines above than

V CALL
BS (0) = V AN

BS (0)− V CN
BS (0)

it follows immediately by inspection that

V AN
BS (0) = S0Φ(d1(0)).

We can now verify that indeed the price of a ANO is smaller than the
price of the stock, as we mentioned in point a)(ii) for the ANO.
Indeed, S0Φ(d1(0)) < S0 because the normal CDF Φ is always smaller
than 1 for a finite argument d1(0).
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Problem 3. Asset/Cash or nothing options with smile.
Consider a cash-or-nothing option (CNO) with final maturity T and
strike K on an equity stock with price S in a market with deterministic
interest rates r ≥ 0. Define Y CN = K 1{ST>K} as the final payoff of the
CNO option at maturity T .
a) If we observe a V shaped smile for the stock in the market, with the
minimum at the at-the-money-forward level, choose a volatility smile
model that is suited to this situation and calculate the price of the CNO
with this model.
b) Calculate the Delta of the CNO price, namely the partial derivative
of the CNO price with respect to the initial stock price S0.
c) Analyze the sign of Delta and draw some conclusions on the
behaviour of the CNO price with respect to the underlying asset.
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d) Assume now that the CNO is at-the-money-forward, with
K = S0erT . Specialize the formulas for the price and the Delta to this
situation and discuss the changes.
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Problem 3 solutions.
a) The only local volatility model we have seen that has been able to
obtain a V -shaped smile is the mixture diffusion dynamics model
(MDD), and we know this model produces a smile with a minimum
occurring at-the-money-forward. Recall the MDD:

dSt = rStdt + σmix(t ,St)St dWt , S0 = s0

where σmix(t ,St) is built in such a way that the distribution of St is a
mixture of distributions of the lognormals pi,t , or in formula

pSt (y) =: pt(y) =
N∑

i=1

λipi,t(y) =
N∑

i=1

λip
lognormal
t ,σi

(y)
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where λi ∈ (0,1),
∑N

i=1 λi = 1 and

plognormal
t ,σi

(x) =
1

xσi
√

t 2π
exp

{
− 1

2σ2
i t

[
ln

x
S0

− rt + 1
2σ

2
i t
]2
}
.

The λi are the weights of the different lognormal densities pi,t on the
mixture.
We can take just N = 2, as we have seen in numerical examples that
this is already enough to generate a V -shaped smile. We will thus
have λ1 and λ2 = 1 − λ1, as lambdas add up to 1, and we will only
have two sigmas, σ1 and σ2. The density of this MDD model will be a
mixture of two densities

pSt (y) = λ1plognormal
t ,σ1

(y) + (1 − λ1)p
lognormal
t ,σ2

(y)
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Recall also the expression for σmix(t , y)2 = 1∑2
j=1 λj pj,t (y)

∑2
i=1 λiσ

2
i pi,t(y).

Now we calculate the CNO price with this model.

V CNO
mix = e−rT EQ {K 1{ST>K}

}
= e−rT

∫ +∞

0
K 1{y>K}pST (y)dy = e−rT

∫ +∞

0
K 1{y>K}

2∑
i=1

λipi,T (y)dy

=
2∑

i=1

λi

∫ +∞

0
e−rT K 1{y>K}pi,T (y)dy =

2∑
i=1

λiV CN
BS (0,S0,K ,T , σi , r)

as the last integral is simply the expectation of the discount CNO payoff
under a Black Scholes model with volatility σi . This confirms that the
price of the CNO in the MDD is a linear (actually convex) combination
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of Black Scholes prices of CNOs with volatilities σ1, σ2 with weights
λ1, λ2 = 1 − λ1. We know this holds for every simple claim in MDD.
So the option price becomes a mix of two prices with the given weights
and volatilities.
To complete the formula, we now need to calculate the price of the
CNO in a Black Scholes model. [This has been done in Problem 2, but
rewrite the derivation here.] We have

V CN
BS (0,S0,K ,T , σi , r) = Ke−rTΦ(d2(σi)),

d2(σi) =
ln S0

K +
(

r − σ2
i

2

)
T

σi
√

T
.
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So the price is finally

V CNO
mix =

2∑
i=1

λiKe−rTΦ(d2(σi)).

b) For the delta, recall that due to the linearity of differentiation, the
same convex combination we found for the CNO price applies also to
the CNO Delta. Indeed, differentiate both sides of

V CNO
mix =

2∑
i=1

λiKe−rTΦ(d2(σi))
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by S0 = s0, obtaining

∆CNO
mix =

∂V CNO
mix

∂S0
=

2∑
i=1

λiKe−rT ∂

∂S0
Φ(d2(σi)) =

=
2∑

i=1

λiKe−rTϕ(d2(σi))
∂

∂S0
(d2(σi)) =

=
2∑

i=1

λiKe−rTϕ(d2(σi))
1

S0σi
√

T
,

where we have used d
dx Φ(x) = ϕ(x), the probability density function of

the standard normal, and the chain rule
d

dS0
Φ(f (S0)) = ϕ(f (S0))

df
dS0

(S0).
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c) Recall that we found

∆CNO
mix =

2∑
i=1

λiKe−rTϕ(d2(σi))
1

S0σi
√

T
.

As λ ≥ 0,K > 0,e−rT > 0, ϕ > 0 and S0 > 0, σi > 0 we get that

∆CNO
mix > 0.

This means that V CNO
mix is increasing with S0 as it has a positive

derivative wrt S0. This is intuitive: the option pays K only if ST > K . If
we increase S0, ceteris paribus, scenarios for ST will become larger,
and it will be more likely that ST > K and that the option pays K , so
the option will be worth more.
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d) In case K = S0erT we get a special value for

d2(σi ,K = S0erT ) =
ln S0

S0erT +
(

r − σ2
i

2

)
T

σi
√

T
= −σi

2

√
T .

Then

V CNO
mix |ATMF =

2∑
i=1

λiKe−rTΦ(d2(σi ,K = S0e−rT )) =
2∑

i=1

λiS0Φ
(
−σi

2

√
T
)
.

The ATMF price depends on S0 only linearly now, while d2 does not
depend on S0 anymore. To calculate Delta in this special case, we can
specialize the previous Delta formula to K = S0erT . We obtain
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∆CNO
mix ,ATMF =

2∑
i=1

λiS0erT e−rTϕ(d2(σi ,K = S0erT ))
1

S0σi
√

T

=
2∑

i=1

λiϕ
(
−σi

2

√
T
) 1
σi
√

T
.

The ATMF Delta does not depend on S0, so the ATMF option
sensitivity to S0 will be the same for all S0’s.
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Problem 4: Risk Measures.
Consider the dynamics of an equity asset price S in the Bachelier
model, under both probability measures P (the Physical or Historical
measure) and Q (the risk neutral measure), with stock dynamics
dSt = µdt + σdWt , with µ and σ deterministic constant, σ > 0 and
where W is a Brownian motion under P. Assume the risk-free interest
rate is equal to zero, r = 0.

a) Write the risk neutral dynamics of the stock.
b) Define Expected Shortfall (ES) for a time horizon T with confidence
level α for a general portfolio.

c) Compute ES for horizon T and confidence level α for a portfolio with
N units of equity, where the equity price follows the Bachelier process
above.
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d) Explain one drawback of ES as a risk measure

e) Is the equity dynamics you used for ES the same you would have
used to price an equity call option in the Bachelier model?
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Problem 4: Solutions.
a) We know that, under the risk neutral measure, the drift of a stock is
rSt . Since r = 0, our model will have zero drift.

dSt = σdW Q
t , s0

where W Q is a Brownian motion under Q.
b) To define ES we need first to define value at Risk (VaR). VaR is
related to the potential loss on our portfolio over the time horizon T .
Define this loss LT as the difference between the value of the portfolio
today (time 0) and in the future T .

LT = Portfolio0 − PortfolioT .
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VaR with horizon T and confidence level α is defined as that number
q = qT ,α such that

P[LT < q] = α

so that our loss at time T is smaller than q with P-probability α. Recall
that ES is then defined as the expectation of the loss conditional on the
loss exceeding VaR:

EST ,α = EP[LT |LT > VaRT ,α] =
EP[LT 1{LT>VaRT ,α}

]

1 − α

[see lecture notes for the steps to get to the last expression]
c) In the Bachelier model the equity process follows the dynamics

dSt = µ dt + σ dWt , s0,
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where µ, σ are positive constants and W is a Brownian motion under
the physical measure P.
We know that ST can be written as

ST = S0 + µT + σWT , (30)

and recalling the distribution of WT ∼
√

TN (0,1),

ST = s0 + µT + σ
√

TN (0,1) (31)

so that in our case LT = N(S0 − ST ), namely

LT = N
(

S0 − (S0 + µT + σ
√

TN (0,1))
)

= N
(
−µT − σ

√
TN (0,1)

)
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Hence, if q = VaRT ,α, we get

α = P[LT < q] = P
[
N
(
−µT − σ

√
TN (0,1)

)
< q

]
α = P

[
−N (0,1) <

q
N + µT

σ
√

T

]
= Φ

(
q
N + µT

σ
√

T

)
where we used the fact that −N (0,1) is still distributed as the standard
normal. Then, taking Φ−1 on both sides,

Φ−1(α) =
q
N + µT

σ
√

T
(32)

and therefore
q = N(−µT + σ

√
TΦ−1(α)).
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This is our VaRT ,α for the stock position. To compute ES we need to
look at

EST ,α =
EP[LT 1{LT>VaRT ,α}

]

1 − α

=
EP[N(S0 − ST )1{N(S0−ST )>VaRT ,α}

]

1 − α

=
EP[N

(
−µT − σ

√
TN (0,1)

)
1{N(−µT−σ

√
TN (0,1))>q}]

1 − α
= . . .

We can compute the expectation through an integral:

EP[N
(
−µT − σ

√
TN (0,1)

)
1{N(−µT−σ

√
TN (0,1))>q}] =
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=

∫ +∞

−∞

[
N
(
−µT − σ

√
Tx
)

1{N(−µT−σ
√

Tx)>q}

]
pN (0,1)(x)dx =

=

∫ +∞

−∞
N
(
−µT − σ

√
Tx
)

1{x<(−q−NµT )/(Nσ
√

T )}
1√
2π

e− x2
2 dx

=

∫ (−q−NµT )/(Nσ
√

T )

−∞
N
(
−µT − σ

√
Tx
) 1√

2π
e− x2

2 dx

= −NµT
∫ −q−NµT

Nσ
√

T

−∞

1√
2π

e− x2
2 dx − Nσ

√
T
∫ −q−NµT

Nσ
√

T

−∞
x

1√
2π

e− x2
2 dx

= −NµTΦ

(
−q − NµT

Nσ
√

T

)
− Nσ

√
T
∫ (−q−NµT )/(Nσ

√
T )

−∞
x

1√
2π

e− x2
2 dx

= −NµTΦ

(
−q − NµT

Nσ
√

T

)
+ Nσ

√
T
∫ (−q−NµT )/(Nσ

√
T )

−∞

1√
2π

d
(

e− x2
2

)
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= −NµTΦ

(
−q − NµT

Nσ
√

T

)
+ Nσ

√
T
(

1√
2π

e− x2
2

)
|
−q−NµT

Nσ
√

T
−∞ =

= −NµTΦ

(
−q − NµT

Nσ
√

T

)
+ Nσ

√
T (ϕ(x)) |

−q−NµT
Nσ

√
T

−∞ =

−NµTΦ

(
−q − NµT

Nσ
√

T

)
+ Nσ

√
Tϕ

(
−q − NµT

Nσ
√

T

)
where ϕ is the density of the standard normal,

ϕ(x) = pN (0,1)(x) = 1√
2π

e− x2
2 and we used that limx→−∞ ϕ(x) = 0.

Substituting back we get

. . . = EST ,α =
−NµTΦ

(
−q−NµT

Nσ
√

T

)
+ Nσ

√
Tϕ
(
−q−NµT

Nσ
√

T

)
1 − α
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Taking into account Equation (32) we can further simplify this last
expression into

. . . =
−NµTΦ

(
−Φ−1(α)

)
+ Nσ

√
Tϕ
(
−Φ−1(α)

)
1 − α

= . . .

and using
Φ(−Φ−1(α)) = 1 − Φ(Φ−1(α)) = 1 − α

we get

. . . = −NµT +
Nσ

√
Tϕ
(
−Φ−1(α)

)
1 − α
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d) ES does not completely look at the tail structure of the Loss, but
does so only in expectation. So if 99% VaR is 10 billions, we can have
the remaining 1% loss concentrated

(i) either on 10.1 billions,
(ii) or on 10 trillions,

as two stylized cases, without VaR being able to tell us anything on
whether we are in case (i) or (ii).
ES does a little better than VaR, in that it averages the tail. The
average in case (ii) will be much larger than the average of case (i),
thus alerting one to more risk in case (ii). Still, it won’t tell us exactly
how the tail risk looks like or where exactly the loss is concentrated on
the tail.
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Another problem of ES is that it is homogeneous with respect to the
portfolio size. Namely, if k is a positive constant, then
VaR(k Portfolio) = k VaR(Portfolio)
and
ES(k Portfolio) = k ES(Portfolio).
This is unrealistic and completely neglects liquidity risk. Buying one
million of shares is more than one million times risky than buying one
share. Placing the order for one million shares will move the whole
market and change the share price (theory of maket impact/market
microstructure) with potential additional losses due to market impact,
whereas placing the order for one share willl not move the market.
Liquidity risk strongly disagrees with the homogeneous assumption.

e) No the dynamics is not the same, to price an option we need to use
the risk neutral dynamics, where the drift parameter µ of S is replaced
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by the risk free rate r = 0 of the bank account. So to price an option
we need to use the dynamics we found in point a). To compute value
at risk or expected shortfall the dynamics that is relevant up to the risk
horizon is the dynamics under P, i.e. the dynamics with drift µ.
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Problem 1: SDEs. Consider the SDE

dXt = v2Xt(1 + X 2
t )dt + v(1 + X 2

t )dWt , X0 = x0.

where the initial condition is a deterministic constant and v is a positive
real constant.
a) Do not try to prove existence and uniqueness of a solution a priori,
invoking an existence/uniqueness theorem. Try to find one explicit
solution using purely formal calculus, without worring about explosion
or singular points of the solutions. Hint: you may tranform in
Stratonovich form and then use separation of variables and / or
change of variables.
b) Check a posteriori that the solution you found satisfies the original
Ito SDE, again in a purely formal sense.
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c) Now we are not satisfied with a purely formal approach and we wish
to discuss the solution we found. Explain whether this is a satisfactory
solution in general and highlight problems.
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Problem 1: Solutions.
a) Consider

dXt = v2Xt(1 + X 2
t )dt + v(1 + X 2

t )dWt , X0 = x0.

The diffusion coefficient is σ(x) = v(1 + x2). The equivalent
Stratonovich SDE is obtained by changing the drift by

v2x(1 + x2) → v2x(1 + x2)− 1
2
σ(x)

d
dx

σ(x) =

= v2x(1 + x2)− 1
2

v(1 + x2)
d
dx

(v(1 + x2)) =

= v2x(1 + x2)− 1
2

v(1 + x2)2vx = 0.
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So the equivlent Stratonovich SDE has zero drift,

dXt = v(1 + X 2
t ) ◦ dWt .

Now we know that the Stratonovich SDE obeys the formal rules of
calculus. Let’s try to solve the SDE formally, by separating variables:

dXt

1 + X 2
t
= v ◦ dWt .

Dividing by 1 + X 2 is not a problem, as this is always strictly positive.
Integrate both sides ∫ Xt

X0

dX
1 + X 2 =

∫ t

0
v ◦ dWt .
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The Stratonovich integral is the same as an Ito one, as the integrand is
a constant. Thus∫ t

0
v ◦ dWt =

∫ t

0
vdWt = v(Wt − W0) = vWt .

Recalling the basic integral∫ x1

x0

1
1 + x2 dx = arctan(x1)− arctan(x0)

where arctan is the inverse of the tangent trigonometric function, we
obtain

arctan(Xt)− arctan(x0) = vWt ,
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Note that in general there will not be any guarantee that arctan(Xt) is
between −π/2 and π/2, given that the Brownian motion W can take
arbitrarily large values. Still, let us proceed formally.

arctan(Xt) = arctan(x0) + vWt .

Taking the tangent on both sides we have

Xt = tan (arctan(x0) + vWt) .

b) Let’s check formally that Xt = tan (arctan(x0) + vWt) satisfies the
original Ito SDE.
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Set Zt = arctan(x0) + vWt , so that dZt = vdWt , and write the solution
as

Xt = tan(Zt).

Let’s differentiate both sides of the last equation above using Ito’s
formula. Recall that d tan(z)/dz = 1/ cos2(z),
d2 tan(z)/dz2 = 2 sin(z)/ cos3(z) = 2 tan(z)/ cos2(z). Then

dXt =
1

cos2(Z )
dZt +

1
2

2
tan(Zt)

cos2(Zt)
dZ dZ

i.e.
dXt =

1
cos2(Z )

vdWt +
Xt

cos2(Zt)
v2dt
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as tanZ = X and dZ dZ = vdWvdW = v2 dt . To complete our
calculations we need to evaluate cos2(Z ). To this end, note that

tan(Z ) =
sinZ
cosZ

=⇒ tan2(Z ) =
sin2 Z
cos2 Z

=
1 − cos2 Z
cos2 Z

leading to

tan2(Z ) =
1 − cos2 Z
cos2 Z

⇒ cos2 Z =
1

1 + tan2 Z

or
cos2 Z =

1
1 + tan2 Z

=
1

1 + X 2

as tanZ = X . Substituting in

dXt =
1

cos2(Z )
vdWt +

Xt

cos2(Zt)
v2dt
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we get
dXt = (1 + X 2

t )vdWt + Xt(1 + X 2
t )v

2dt

which is our original Ito SDE. We have thus shown that our solution
Xt = tan (arctan(x0) + vWt) satisfies formally the original Ito SDE.

c) The solution
Xt = tan (arctan(x0) + vWt)

has been derived by ignoring a number of potential problems. While
from a purely formal point of view its differential satisfies the Ito SDE
given initially, there are problems in claiming this is a valid solution.
Assume for simplicity that x0 = 0, so that arctan(x0) = 0 and

Xt = tan (vWt) .
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The tangent function is not defined when the argument of the function
is π/2 + nπ for any integer n. The solution Xt above is not defined in
the set

Bt =
{
ω ∈ Ω : vWs(ω) =

π

2
+ nπ, for some n ∈ Z and s ≤ t

}
.

Our solution will explode before time t in the set Bt , at the first time s
where vWs hits π/2 plus or minus integer multiples of π, where the
tangent diverges to ∞. We conclude we have not found a proper
solution avoiding explosion in finite time. There could still be a
possibility that the set Bt has zero probability, so that the SDE has a
solution that exists almost surely, in a set of probability 1. We show
now that this is not the case.
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We can try to compute the probability of explosion. Write Bt as

Bt =

{
ω ∈ Ω : Ws(ω) =

π
2 + nπ

v
, for some n ∈ Z & some s ≤ t

}
.

Write Bt as a union of sets for each n:

Bt =
⋃
n∈Z

{
ω ∈ Ω : Ws(ω) =

π
2 + nπ

v
, for some s ≤ t

}
=: ∪n∈ZAn

For a fixed natural number n̄ we have that

An̄ ⊂ ∪n∈ZAn = Bt ⇒ P[Bt ] ≥ P[An̄].

If we prove that An̄ has strictly positive probability, Bt will have strictly
positive probability too and so explosion will have a positive probability.
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P[An̄] = P
{
ω ∈ Ω : Ws(ω) =

π
2 + n̄π

v
, for some s ≤ t

}
= P

{
ω ∈ Ω : max

s∈[0,t]
Ws(ω) ≥

π
2 + n̄π

v

}
where we have used the fact that Wt , starting from W0 = 0 at time 0,
will hit π/2 + n̄π > 0 (n̄ ≥ 0) from below at a time s ≤ t if and only if
maxWs for s ∈ [0, t ] is above π/2+ n̄π. Without further tools we cannot
compute this probability, but we can argue that it will be positive, as it is
the probability that a continuous random variable taking values in
(−∞,+∞) is larger than a given real number.
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This calculation below is beyond the scope of our course and would
not be given at an exam, but it is possible to compute the law of
maxs∈[0,t] Ws(ω) using a reflection principle. The above probability is

P
[
ω ∈ Ω : |Wt | ≥

π
2 + n̄π

v

]
and this probability is strictly positive and can be computed using the
Gaussian law of Brownian motion. We thus see that there is a strictly
positive probability that our formal solution explodes in finite time.

Explosion could not be excluded a priori, because the sufficient
conditions guaranteeing existence and uniqueness are violated.
Indeed, our drift and diffusion coefficients have more than linear
growth. The drift has cubic growth and the diffusion coefficient has
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quadratic growth. This means we could not apply our theorem from
global existence and uniqueness, so we could not guarantee existence
and uniqueness a priori.

This problem shows that it is not enough to solve a SDE formally. To
find a real solution, one needs to check that the solution exists and is
unique, without eplosions or other problems.
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Problem 2: Option pricing and no arbitrage.
Consider the Black and Scholes basic economy given by a bank
account and a stock, whose prices are given respectively by

dBt = rBtdt , B0 = 1, dSt = µStdt + σStdWt , S0 = 1

where r , µ, σ are positive constants and W is a brownian motion under
the physical measure P.

Consider two options that are at the money forward, namely having
strike

K = S0erT ,

respectively a call option and a put option with maturity T and payout

(ST −K )+ = max(ST −K ,0) (Call), (K−ST )
+ = max(K−ST ,0) (Put).
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In this case, put call parity tells us that the initial value of the call
option, at time 0, must be equal to the initial value of the put option,
given that the forward contract value is zero (K is the at-the-money
forward strike that sets the forward price to zero).

a) Show that if this put-call parity condition is violated, and for example

CallPrice0 = PutPrice0 + X

for a positive amount X > 0, one has arbitrage.

b) Does the existence of arbitrage in point a) require the Black Scholes
model or is it more general?

c) If put-call parity is violated in the opposite direction, namely

CallPrice0 = PutPrice0 − X

with positive X , show that we still have arbitrage.
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SOLUTION.
a) Since the price of the call is larger than the one of the put when they
should actually be the same, we can try by buying a put and
short-selling a call, and buying an at the money forward contract to
balance put minus call at maturity. We also buy some bank account
with the difference between the call and the put at time 0.

We enter into one position in a put option at time 0, and short sell one
call option at time 0, both options with strike K and maturity T . We
also enter into a forward contract at the same maturity with strike K .
This means that we accept to receive ST − K at maturity (meaning that
if this quantity is positive we receive it, if it is negative we pay its
absolute value to our counterparty in the trade). We also buy an
amount X of bank account.

The cost of starting this strategy is:
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• We pay PutPrice0 to enter into the put option
• we receive CallPrice0 = PutPrice0 + X by short-selling the Call

option
• We pay X to buy a quantity X of bank account B0 at time 0.
• We pay nothing to enter into the forward contract since its initial

cost is S0 − Ke−rT = 0.
These four operations have a total cost of

PutPrice0︸ ︷︷ ︸
buy put option

−CallPrice0︸ ︷︷ ︸
sell call option

+ X︸︷︷︸
Buy X bank account

+ 0︸︷︷︸
enter fwd contract

= 0

where we used our assumption that CallPrice0 = PutPrice0 − X .
So it costs nothing setting up the strategy.
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Following the initial setup, we just wait. This clearly preserves the self
financing condition since we do not inject external funds or extracts
funds from the strategy.

At maturity, we have the following cash flows:
• We receive (K − ST )

+ from the Put option.
• We pay (ST − K )+ for the Call option we have been short-selling
• We receive ST − K from the forward contract
• We have XerT in the bank account.
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The total value of this strategy at T is hence

PutPayoutT − CallPayoutT + FwdContractPayoutT + XBT =

(K − ST )
+ − (ST − K )+ + ST − K + XerT =

= K − ST + ST − K + XerT = XerT > 0

So we have a self-financing trading strategy whose initial cost is zero
and that produces a positive final cash flow XerT in all scenarios.
Hence this is an arbitrage opportunity and the market is arbitrageable.

b) In the reasoning above, given that we are in the Black Scholes
model, the prices of the call and the put would be the Black Scholes
prices. However, this is used nowhere in the proof of arbitrage. Indeed,
the proof is completely general and would hold under any other model
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such as Bachelier, displaced diffusion, CEV etc. This reflects the fact
that put-call parity is model-independent, as it holds for all models, and
thus is not bound by the Black Scholes model.

c) Since the price of the call is smaller than the one of the put when
they should actually be the same, we can try by buying a call and
short-selling a put, and short–selling an at the money forward contract
to balance call minus put at maturity. We also buy some bank account
with the difference between the put and the call at time 0.

We enter into one position in a call option at time 0, and short sell one
put option at time 0, both options with strike K and maturity T . We also
short-sell a forward contract at the same maturity with strike K . This
means that we will pay the forward payoff ST − K at maturity (meaning
that if this quantity is positive we pay it, if it is negative we receive its
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absolute value from our counterparty in the trade). We also buy an
amount X of bank account.

The cost of starting this strategy is:

• We pay CallPrice0 to enter into the call option
• we receive PutPrice0 = CallPrice0 + X by short-selling the Put

option
• We pay X to buy a quantity X of bank account B0 at time 0.
• We pay or receive nothing to short-sell the forward contract since

its initial cost is S0 − Ke−rT = 0.
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These four operations have a total cost of

CallPrice0︸ ︷︷ ︸
buy call option

−PutPrice0︸ ︷︷ ︸
sell put option

+ X︸︷︷︸
Buy X bank account

+ 0︸︷︷︸
enter fwd contract

= 0

So it costs nothing setting up the strategy.
Following the initial setup, we just wait. This clearly preserves the self
financing condition since we do not inject external funds or extracts
funds from the strategy.

At maturity, we have the following cash flows:
• We receive (ST − K )+ from the call option.
• We pay (K − ST )

+ for the put option we have been short-selling
• We pay ST − K for the short-selling of the forward contract
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• We have XerT in the bank account.

The total value of this strategy at T is hence

CallPayoutT − PutPayoutT − FwdContractPayoutT + XBT =

(ST − K )+ − (K − ST )
+ − (ST − K ) + XerT =

= ST − K − (ST − K ) + XerT = XerT > 0

So we have a self-financing trading strategy whose initial cost is zero
and that produces a positive final cash flow XerT in all scenarios.
Hence this is an arbitrage opportunity and the market is arbitrageable.
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Problem 3: Smile modeling - butterfly spread
Consider a butterfly spread option on a stock S with maturity T and
initial value S0. This is a strategy based on buying one in-the-money
call option with a low strike price L = S0 − X , selling two at-the-money
call options with strike S0, and buying one out-of-the-money call option
with a higher strike price H = S0 + X , where X is a positive constant.
All options have maturity T .
a) Write the payoff of this product and draw it as a function of ST .
b) Who would buy this product? What are the views on the stock for a
client buying this product?
c) Compute the price of this product in a Black Scholes market where
the stock follows the dynamics

dSt = µStdt + σStdWt , S0 = s0
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with a deterministic positive s0 and where the risk free rate r is
assumed to be zero.
d) Compute the butterfly delta, namely the sensitivity of the butterfly
price with respect to the initial stock price S0.
e) Compute the butterfly price in a Bachelier model dSt = vdW Q

t ,
S0 = s0.
f) Compute the delta of the butterfly price, namely the sensitivity of the
price with respect to S0, in the Bachelier model.
g) Consider the limit situation when X ↓ 0. Deduce intuitively the price
of the butterfly by looking at the plot of the payoff and thinking what
happens to the plot when X ↓ 0. Check with a calculation for X ↓ 0
whether the Black and Scholes price and the Bachelier price for the
butterfly confirm this intuition.

Solutions.
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a) The total payoff at maturity T is thus

Y = (ST − L)+ − 2(ST − S0)
+ + (ST − H)+.

Let us write the payoff looking at different cases.

(i) If ST < L then all three options expire worthless and Y = 0.
(ii) If L < ST < S0 then the first option pays ST − L but all other options
expire worthless, so Y = ST − L = ST − (S0 − X ).
(iii) If S0 < ST < H then the first option pays us ST − L, the short
selling of the 2 at the money options will require us to pay 2(ST − S0),
while the last option expires worthless, so
Y = ST − L − 2(ST − S0) = 2S0 − L − ST = S0 + X − ST .
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(iv) If ST > H all options have positive payoff, and
Y = ST − L − 2(ST − S0) + ST − H = 2S0 − L − H =
S0 − L + S0 − H = X − X = 0.

We can thus draw the plot as
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b) From the plot we see that the payoff is non-zero only when the final
stock ST is between S0 − X and S0 + X . The maximum payoff is X ,
and the minimum is zero. Therefore this payoff does not allow for a
potentially unlimited profit like a call option or a straddle. Also, the
payoff exposes the client buying it to no potential loss, except for the
initial price paid to purchase it. However, this payoff will not be too
expensive to purchase, as the price of the two calls that are bought is
compensated by the price of the two calls that are sold.

c) As
Y = (ST − L)+ − 2(ST − S0)

+ + (ST − H)+,

it follows that

e−rT Y = e−rT (ST − L)+ − 2e−rT (ST − S0)
+ + e−rT (ST − H)+
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and

EQ[e−rT Y ] = EQ[e−rT (ST−L)+]−2EQ[e−rT (ST−S0)
+]+EQ[e−rT (ST−H)+]

or, in other terms,

V Butter
BS (0) = V Call

BS (0,K = L)− 2V Call
BS (0,K = S0) + V Call

BS (0,K = H).

Recalling that L = S0 − X , H = S0 + X and r = 0, and using the
formulas for Call options in Black scholes in this special case, we get
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V Butter
BS (0) = S0Φ

(
ln S0

S0−X + 1
2σ

2T

σ
√

T

)
−(S0−X )Φ

(
ln S0

S0−X − 1
2σ

2T

σ
√

T

)
+

−2S0Φ

(
1
2σ

2T

σ
√

T

)
+ 2S0Φ

(
−1

2σ
2T

σ
√

T

)
+

+S0Φ

(
ln S0

S0+X + 1
2σ

2T

σ
√

T

)
− (S0 + X )Φ

(
ln S0

S0+X − 1
2σ

2T

σ
√

T

)
.

The middle d1 and d2 terms can be simplified.
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d) Recall the delta of a call option in Black Scholes:
∆ = ∂

∂S0
V Call

BS (0) = Φ(d1). Given that, from point c),

V Butter
BS (0) = V Call

BS (0,K = L)− 2V Call
BS (0,K = S0) + V Call

BS (0,K = H)

we have

∂

∂S0
V Butter

BS =
∂

∂S0
V Call

BS (K = L)−2
∂

∂S0
V Call

BS (K = S0)+
∂

∂S0
V Call

BS (K = H)

= Φ

(
ln S0

S0−X + 1
2σ

2T

σ
√

T

)
− 2Φ

(
1
2σ

2T

σ
√

T

)
+Φ

(
ln S0

S0+X + 1
2σ

2T

σ
√

T

)
where the middle term can be simplified further.
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e) We recall the price of a call option in the Bachelier model:

V Call
BaM(0, s0,K ,T , σ) = (s0 − K )Φ

(
s0 − K
σ
√

T

)
+ σ

√
Tϕ

(
s0 − K
σ
√

T

)
,

where ϕ is the pdf of a standard normal. From our previous points, the
payoff Y of a butterfly satisfies

EQ[e−rT Y ] = EQ[e−rT (ST−L)+]−2EQ[e−rT (ST−S0)
+]+EQ[e−rT (ST−H)+]

or, if S follows the Bachelier model,

V Butter
BaM = V Butter

BaM (K = L)− 2V Butter
BaM (K = S0) + V Butter

BaM (K = H),

or, recalling r = 0 and L = S0 − X ,H = S0 + X

(c) 2012-24 Prof. D. Brigo SDEs in Financial Modelling Imperial College London 640 / 805



Exam 4 Problem 3: Smile modeling - butterfly spread in BS & Bachelier

Mock Exam 4 X

V Butter
BaM = XΦ

(
X

σ
√

T

)
+ σ

√
Tϕ

(
X

σ
√

T

)
−2σ

√
Tϕ (0)+

−XΦ

(
−X
σ
√

T

)
+ σ

√
Tϕ

(
−X
σ
√

T

)
Note that ϕ(0) = 1/

√
2π.

Recalling that Φ(−x) = 1 − Φ(x) and that ϕ(−x) = ϕ(x) we get

V Butter
BaM = X

(
2Φ
(

X
σ
√

T

)
− 1
)
− 2σ

√
T
(
ϕ(0)− ϕ

(
X

σ
√

T

))
Note that, as X is positive, Φ

(
X

σ
√

T

)
is calculated in a positive point

and is therefore larger than 1
2 , since Φ(0) = 1/2 and Φ is strictly
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increasing. It follows that 2Φ
(

X
σ
√

T

)
− 1 is larger than one, or that the

first term in the VBaM formula above is positive.
As concerns ϕ, the Gaussian standard pdf, this has a maximum in 0,
so that the second term in the VBaM formula above being subtracted is
also positive. The price is thus the difference of two positive terms
related to the Gaussian CDF and PDF respectively:

V Butter
BaM = X

(
2Φ
(

X
σ
√

T

)
− 1
)

︸ ︷︷ ︸
positive

−2σ
√

T
(
ϕ(0)− ϕ

(
X

σ
√

T

))
︸ ︷︷ ︸

positive

.

f) The price in the last formula does not depend on S0. So we
conclude the delta is zero:
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∂

∂S0
V Butter

BaM = 0.

This mean that the butterfly has always the same price in Bachelier,
regardless of the initial stock price S0. This is due to the special
dynamics of the model and to the specific choice of strikes L = S0 − X
and H = S0 + X .

g) Looking at the payoff we see that when X ↓ 0 the payoff tends to be
zero everywhere. As such, it will be worth 0 in terms of initial price.
The BS and Bachelier prices are continuous in X around X = 0, so we
can set X = 0 direcly in the formulas to compute the limit for X ↓ 0.

V Butter
BS (X = 0) = S0Φ

(
ln S0

S0
+ 1

2σ
2T

σ
√

T

)
− S0Φ

(
ln S0

S0
− 1

2σ
2T

σ
√

T

)
+
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−2S0Φ

(
1
2σ

2T

σ
√

T

)
+ 2S0Φ

(
−1

2σ
2T

σ
√

T

)
+

+S0Φ

(
ln S0

S0
+ 1

2σ
2T

σ
√

T

)
− S0Φ

(
ln S0

S0
− 1

2σ
2T

σ
√

T

)
.

Now all logarithms reduce to ln1 = 0 and the three terms cancel, so
that the price is indeed 0.
In the Bachelier model

V Butter
BaM (X = 0) = 0

(
2Φ
(

0
σ
√

T

)
− 1
)
− 2σ

√
T
(
ϕ(0)− ϕ

(
0

σ
√

T

))
= (1 − 1)− 2σ

√
T (ϕ(0)− ϕ(0)) = 0

again, as expected.
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Consider a porfolio with a zero-coupon bond with notional N and
maturity T , and a short position on an amount N of equity forward
contract on stock S with strike K and maturity T . In other terms, the
payoff at time T is

Y = N 1 − N(ST − K ).

The stock is assumed to follow the Black Scholes model

dSt = µStdt + σStdWt , s0

under the measure P. We assume a constant positive risk free rate
r > 0.
a) Compute the portfolio VaRH,α

b) How sensitive is VaR to the stock volatility? Give a quantitative
measure of this sensitivity and comment on its sign in the particular
case where α− = 0.95 and H is either 1 day or 1 year.
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c) What is the limit VaR when (i) σ ↓ 0 and (ii) σ ↑ +∞? Examine how
both limits depend on the confidence level α and discuss.
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Solutions.
a) The loss distribution at H is the portfolio value at time 0 minus the
portfolio value at time H, namely

LH = Ne−r(T−0)−N(S0−Ke−r(T−0))−[Ne−r(T−H)−N(SH −Ke−r(T−H))]

= N(K + 1)(e−rT − e−r(T−H))− NS0 + NSH = A + NSH

where A = N(K + 1)(e−rT − e−r(T−H))− NS0 is deterministic. Note
that A < 0 as e−rT < e−r(T−H). Here we used the fact that the price of
a unit-notional zero coupon bond with maturity T at time t < T is

P(t ,T ) = EQ
t [e−r(T−t)1] = e−r(T−t)

while the price of the forward contract with maturity T at time t < T is

EQ
t [e−r(T−t)(ST − K )] = St − Ke−r(T−t).
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VaRH,α is defined as the quantity q satisfying

α = P[LH < q] = P[A + NSH < q] = P[SH < (q − A)/N] =

= P[S0 exp((µ− σ2/2)H + σWH) < (q − A)/N] =

= P[exp((µ− σ2/2)H + σWH) < (q − A)/(NS0)] = . . .

where we have used the usual solution for the Black Scholes
geometric-Brownian-motion SDE. As A < 0 we have −A > 0. We
assume q − A > 0 so we can take logs on both sides in the last P
expression. We have

. . . = P
[
WH <

ln[(q − A)/(NS0)]− (µ− σ2/2)H
σ

]
=
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= P
[√

HN <
ln[(q − A)/(NS0)]− (µ− σ2/2)H

σ

]
= P

[
N <

ln[(q − A)/(NS0)]− (µ− σ2/2)H
σ
√

H

]
α = Φ

(
ln[(q − A)/(NS0)]− (µ− σ2/2)H

σ
√

H

)
.

Take Φ−1 on both sides:

Φ−1(α) =
ln[(q − A)/(NS0)]− (µ− σ2/2)H

σ
√

H
,

and solve in q:

q = A + NS0 exp
(
Φ−1(α)σ

√
H + (µ− σ2/2)H

)
.
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This is our VaR. Recall we had assumed q − A > 0 to be positive. Let’s
check it is positive indeed. q − A, from the last expression, turns out to
be an exponential and as such it is always positive.

b) We see that VaR depends on the volatility through the first and
second terms inside Φ:

VaRH,α = A + NS0 exp
(
Φ−1(α) σ

√
H + (µ− σ2 /2)H

)
.

To quantify the sensitivity of VaR to σ we compute

∂VaR
∂σ

= NS0 exp

(
Φ−1(α)σ

√
H + (µ− σ2

2
)H
)

∂

∂σ

(
Φ−1(α)σ

√
H − σ2H

2

)
=

= NS0(Φ
−1(α)

√
H − σH) exp

(
Φ−1(α)σ

√
H + (µ− σ2/2)H

)
.
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We investigate the sign of this sensitivity.
The sensitivity will be positive if we have

Φ−1(α)
√

H − σH > 0 ⇐⇒ σ < Φ−1(α)/
√

H.

Let’s consider α = 0.95, corresponding to Φ−1(α) ≈ 1.65. The holding
period for VaR in years can be one day H = 1/252 or one year H = 1.
In the two cases we have

H = 1/252, α = 0.95 ⇒ σ < 0.104.

In this case VaR will increase with σ as long as σ < 0.104 circa, and
will decrease otherwise. Volatility of 10.4% is really plausible, so this is
a case where both increasing and decreasing patterns could show.
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H = 1, α = 0.95 ⇒ σ < 1.65.

This will almost always be true, as volatilties above 165% are
extremely rare. So in this case VaR will always be increasing with σ in
practice. It seems that if the holding period H in VaR is long, then we
tend to have that VaR will increase with volatility.

c) (i) VaR is continuous in σ. We can therefore see what happens for
σ ↓ 0 by simply setting σ = 0 in VaR. We get

VaRH,α|σ=0 = A + NS0 exp (µH) .

Note that for σ = 0 VaRH,α does not depend on the confidence level α
anymore. When σ = 0 VaR is the same for all confidence levels. This
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is because there is no risky asset left: with σ = 0, the stock becomes
risk-free.
(ii) When σ ↑ +∞ we get

VaRH,α|σ↑∞ = lim
σ↑∞

[
A + NS0 exp

(
Φ−1(α)σ

√
H + (µ− σ2/2)H

)]
= . . .

Consider
lim
σ↑∞

Φ−1(α)σ
√

H + (µ− σ2/2) =

= lim
σ↑∞

σ2

[
Φ−1(α)

√
H

σ
+

(
µ

σ2 − 1
2

)]
=

= lim
σ↑∞

σ2
[
−1

2

]
= −∞.
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So the total limit is

. . . = A + NS0 lim
σ↑∞

exp

(
σ2
[
−1

2

])
= A

since the exponent in the exponential tends to −∞ and e−∞ tends to
zero. Hence the limit is A = N(K + 1)(e−rT − e−r(T−H))− NS0. This
limit does not depend on α either. So when the volatility goes to infinity,
meaning that the riskyness of the risky asset S goes to infinity, VaRH,α

does not depend on α anymore. This is because the infinity risk makes
all confidence levels the same, as the volatility is infinite anyway.
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Problem 1. SDEs - OU Process.
Consider the Ornstein Uhlenbeck (OU) SDE

dXt = (b(t)− a(t)Xt)dt + σ(t)dWt ,

with X0 = x0 deterministic and where b,a, σ are smooth deterministic
functions of time, with |a(t)|, |b(t)| and |σ(t)| all bounded below K for
all t ≥ 0, with K a positive real constant.
a) Prove that this SDE admits a unique global solution.
b) Calculate the solution using Stratonovich calculus.
c) Calculate the solution without using Stratonovich calculus. [Hint: Set
Yt = exp(

∫ t
0 a(s)ds)Xt and work with Y ]

d) Calculate the expected value of the solution at time T > 0.
e) Is it correct to say that the distribution of Xt is Gaussian for every
t > 0? What is the intuition behind your answer?
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Problem 1: Solutions.
a) We use the theorem giving sufficient conditions for global existence
and uniqueness of solutions for SDEs.
We know from the theory that for the SDE
dXt = µ(t ,Xt)dt + σ(t ,Xt)dWt , X0 = Z with Z independent of
σ({Wt , t ≤ T )} and E[Z 2] < +∞, and with µ : [0,T ]× R → R (the
drift) and σ : [0,T ]× R → R (the diffusion coefficient) being
measurable, if we have global Lipschitz continuity

|µ(t , x)−µ(t , y)|+|σ(t , x)−σ(t , y)| ≤ K |x−y | for all t ∈ [0,T ] and all x ∈ R

and linear growth

|µ(t , x)|+ |σ(t , x)| ≤ K ′(1 + |x |)| for all t ∈ [0,T ] and all x ∈ R

for two constants K ,K ′, then our SDE has a unique global solution Xt .
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Let’s check these conditions.
The initial condition has to be squared integrable, E [X 2

0 ] < +∞, which
is true in our case as X0 = x0 is a finite deterministic constant and
E [X 2

0 ] = x2
0 < ∞. Then we need to prove that the the drift and diffusion

coefficient are measurable functions of X , t .
This is trivially true as the drift is a linear affine function of X and
smooth in t , µ(t ,X ) = b(t)− a(t)X , as a and b are smooth, and
continuous functions are measurable. Also, the diffusion coefficient
σ(t ,X ) = σ(t) is trivially measurable as it is a deterministic and
continous (as it is smooth) function of t .
Next we need to check the Lipschitz continuity and linear growth
condition. The Lipschitz condition reads

|µ(t , x)− µ(t , y)|+ |σ(t , x)− σ(t , y)| =
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= |b(t)− a(t)x − (b(t)− a(t))y |+ |σ(t)− σ(t)| = |a(t)||x − y |,

and recalling that |a(t)| ≤ K , we conclude. The Lipschitz condition is
satisfied. As for linear growth,

|µ(t , x)|+ |σ(t , x)| = |b(t)− a(t)x |+ |σ(t)|

≤ 2K (1 + |x |) for all t ∈ [0,T ] and all x ∈ R

as |a(t)|, |b(t)| and |σ(t)| are bounded by K .
So we have a unique global solution.

b) Calculation of the solution using Stratonovich calculus was given in
the lecture notes in the “OU Process” example in Part One.

(c) 2012-24 Prof. D. Brigo SDEs in Financial Modelling Imperial College London 658 / 805



Exam 5 Problem 1: SDEs - OU Process

Mock Exam 5 V

c) To calculate the solution without using Stratonovich let’s use the
hint. Calculate

dYt = d
(
exp

(∫ t

0
a(s)ds

)
Xt

)
=

= Xtd exp

(∫ t

0
a(s)ds

)
+ exp

(∫ t

0
a(s)ds

)
dXt =

= Xt exp

(∫ t

0
a(s)ds

)
d
(∫ t

0
a(s)ds

)
+exp

(∫ t

0
a(s)ds

)
((b(t)− a(t)Xt)dt + σ(t)dWt) =

= Xt exp

(∫ t

0
a(s)ds

)
a(t)dt
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+exp

(∫ t

0
a(s)ds

)
((b(t)− a(t)Xt)dt + σ(t)dWt)

= exp

(∫ t

0
a(s)ds

)
b(t)dt + exp

(∫ t

0
a(s)ds

)
σ(t)dWt .

Thus

dYt = exp

(∫ t

0
a(s)ds

)
b(t)dt + exp

(∫ t

0
a(s)ds

)
σ(t)dWt .

This is a very easy SDE to integrate, as Y is not on the right hand side.
We simply integrate both sides between 0 and T :

YT −Y0 =

∫ T

0
exp

(∫ t

0
a(s)ds

)
b(t)dt +

∫ T

0
exp

(∫ t

0
a(s)ds

)
σ(t)dWt .

(c) 2012-24 Prof. D. Brigo SDEs in Financial Modelling Imperial College London 660 / 805



Exam 5 Problem 1: SDEs - OU Process

Mock Exam 5 VII

Recalling that Yt = exp
(∫ t

0 a(s)ds
)

Xt for all t > 0 and substituting this
in the last equation above for YT we get:

exp

(∫ T

0
a(s)ds

)
XT − X0 =

∫ T

0
exp

(∫ t

0
a(s)ds

)
b(t)dt

+

∫ T

0
exp

(∫ t

0
a(s)ds

)
σ(t)dWt .

Now multiply both sides for exp
(
−
∫ T

0 a(s)ds
)

to get
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XT − e−
∫ T

0 a(s)dsX0

= e−
∫ T

0 a(s)ds

[∫ T

0
e
∫ t

0 a(s)dsb(t)dt +
∫ T

0
e
∫ t

0 a(s)dsσ(t)dWt

]
.

leading to

XT = e−
∫ T

0 a(s)ds

[
X0 +

∫ T

0
e
∫ t

0 a(s)dsb(t)dt +
∫ T

0
e
∫ t

0 a(s)dsσ(t)dWt

]
or

XT = e−
∫ T

0 a(s)dsx0 +

∫ T

0
e−

∫ T
t a(s)dsb(t)dt +

∫ T

0
e−

∫ T
t a(s)dsσ(t)dWt .
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d) We compute

E [XT ] = E [e−
∫ T

0 a(s)dsx0] + E [

∫ T

0
e−

∫ T
t a(s)dsb(t)dt ]+

+E

[∫ T

0
e−

∫ T
t a(s)dsσ(t)dWt

]
.

Now, the first two quantities inside expectations on the right hand side
are deterministic, so we can remove expectations. Moreover, we recall
that the expected value of an Ito integral is zero. We get

E [XT ] = e−
∫ T

0 a(s)dsx0 +

∫ T

0
e−

∫ T
t a(s)dsb(t)dt .
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e) The distribution is indeed Gaussian. The intuitive reason is that all
terms dWt in the Ito integral are normal independent random variables,
because increments of brownian motion are independent and normally
distributed. The expression is then a sum (the integral is essentially a
continous sum) of independent random variables multiplied by some
deterministic quantities plus other deterministic quantities, leading to a
final normal random variable.
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Problem 2: Option pricing - Short Risk Reversal in Black Scholes
Given a stock with price St at time t , t ≥ 0, consider a payoff Y that is
short a call option with strike K1 and long a put option with strike K2,
with K2 < S0 < K1, both options with maturity T . In formula, the payoff
is Y = −(ST − K1)

+ + (K2 − ST )
+ and is called a bear (or short) risk

reversal payoff.
a) Draw a plot of this payoff as a function of ST . Explain what type of
investor would be interested in buying this payoff and what views on
the stock marcket this investor would have.
b) Price the short risk reversal in a Black-Scholes model with stock
price dynamics

dSt = µStdt + σStdWt , s0

under the physical measure P, and where interest rates r are constant
and deterministic. You can use the formula for a call option without
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deriving it. Derive the formula for the put option, either through put-call
parity or through risk neutral valuation.
c) Calculate the delta of the short risk reversal, namely the sensitivity
of its price to the initial stock price s0. How does the short risk reversal
change with s0?
d) Calculate the vega of the short risk reversal, namely the sensitivity
of its price to the volatility σ.
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a) To draw a plot of Y it is best to re-write it in different areas of the S
domain. We note that the two options will have different values
depending on ST > K1 or ST > K2 so we distinguish three cases:
(i) ST < K2, (ii) K2 < ST < K1, (iii) K1 < ST .
Let us look at the three cases:
(i) ST < K2 =⇒ the put option is in the money, the call option is out of
the money and it is worth zero. The payoff is Y = K2 − ST .
(ii) K2 < ST < K1 =⇒ the put option is out of the money, and the call
too. So the payoff is zero, Y = 0.
(iii) K1 < ST ⇒ the put option is out of the money and has zero payoff,
while the call is in-the-money and has positive payoff ST − K1, so short
the call is −(ST − K1) = K1 − ST .

We get
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Y = −(ST − K1)
+ + (K2 − ST )

+ =


K2 − ST for ST ≤ K2

0 for K2 < ST < K1
K1 − ST for ST ≥ K1

If we include the initial price of Y in the payoff itself, the initial price
may be positive or negative depending on the strikes and other
parameters. We would then have to shift the plot of the initial price to
include the initial price of the trade in the overall payoff.
We can also write the payoff using indicator functions:

Y = (K2 − ST )1{ST≤K2} + (K1 − ST )1{ST>K1}.

We can now draw a plot easily.
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What kind of investor would buy this payoff? The payoff decreases with
the stock, except in the interval [K2,K1] where it stays constant to zero.

The payoff will make more money if the stock moves below K2, and the
more it moves below K2 the more money it makes. The extreme case
is the stock going to zero, which would give a value of K2 to the payoff.
This is the maximum value the payoff can take.
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If the stock is between K2 and K1 the payoff is worth nothing, as both
options expire out of the money.

Finally, if the stock is larger than K1 then the put is worth nothing but
the short call gives a negative payoff K1 − ST , and the payoff becomes
negative, the more negative the more the stock becomes larger
compared to K1. Note that here the loss is potentially unlimited, as
there is no bound for the stock to grow, as opposed for the put options
where the stock could not go below zero.

It follows that an investor will buy this payoff only if she expects the
stock price to move significantly below K2 and will not be interested in
buying this payoff (or might sell it) if she expects the stock to grow
significantly above K1.
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b) To price the risk reversal we need the price of a put with strike K2
and maturity T minus the price of a call with strike K1 and maturity T ,
both prices in the Black Scholes model. For the call we recall that

V CALL
BS (0,S0,K1,T , σ, r) = s0Φ(d

(1)
1 )− K1e−rTΦ(d (1)

2 )

where Φ is the CDF of a standard normal and where

d (1)
1 =

ln(s0/K1) + (r + σ2/2)T
σ
√

T
, d (1)

2 = d (1)
1 − σ

√
T .

For the put, we derive its price by put-call parity. Write the argument
and the derivation here, as it has been done in the lecture, using the
put call parity and the price of a forward contract. We get

V PUT
BS (0,S0,K2,T , σ, r) = K2e−rTΦ(−d (2)

2 )− s0Φ(−d (2)
1 ).
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d (2)
1 =

ln(s0/K2) + (r + σ2/2)T
σ
√

T
, d (2)

2 = d (2)
1 − σ

√
T .

We can now calculate the Short Risk Reversal (SRR) price as

V SRR
BS (0) = −V CALL

BS (0,K1) + V PUT
BS (0,K2) =

= −s0Φ(d
(1)
1 ) + K1e−rTΦ(d (1)

2 ) + K2e−rTΦ(−d (2)
2 )− s0Φ(−d (2)

1 ) =

= K1e−rTΦ(d (1)
2 ) + K2e−rTΦ(−d (2)

2 )− s0

(
Φ(d (1)

1 ) + Φ(−d (2)
1 )
)
.

(c) From the fact that the risk reversal is

V SRR
BS (0) = −V CALL

BS (0, s0,K1) + V PUT
BS (0, s0,K2)
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we can calculate the delta quickly as

∂V SRR
BS (0)
∂s0

= −
∂V CALL

BS (0, s0,K1)

∂s0
+

∂V PUT
BS (0, s0,K2)

∂s0
.

We know from memory (otherwise derive it, see lecture notes) that, in
the basic theory of Black Scholes, the delta of a call option is

∂V CALL
BS (0, s0,K1)

∂S0
= Φ(d (1)

1 ).

For the delta of a put, we use again put-call parity to derive the delta of
a put from the delta of call and forward contract (see lecture notes).
We obtain the formula

∂V PUT
BS (0, s0,K2)

∂S0
= −Φ(−d (2)

1 ).
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The total delta of the SRR is

∂V SRR
BS (0)
∂s0

= −
∂V CALL

BS (s0,K1)

∂s0
+
∂V PUT

BS (s0,K2)

∂s0
= −Φ(d (1)

1 )−Φ(−d (2)
1 ).

Note that the delta of the SRR is negative, meaning that the price of
the SRR will go down when the stock S0 increases. This is in
agreement with our intuition of the payoff and the discussion in point
a), as the payoff is decreasing in ST .

(d) The risk reversal vega is

∂V SRR
BS (0)
∂σ

= . . .
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Looking at the formula for V SRR
BS (0), we see it depends on the volatility

only through the terms d1 and d2. We will need then to calculate

∂Φ(±d1)

∂σ
= ±Φ′(±d1)

∂d1

∂σ
= ±ϕ(±d1)

∂d1

∂σ

= ±ϕ(±d1)
∂

∂σ

(
ln(s0/K ) + (r + σ2/2)T

σ
√

T

)
= ±ϕ(±d1)

∂

∂σ

(
ln(s0/K ) + rT

σ
√

T
+

σ

2

√
T
)

= ±ϕ(±d1)

[
− ln(s0/K ) + rT

σ2
√

T
+

√
T

2

]
,
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whereas
∂Φ(±d2)

∂σ
= ±Φ′(±d2)

∂d2

∂σ
= ±ϕ(±d2)

∂d2

∂σ

= ±ϕ(±d2)
∂

∂σ

(
ln(s0/K ) + (r − σ2/2)T

σ
√

T

)
= ±ϕ(±d2)

∂

∂σ

(
ln(s0/K ) + rT

σ
√

T
− σ

2

√
T
)

= ±ϕ(±d2)

[
− ln(s0/K ) + rT

σ2
√

T
−

√
T

2

]
,

leading to

Vega =
∂V SRR

BS (0)
∂σ

=
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= K1e−rT∂σΦ(d
(1)
2 )+K2e−rT∂σΦ(−d (2)

2 )−s0

(
∂σΦ(d

(1)
1 ) + ∂σΦ(−d (2)

1 )
)

= K1e−rTϕ(d (1)
2 )

[
ln(s0/K1) + rT

σ2
√

T
+

√
T

2

]

+K2e−rTϕ(−d (2)
2 )

[
ln(s0/K2) + rT

σ2
√

T
+

√
T

2

]

+s0ϕ(d
(1)
1 )

[
ln(s0/K1) + rT

σ2
√

T
−

√
T

2

]

−s0ϕ(−d (2)
1 )

[
ln(s0/K2) + rT

σ2
√

T
−

√
T

2

]
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Problem 3. Option pricing - Bear Call Spread in displaced diffusions
A Bear Call Spread (BeCS) payoff is the difference between a call
option payoff with larger strike and a call option payoff with a smaller
strike. The underlying asset and the option maturities are the same.
In formula: if ST is the stock price at maturity T , and the strikes are
K1 > K2, then the BeCS payoff is

Y = (ST − K1)
+ − (ST − K2)

+.

We assume the initial stock price S0 to be in-between the two strikes:
K2 < S0 < K1.
a) Draw a plot of the payoff. Provide your intuition on the payoff and
explain what kind of investor might be interested in entering this
position.
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b) Suppose we observe a decreasing volatility smile for the stock ST .
Explain why the displaced diffusion (DD) model is (i) consistent with a
decreasing smile and how it can also (ii) produce an increasing
volatility smile if needed, changing the parameters. Explain which
other models could be used with these two features and why DD is
more conveninent.
c) With the DD model chosen in b), price the BeCS. To avoid
singularities in the formula, assume

|α| << K1, |α| << K2, |α| << S0.

d) Assume now that we take an unrealistically large value for the shift,
α = e−rT K−

2 , a number smaller than e−rT K2 by an infinitesimal
amount. Calculate the new price of the BeCS and its sensitivity to the
initial condition S0. We still assume S0 > K2 (and hence S0 > e−rT K2).
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Solutions of Mock Exam 5. Problem 3: Bear Call Spread with Smile
models.
a) The payoff can also be written as follows, by looking at what
happens to the two options in the three cases ST ≤ K2, K2 < ST < K1,
ST ≥ K1.
When ST ≤ K2 we have both call options are out of the money and are
worth 0 at maturity.
When K2 < ST < K1 we have that the short call with strike K2 is
positive, leading to −(ST − K2)

+ = −(ST − K2) = K2 − ST , while the
long call with strike K1 is worth 0.
When ST ≥ K1 both options are in-the-money, so we have
Y = −(ST − K2)

+ + (ST − K1)
+ = −(ST − K2) + (ST − K1) =

−(K1 − K2) < 0.
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Summarizing:

Y = −(K1 − K2)1ST>K1 − (S − K2)1K2<ST≤K1 + 0 1S≤K2 .

or

Y = −(ST − K2)
+ + (ST − K1)

+ =


0 for ST ≤ K2

K2 − ST for K2 < ST < K1
−(K1 − K2) for ST ≥ K1

The payoff is always negative or zero, and therefore its risk neutral
discounted expectation will be negative, leading to a negative price. If
we enter this position, we pay a negative price, meaning that we will
receive money to enter this payoff, as is expected, given that we can
only lose money or get nothing at maturity. We would be interested in
entering this payoff, cashing in its price at time 0 from the client, if we
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expected the payoff to expire worthless. In other terms, we expect the
stock S to move below K2 at maturity. This way we pay nothing from
the payoff at maturity but we cash in the initial premium from the client
at time 0, making an overall profit. The worse that can happen with this
payoff is that we need to pay −(K1 − K2) to the client at maturity. This
is our maximum possible loss. With this payoff the potential loss is
bounded.
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b) If we observe a decreasing smile, the models consistent with this
are

1. Bachelier
2. Displaced Diffusion (DD) with negative shift;
3. CEV with exponent smaller than 1.

If we wish our model to be able to reproduce also an increasing smile,
then we need to rule out Bachelier, which only gives us a decreasing
smile. An increasing smile is given by

2. Displaced Diffusion with positive shift;
3. CEV with exponent larger than 1.

However we know that CEV requires special functions and is less
tractable than DD. We choose DD.
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c) Recall the DD model and write it (under the measure Q) as

St = Xt + α ert , dXt = rXtdt + σXtdWt , X0 = S0 − α.

The above is the best form of the model for option pricing, although the
model can be written more succintly as

dSt = rStdt + σ(St − αer t)dWt , S0.

To avoid singularities or problems with logarithms in the formula, we
assume

|α| << K1, |α| << K2, |α| << S0.

The price of the Bear Call Spread is the difference of the two call
prices in a DD model.

V BeCS
DD = EQ

0 [e−rT (−(ST − K2)
+ + (ST − K1)

+
)
]
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= −EQ
0 [e−rT (ST − K2)

+] + EQ
0 [e−rT (ST − K1)

+]

= −EQ
0 [e−rT (XT + αerT − K2)

+] + EQ
0 [e−rT (XT + αerT − K1)

+]

= −EQ
0 [e−rT (XT − K ′

2)
+] + EQ

0 [e−rT (XT − K ′
1)

+] = . . .

where K ′
1,2 = K1,2 − αerT . By continuing, and remembering that X

follows a standard Black Scholes model, we get

. . . = −V Call
BS (0,X0,K ′

2,T , σ, r) + V Call
BS (0,X0,K ′

1,T , σ, r)

where the call formulas are computed with X0 = S0 + α and with
modified strikes K ′:

V Call
BS (0,X0,K ′

2,T , σ, r) = X0Φ(d1(K ′
2))− K ′

2e−rTΦ(d2(K ′
2))

= (S0 − α)Φ(d1(K ′
2))− (K2 − αerT )e−rTΦ(d2(K ′

2))
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d1,2(K ′
2) =

ln X0
K ′

2
+
(
r ± 1

2σ
2)T

σ
√

T

=
ln S0−α

K2−αerT +
(
r ± 1

2σ
2)T

σ
√

T

and similarly for the call with strike K ′
1:

V Call
BS (0,X0,K ′

1,T , σ, r) = (S0−α)Φ(d1(K ′
1))−(K1−αerT )e−rTΦ(d2(K ′

1))

d1,2(K ′
1) =

ln S0−α
K1−αerT +

(
r ± 1

2σ
2)T

σ
√

T
.

We conclude
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V BeCS
DD = −(S0 − α)Φ

 ln S0−α
K2−αerT +

(
r + 1

2σ
2)T

σ
√

T


+(K2 − αerT )e−rTΦ

 ln S0−α
K2−αerT +

(
r − 1

2σ
2)T

σ
√

T


+(S0 − α)Φ

 ln S0−α
K1−αerT +

(
r + 1

2σ
2)T

σ
√

T


−(K1 − αerT )e−rTΦ

 ln S0−α
K1−αerT +

(
r − 1

2σ
2)T

σ
√

T
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d) If α = K−
2 e−rT we have K2 − αerT = K2 − K−

2 = 0+ and K2 = αerT .
The formula in the previous point becomes

V BeCS
DD |α=K−

2 e−rT = −(S0 − K2e−rT )Φ

 ln S0−K2e−rT

K2−K−
2

+
(
r + 1

2σ
2)T

σ
√

T



+(K2 − K−
2 )e−rTΦ

 ln S0−K2e−rT

K2−K−
2

+
(
r − 1

2σ
2)T

σ
√

T



+(S0 − K2e−rT )Φ

 ln
S0−K−

2 e−rT

K1−K−
2

+
(
r + 1

2σ
2)T

σ
√

T
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−(K1 − K−
2 )e−rTΦ

 ln
S0−K−

2 e−rT

K1−K−
2

+
(
r − 1

2σ
2)T

σ
√

T


Given that K2 − K−

2 ↓ 0+ and S0 − K−
2 e−rT > 0 we can compute the

limits of the logarithms as

lim
x↓0+

ln
S0 − K−

2 e−rT

x
= +∞

leading to limz↑+∞Φ(z) = 1 so that
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V BeCS
DD |α=K−

2 e−rT = −(S0 − K2e−rT )+

+(S0 − K2e−rT )Φ

 ln
S0−K−

2 e−rT

K1−K−
2

+
(
r + 1

2σ
2)T

σ
√

T



−(K1 − K−
2 )e−rTΦ

 ln
S0−K−

2 e−rT

K1−K−
2

+
(
r − 1

2σ
2)T

σ
√

T


or symplifying (Φ(x)− 1 = −Φ(−x))
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V BeCS
DD |α=K−

2 e−rT = −(S0 − K2e−rT )Φ

−
ln

S0−K−
2 e−rT

K1−K−
2

+
(
r + 1

2σ
2)T

σ
√

T



−(K1 − K−
2 )e−rTΦ

 ln
S0−K−

2 e−rT

K1−K−
2

+
(
r − 1

2σ
2)T

σ
√

T

 .

For the sensitivity to initial condition S0 we need to compute

∆ =
∂V BeCS

DD |α=K−
2 e−rT

∂S0
.
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Let’s see if we can invoke the known formula for the delta of a call
option in Black Scholes to avoid the lengthy calculation we would need
to do.
Rewrite the price as

V BeCS
DD |... = −(S0 − K2e−rT )+

+(S0 − K2e−rT )Φ

 ln
S0−K−

2 e−rT

K1−K−
2

+
(
r + 1

2σ
2)T

σ
√

T



−(K1 − K−
2 )e−rTΦ

 ln
S0−K−

2 e−rT

K1−K−
2

+
(
r − 1

2σ
2)T

σ
√

T

 .
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Now, apart from the first term −(S0 − K2e−rT ), this is the price of an
option in a Black Scholes model with initial stock price
S′

0 = S0 − K2e−rT , strike K ′ = K1 − K2, risk free rate r and volatility σ.
Thus

V BeCS
DD |... = −(S0 − K2e−rT ) + V CALL

BS (0,S′
0,K

′,T , σ, r)

so

∂V BeCS
DD |...
∂S0

= ∂S0 [−(S0 − K2e−rT )] + ∂S0V CALL
BS (0,S′

0,K
′,T , σ, r)

= −1 +
∂V CALL

BS (0,S′
0,K

′,T , σ, r)
∂S′

0

∂S′
0

∂S0

= −1 +Φ

(
ln

S′
0

K ′ +
(
r + 1

2σ
2)T

σ
√

T

)
1
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= −1 +Φ

 ln S0−K2e−rT

K1−K2
+
(
r + 1

2σ
2)T

σ
√

T


= −Φ

−
ln S0−K2e−rT

K1−K2
+
(
r + 1

2σ
2)T

σ
√

T


where we used the fact that

∂V CALL
BS (0,S′

0,K
′,T , σ, r)

∂S′
0

= Φ(d ′
1), d ′

1 =
ln

S′
0

K ′ +
(
r + 1

2σ
2)T

σ
√

T

The delta is negative, meaning that the portfolio value will decrease
when S0 increases. This is in line with our prior intuition on the payoff.
The bear call spread payoff decreases or stays constant when the
stock increases, so it is expected that increasing S0 will lead to a lower
portfolio price.
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Problem 4. Risk Measures. Bond & Stock with different maturities.
Consider a portfolio with a first bond position in a notional N of
zero-coupon bond with maturity U in an economy where we have a
deterministic constant risk free interest rate r . Assume that in the
same portfolio we are short a bond with maturity T < U on the same
notional, and that we hold an amount M of stock S, where the stock
price follows the following dynamics under the measure P:
dSt = µStdt + σStdWt , s0. We assume M > 0,N > 0.
a) Compute the Value at risk of this portfolio for a confidence level α at
a risk horizon h < T .
b) Is VaR increasing or decreasing in the initial stock price S0? Can
you provide financial intuition for your answer?
c) Is VaR increasing or decreasing in the notional N of the bonds? Can
you provide financial intuition for your answer?
Solutions.
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a) Let us analyze the three positions and in particular their value at
time h, where we have to assess VaR. A zero coupon bond with
maturity U on a notional N promises to pay the notional N at time U.
Its value at time h < U is obtained by risk neutral pricing as

EQ
h [e−r(U−h)N] = e−r(U−h)N

where we could take away the expectation as there is nothing random
in the payoff or in the discount rate r .
A similar approach leads to the price −e−r(T−h)N for the short bond
position, where the minus sign is due to the short position.
The value of the stock at time h is simply MSh, namely the amount of
stock we hold times the price of the stock at time h.
Putting all terms together the value of the portfolio is
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The value of the portfolio at time h is

Vh = Ne−r(U−h) − Ne−r(T−h) + MSh.

The value of the portfolio at time 0 is instead, trivially,

V0 = Ne−rU − Ne−rT + MS0.

The loss of the portfolio over the time h is

Lh = V0 −Vh = Ne−rU −Ne−rT +MS0 −Ne−r(U−h)+Ne−r(T−h)−MSh.

We can set

K = Ne−rU − Ne−rT + MS0 − Ne−r(U−h) + Ne−r(T−h)
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and rewrite the loss as
Lh = K − MSh.

The only random term here is Sh, which in the Black Scholes model is
written, under the measure P, as

Sh = S0 exp

((
µ− 1

2
σ2
)

h + σWh

)
where as usual we recall that Wh ∼ N (0,h) ∼

√
hN (0,1) ∼

√
hN

where we abbreviate N = N (0,1). To compute qh,α = VaRh,α we need
to find the percentile such that

P{Lh < qh,α} = α.
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Write q = qh,α for brevity, and calculate

P{Lh < q} = P{K − MSh < q} = P
{

Sh >
K − q

M

}

= P
{

S0 exp

((
µ− 1

2
σ2
)

h + σ
√

hN
)

>
K − q

M

}

= P

{
N >

ln K−q
MS0

−
(
µ− 1

2σ
2)h

σ
√

h

}

= 1 − Φ

(
ln K−q

MS0
−
(
µ− 1

2σ
2)h

σ
√

h

)

= Φ

(
−
ln K−q

MS0
−
(
µ− 1

2σ
2)h

σ
√

h

)
.

(c) 2012-24 Prof. D. Brigo SDEs in Financial Modelling Imperial College London 700 / 805



Exam 5 Problem 4: Risk measures. Bond & Stock with different maturities

Mock Exam 5 VI

Thus the equation
P{Lh < qh,α} = α

becomes

Φ

(
−
ln K−q

MS0
−
(
µ− 1

2σ
2)h

σ
√

h

)
= α

or

−
ln K−q

MS0
−
(
µ− 1

2σ
2)h

σ
√

h
= Φ−1(α)

from which we can solve in q, obtaining

q = VaRh,α = K − MS0 exp

(
−σ

√
hΦ−1(α) +

(
µ− 1

2
σ2
)

h
)

(c) 2012-24 Prof. D. Brigo SDEs in Financial Modelling Imperial College London 701 / 805



Exam 5 Problem 4: Risk measures. Bond & Stock with different maturities

Mock Exam 5 VII

b) We need to remember that K depends on S0 too, so it will contribute
to the behaviour of VaR. We have K = MS0 + K ′, with
K ′ = Ne−rU − Ne−rT − Ne−r(U−h) + Ne−r(T−h). In particular, K ′ does
not depend on S0. Hence, from the previous point,

VaRh,α = MS0 − MS0 exp

(
−σ

√
hΦ−1(α) +

(
µ− 1

2
σ2
)

h
)
+ K ′

= MS0

[
1 − exp

(
−σ

√
hΦ−1(α) +

(
µ− 1

2
σ2
)

h
)]

+ K ′.

As M is positive, whether VaR is increasing or decreasing will depend
on the sign of the quantity between squared brackets. This in turn will
depend on the sign of the exponent of the exponential function. If this
sign is positive, the exponential will be larger than one and the squared
bracket term will be negative, leading to a decreasing VaR. If the sign
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is negative, the opposite will happen, leading to an increasing VaR. So
we need to find conditions under which

−σ
√

hΦ−1(α) +

(
µ− 1

2
σ2
)

h < 0

for VaR to be increasing. This cannot be solved in general but depends
on the parameters of the calculation, σ, h, α, µ. So it is not possible to
give an answer for the general case, but we can still investigate what
happens for typical ranges of values of the parameters, as is usually
done in real portfolios.
The confidence level is typically 0.99, so we can assume
Φ−1(α) = Φ−1(0.99) = 2.33. Our inequality then becomes

µh − 2.33σ
√

h − 1
2
σ2 h < 0
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Now because typically in VaR calculations h < 1, we will have that√
h > h. Also, typical ranges of stock volatilties may go from 0.1 to 0.5.

So we see that unless the return µ is expected to be really large, the
condition will be satisfied. For example, for a volatility of 0.1 and
h = 0.25 we get

µ/4 − 2.33 0.1/2 − 1/2 0.01/4 < 0.

For this to be true we require

µ < 0.471

or a return smaller than 47%. which is extremely realistic. So the
condition will be satisfied and the exponent will be negative, resulting
in VaR being increasing in S0.
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Let’s take another example at the other extreme, take the volatility to
be σ = 0.5 and the risk horizon h = 1, and we get

µ− 2.33 0.5 − 1/2 0.25 < 0,

which requires µ < 1.04 so returns smaller than 104%, which is again
very realistic, so we have the same conclusions as in the previous
case.
It seems that in most realistic situations the exponent will be negative,
so the exponential will be smaller than 1, and the total VaR will be a
positive constant times S0 (plus K ′), thus resulting in an increasing
function of S0.
So in these realistic examples we see that VaR is increasing in S0.
This means that when the stock price increases, we typically have a
larger potential loss at the given confidence level over the given
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horizon. This is intuitive because we have a long position in the stock,
so whenever the initial stock is larger, we have a larger stock position
with the same volatility, so we have that the risk of a potential loss at
the same confidence level and risk horizon becomes larger as the
portfolio size is larger and with the same volatility.
We emphasize however that this result is not general, and there can be
atypical values of the parameters σ, h, α, µ for which this does not hold.

c) The VaR term depending on N is K so we need to establish whether
K increases or decreases in N. Recall

K = Ne−rU − Ne−rT + MS0 − Ne−r(U−h) + Ne−r(T−h)

Let’s take the derivative of K with respect to N:

∂NK = e−rU − e−rT − e−r(U−h) + e−r(T−h) =
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= e−r(T−h) − e−rT − (e−r(U−h) − e−rU) =

Now the first exponential is larger than the second, as it has a less
negative exponent. So the difference of the first two exponentials is
positive. However, for the same reason the third exponential is larger
than the fourth one, so the term in round brackets is positive. We have
the difference of two positive terms. As we know U > T , let us collect
e−rT outside.

= e−rT
[
erh − 1 − (e−r(U−T−h) − e−r(U−T ))

]
= e−rT

[
1(erh − 1)− e−r(U−T )(erh − 1)

]
= e−rT (1 − e−r(U−T ))(erh − 1) > 0
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because all factors in the last expression are positive. We deduce that
∂NK > 0, so K is increasing in N, and therefore VaRh,α also increases
in N.
Financially, this is telling us that increasing the amount of long
U-bonds and short T -bonds increases VaR or our potential loss. This
makes sense because the T bond is more valuable than the U bond,
given U > T , as the U bond will pay later and so is worth less. So
increasing both bond notionals will impact more the T -bond, which is a
short position, than the U bond, which is a long position. With the
short position becoming more valuable compared to the long position
we are facing a larger potential loss.

(c) 2012-24 Prof. D. Brigo SDEs in Financial Modelling Imperial College London 708 / 805



Exam 6 Problem 1: SDEs - dX = X/2dt +
√

1 + X2dW

Mock Exam 6 I

Problem 1. SDEs - dXt = Xt/2dt +
√

1 + X 2
t dWt .

Consider the SDE

dXt =
1
2

Xtdt +
√

1 + X 2
t dWt ,

with X0 = x0 deterministic.
a) Prove that this SDE admits a unique global solution.
b) Calculate the solution (hint: use Stratonovich calculus).
c) Calculate the expected value of the solution, E0[Xt ], for all t ≥ 0.
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Problem 1: Solutions.
a) We use the theorem giving sufficient conditions for global existence
and uniqueness of solutions for SDEs.
We know from the theory that for the SDE
dXt = µ(t ,Xt)dt + σ(t ,Xt)dWt , X0 = Z with Z independent of
σ({Wt , t ≤ T )} and E[Z 2] < +∞, and with µ : [0,T ]× R → R (the
drift) and σ : [0,T ]× R → R (the diffusion coefficient) being
measurable, if we have global Lipschitz continuity

|µ(t , x)−µ(t , y)|+|σ(t , x)−σ(t , y)| ≤ K |x−y | for all t ∈ [0,T ] and all x ∈ R

and linear growth

|µ(t , x)|+ |σ(t , x)| ≤ K ′(1 + |x |)| for all t ∈ [0,T ] and all x ∈ R

for two constants K ,K ′, then our SDE has a unique global solution Xt .
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Let’s check these conditions.
The initial condition has to be squared integrable, E [X 2

0 ] < +∞, which
is true in our case as X0 = x0 is a finite deterministic constant and
E [X 2

0 ] = x2
0 < ∞. Then we need to prove that the the drift and diffusion

coefficient are measurable functions of X , t .
This is trivially true as the drift is a linear function of X and does not
depend on t , µ(t ,X ) = X/2. Also, the diffusion coefficient

σ(t ,X ) =
√

1 + X 2
t is trivially measurable as it is a continuous function

of X and does not depend on t .
Next we need to check the Lipschitz continuity and linear growth
condition. The Lipschitz condition reads

|µ(t , x)− µ(t , y)|+ |σ(t , x)− σ(t , y)| =
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= |x/2 − y/2|+ |
√

1 + x2 −
√

1 + y2| ≤ . . . (33)

At this point we need to deal with the second term before the
inequality, as the first one is trivially 1

2 |x − y |. We claim that

|
√

1 + x2 −
√

1 + y2| ≤ ||x | − |y ||.

To prove this, let us assume that |x | ≥ |y | (and hence also x2 > y2). If
the opposite holds, we can swap the terms and proceed analogously,
as they are inside an absolute value and swapping them does not
affect the reasoning. With |x | ≥ |y |, we can rewrite the above
inequality as √

1 + x2 −
√

1 + y2 ≤ (|x | − |y |).
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To check that this is true, and remembering that both sides are positive
given |x | ≥ |y |, we may square both sides and see if the inequality
holds. Given positivity, if it holds for the squares it holds for the bases
too. Squaring both sides, we get

(
√

1 + x2 −
√

1 + y2)2 ≤ (|x | − |y |)2 ⇐⇒

⇐⇒ 1 + x2 + 1 + y2 − 2
√

(1 + x2)(1 + y2) ≤ x2 + y2 − 2|x ||y | ⇐⇒

⇐⇒ x2 + y2 − 2
√
(1 + x2)(1 + y2) ≤ x2 + y2 − 2|x ||y | ⇐⇒

−2
√

(1 + x2)(1 + y2) ≤ −2|x ||y | ⇐⇒ 2
√
(1 + x2)(1 + y2) ≥ 2|x ||y |

which is true since 1 + x2 ≥ x2, 1 + y2 ≥ y2 and
√
· is an increasing

function, so that
√

1 + x2 >
√

x2 = |x | and similarly for y . So we have
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clearly −2
√
(1 + x2)(1 + y2) < −2|x ||y | which, for the chain of ⇐⇒

above, is equivalent to

(
√

1 + x2 −
√

1 + y2)2 ≤ (|x | − |y |)2,

or √
1 + x2 −

√
1 + y2 ≤ |x | − |y |.

Substituting this in (33) we conclude

|µ(t , x)− µ(t , y)|+ |σ(t , x)− σ(t , y)| ≤ 1
2
|x − y |+ ||x | − |y ||. (34)

This is not yet a Lipschitz condition. We need to show that

||x | − |y || ≤ |x − y |.
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To check this, let us look at all four cases.
a) x ≥ 0, y ≥ 0. Then the above inequality becomes an identity and we
are done.
b) x ≥ 0, y ≤ 0. Then the above inequality becomes

||x | − |y || = |x − (−y)| = |x + y | ≤ |x − y |

where the inequality holds because of the signs of x and y , in
particular with y being negative.
c) x ≤ 0, y ≥ 0. Then the above inequality becomes

||x | − |y || = | − x − y | ≤ |x − y |

as −x is positive, so it offsets −y leading to a smaller absolute value
for the left hand side.
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d) x ≤ 0, y ≤ 0. Then the above inequality becomes

||x | − |y || = | − x − (−y)| = | − x + y | ≤ |x − y |

as −x is positive and offsets the negative +y on the left hand side,
leading to a smaller absolute value.
So we have proven that ||x | − |y || ≤ |x − y |, and substituting in (34) we
get

|µ(t , x)− µ(t , y)|+ |σ(t , x)− σ(t , y)| ≤ 1
2
|x − y |+ ||x | − |y || ≤

≤ 1
2
|x − y |+ |x − y | = 3

2
|x − y |

which is Lipschitz continuity with constant 3/2.
So we have proven Lipschitz continuity.
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To prove linerar growth, we need to show that

|µ(t , x)|+ |σ(t , x)| ≤ K ′(1 + |x |)| for all t ∈ [0,T ] and all x ∈ R

We have

|µ(t , x)|+|σ(t , x)| = |x |+
√

1 + x2 ≤ 1
2
|x |+

√
1+

√
x2 = 1+

3
2
|x | ≤ 3

2
(1+|x |)

for all t ∈ [0,T ] and all x ∈ R

as in general, for two positive real number a and b,
√

a + b ≤
√

a +
√

b
(square both sides, that are positive, to convince yourself of this).
So we have a unique global solution.
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b) Calculation of the solution using Stratonovich calculus is based on
transforming the Ito SDE in a Stratonovich SDE. We know that the
transformation changes the drift into

1
2

x 7→ 1
2

x − 1
2
σ(t , x)

∂σ(t , x)
∂x

.

In our specific case,

1
2
σ(t , x)

∂σ(t , x)
∂x

=
1
2

√
1 + x2 1

2
2x√

1 + x2
= −1

2
x

so that the Stratonovich drift becomes

1
2

x 7→ 1
2

x − 1
2

x = 0.
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The equivalent Stratonovich SDE with the same solution is therefore

dXt =
√

1 + X 2
t ◦ dWt , x0.

With Stratonovich, we can use formal rules of calculus. We can
separate variables as in

dXt√
1 + X 2

t

= ◦dWt ,

and integrate both sides∫ Xt

x0

dX√
1 + X 2

=

∫ t

0
dWt ,
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leading to
sinh−1(X )|Xt

x0
= Wt

or
sinh−1(Xt)− sinh−1(x0) = Wt

sinh−1(Xt) = sinh−1(x0) + Wt

Xt = sinh
(
sinh−1(x0) + Wt

)
.

c) To calculate the expected value we could use the solution directly
and proceed to a direct calculation but this is not convenient, as it
involves a much more complicated calculation. Let us use the Ito SDE
instead. Consider

dXt =
1
2

Xtdt +
√

1 + X 2
t dWt ,
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and write it in integral form

Xt = x0 +

∫ t

0

1
2

Xsds +

∫ t

0

√
1 + X 2

s dWs,

and now take the expected value conditional on information at time 0
on both sides. Recall the that expectation of an Ito integral is zero and
that x0 is deterministic, so we get

E0[Xt ] = x0 + E0[

∫ t

0

1
2

Xsds] + 0,

or

E0[Xt ] = x0 +

∫ t

0

1
2

E0[Xs]ds + 0,
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using Fubini’s theorem. Let us now call mt = E0[Xt ] for all t ≥ 0. The
above equation can be written as

mt = x0 +

∫ t

0

1
2

ms ds.

Now differentiate both sides with respect to t , obtaining

dmt

dt
=

1
2

mt ,

with initial condition m0 = E0[X0] = E0[x0] = x0. The last differential
equation is immediate to integrate. We have

dm
m

=
1
2

dt
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so that, integrating both sides

ln(m)|mt
m0

=
1
2

t

or
ln(mt)− ln(m0) =

1
2

t

or, rearranging,

mt = m0 exp

(
1
2

t
)

so that

E [Xt ] = x0 exp

(
1
2

t
)
.
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Problem 2: Option pricing - Bull call spread in Black Scholes

A bull call spread payoff is the difference between a call option with
smaller strike and a call option with a larger strike. The underlying
asset and the option maturities are the same.
In formula: if the two strikes are K1 > K2 and the stock at time t is St ,
with the Bull call spread maturity being T , then the bull call spread
payoff is

Y = (ST − K2)
+ − (ST − K1)

+.

a) Draw a plot of the payoff of a bull call spread as a function of ST .
Describe the type of investor who would buy this payoff and their views
on the market.
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b) Write a formula for the price of the bull call spread at time 0 in the
Black Scholes model where the stock evolves, under the measure P,
according to

dSt = µStdt + σStdWt ,

where W is a Brownian motion under P and the initial condition
S0 = s0 is deterministic. Assume K2 < s0 < K1. The risk free rate of
the bank account is assumed to be constant and equal to r . Comment
on the sign of the price.

c) Compute the delta of the bull call spread, namely its sensitivity to
the stock price at time 0. In other words, if V0 is the price you
computed in point b), calculate ∂V0

∂s0
. What does the sign allow you to

conclude on the behaviour of the bull call spread with respect to the
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underlying stock and does this confirm your intuition on the payoff
interpretation in point a)?

d) Compute the Vega of the bull call spread, namely ∂V0
∂σ .
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Solutions.

a).
We had already seen this payoff on the part of the course concerning
risk measures, but we repeat the analysis here.
The payoff can also be written as

Y = (K1 − K2)1ST>K1 + (S − K2)1K2<ST≤K1 + 0 1S≤K2 .

This contingent claim consists of one long call with a lower strike price
and one short call with a higher strike.
Note that the initial price of Y would be positive to us, since it is an
in-the-money call minus an out-of-the-money call. This means that to
purchase this payoff we need to pay.
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As for the plot of the payoff of a bull call spread, excluding the initial
payment needed to buy the product, the payoff looks like

What type of investor would buy this payoff? A bull call spread profits
when the underlying stock rises in price, but profit is limited as the
stock price rises above the strike price K1, and the loss is also limited
as the stock price falls below the strike price K2. So differently from
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payoffs like risk reversals, the bull call spread allows for limited gain
and limited losses, whichever the model (we know for example that
under the Bachelier model a risk reversal can lead to an unlimited loss,
potentially). Therefore, as a payoff it will be less risky than a bull or
long risk reversal, but at the same time it will allow for less profit in
case of strong positive performance of the stock at maturity.
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Indeed, the loss is floored after the stock drops below K2, but the
potential profits are also capped as the stock rises above K1. Hence
this contract will be sought by a trader who does not want excessive
risk and who is expecting the stock to increase.

The contract may be of interest to a trader with limited funds, because
it is less expensive than a call option with stike K2, as it reduces the
price of the call by selling another call with a higher strike K1. So one
finances the purchase of a call with the sale of another call.

b)
To price this payoff, we just need to price the two call options and
substract.

(c) 2012-24 Prof. D. Brigo SDEs in Financial Modelling Imperial College London 730 / 805



Exam 6 Problem 2: Option pricing - Bull call spread in Black Scholes

Mock Exam 6 VIII

Indeed, we know from the Black Scholes formulas that the price of the
payoff Y at time 0 is the Black-Scholes price of the call with strike K2
minus the Black-Scholes price of the call with strike K1, namely

V0 = S0Φ(d1(K2))− K2e−rTΦ(d2(K2))− [S0Φ(d1(K1))− K1e−rTΦ(d2(K1))]

where

d1,2(K ) =
ln(St/K ) +

(
r ± 1

2σ
2) (T − t)

σ
√

T − t
.

The sign of the price is positive, V0 > 0. Indeed, the payoff itself is
non-negative in every scenario, so its Q-expectation, leading to the
price, will be positive. Another way to look at it is to consider that we
are taking the difference of two call options with the same maturity,
same stock and different strikes. The first option has a lower strike K2
with S0 > K2, so the first call option is in-the-money. The call option we
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subtract or sell, has larger strike K1 and S0 < K1, so the second call is
out of the money. As a call that is in the money is more valuable than a
call that is out of the money, everything else being equal, we deduce
that the difference will be positive.

c)
To compute the delta, we need to take the partial derivative of V0 with
respect to s0.
Recall that the delta at time 0 of a call options with stock S, strike K ,
maturity T , volatility σ and risk free rate r is given by

∆call(K ) = Φ(d1(K )), d1(K ) =
ln(S0/K ) +

(
r + 1

2σ
2)T

σ
√

T
.
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Since our bull call spread (BuCS) is the difference of two call options
with strikes K2 and K1 respectively, we have

∆BuCS =
∂V0

∂s0
=

∂(CallPrice(K2)− CallPrice(K1))

∂s0
=

=
∂CallPrice(K2)

∂s0
− ∂CallPrice(K1)

∂s0
= Φ(d1(K2))− Φ(d1(K1)).

We can discuss the sign of the Delta to see the pattern of the BuCS
price with respect to s0. To do this, we wish to understand whether the
delta of a call option, Φ(d1(K )), is increasing or decreasing in K , or
neither. We know Φ is an increasing function as it is the normal CDF,
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so the question is whether d1(K ) is increasing, decreasing or neither in
K . We can write d1(K ) as

d1(K ) =
ln(S0)− ln(K ) +

(
r + 1

2σ
2)T

σ
√

T
.

Then
∂d1(K )

∂K
=

1
σ
√

T

∂(ln(S0)− ln(K ) +
(
r + 1

2σ
2)T )

∂K
=

=
1

σ
√

T
(− 1

K
) < 0.

If K is positive, this is a negative numer. This means that d1(K ) is
decreasing in K . As the total delta is

∆BuCS = Φ(d1(K2))− Φ(d1(K1))
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with K2 < K1, and the delta is decreasing in K , it follows that the
difference is positive. Therefore the delta of a BuCS is positive. This is
confirmed by looking at the shape of the payoff.

We see from the picture that if S increases, the value of the payoff
increases.
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(d) The bull call spread vega is

∂V0

∂σ
=

∂CallPrice(K2)

∂σ
− ∂CallPrice(K1)

∂σ
= . . .

Looking at the formula for V0, we see it depends on the volatility only
through the terms d1 and d2 of the two call options. We will need then
to calculate, as already done for the risk reversal,

∂Φ(d1)

∂σ
= Φ′(d1)

∂d1

∂σ
= ϕ(d1)

∂d1

∂σ

= ϕ(d1)
∂

∂σ

(
ln(s0/K ) + (r + σ2/2)T

σ
√

T

)
= ϕ(d1)

∂

∂σ

(
ln(s0/K ) + rT

σ
√

T
+

σ

2

√
T
)
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= ϕ(d1)

[
− ln(s0/K ) + rT

σ2
√

T
+

√
T

2

]
,

where Φ′(x) = ϕ(x) is the standard normal probability density function,
whereas

∂Φ(d2)

∂σ
= Φ′(d2)

∂d2

∂σ
= ϕ(d2)

∂d2

∂σ

= ϕ(d2)
∂

∂σ

(
ln(s0/K ) + (r − σ2/2)T

σ
√

T

)
= ϕ(d2)

∂

∂σ

(
ln(s0/K ) + rT

σ
√

T
− σ

2

√
T
)

= ϕ(d2)

[
− ln(s0/K ) + rT

σ2
√

T
−

√
T

2

]
.
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At this point we calculate the vega for a call option with strike K by
computing

νCall(σ,K ) =
∂CallPrice(σ,K )

∂σ
= s0∂σΦ(d1(σ,K ))−Ke−rT∂σΦ(d2(σ,K )) =

and substituting for the partial derivatives of Φ(d1,2) computed above
we get =

s0ϕ(d1(K ))

[
− ln(s0/K ) + rT

σ2
√

T
+

√
T

2

]
−Ke−rTϕ(d2(K ))

[
− ln(s0/K ) + rT

σ2
√

T
−

√
T

2

]

and the vega of the bull call spread is

νBuCS(σ,K1,K2) = νCall(σ,K2)− νCall(σ,K1).
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Problem 3. Option pricing - Bull Call Spread with Bachelier model
A Bull Call Spread (BuCS) payoff is the difference between a call
option payoff with smaller strike and a call option payoff with a larger
strike, see problem 2 of this exam. The underlying asset and the
option maturities are the same.
In formula: if ST is the stock price at maturity T , and the strikes are
K1 > K2, then the BuCS payoff is

Y = (ST − K2)
+ − (ST − K1)

+.

We assume the initial stock price S0 to be in-between the two strikes:
K2 < S0 < K1.
a) Draw a plot of the payoff. Provide your intuition on the payoff and
explain what kind of investor might be interested in entering this
position.
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b) Suppose we observe a decreasing volatility smile for the stock ST .
Introduce briefly the Bachelier model under the measure P, explain
what assumptions it makes on the probability distribution of the stock,
explain one important disadvantage of this assumption when modeling
stock prices, and explain what particular assumptions you need on the
risk free rate r to be able to do the change of measure to Q. Explain
why the Bachelier model is consistent with a decreasing smile. Explain
which other models could be used to reproduce a purely decreasing
smile.

c) With the Bachelier model chosen in b), price the BuCS at time 0. Let
V0 be the price. We assume the risk free rate to be zero, r = 0.
Assume further that s0 is the mean of the two strikes K2 and K1,
s0 = (K2 + K1)/2. Prove that V0 > 0.
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d) Compute the Delta of the BuCS in the Bachelier model, namely ∂V0
s0

.
Discuss the sign of the Delta and deduce the behaviour of the BCS
price with respect to the underlying stock S0.
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Solutions of Mock Exam 6. Problem 3: Bull Call Spread with the
Bachelier models.
a) This question has been answered in Problem 2 of this same mock
exam. Refer to the solution given there.

b) The Bachelier model under the measure P postulates the stock
dynamics

dSt = µdt + σdWt , S0 = s0

where µ is the drift, a real constant, σ > 0 is the volatility, a real
constant, and s0 is a positive deterministic initial condition. This is an
arithmetic Brownian motion and as such it has a normal distribution.
Indeed, in the Bachelier model the stock is normally distributed, and
therefore has the disadvantage of being allowed to take negative
values with positive probabilities.
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To move under the risk neutral measure, we would need to impose the
drift rSt and obtain a model under Q that reads

dSt = rStdt + σdW Q
t , S0 = s0.

This, however, is no longer an arithmetic Brownian motion, but has
become a special case of an Ornstein Uhlenbeck process. It is not
desirable to have two different types of processes under the two
measures, so the only way to keep an arithmetic Brownian motion
under Q is to assume r = 0. In that case the Bachelier model under Q
reads

dSt = σdW Q
t , S0 = s0

and is still an arithmetic Brownian motion.
The volatility function σ is weaker (a constant) compared to the
volatility function in Black Scholes (σSt ), which is an increasing linear
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function. As a consequence, the smile in Bachelier will be weaker that
in Black and Scholes. As the smile in Black Scholes is flat, a weaker
smile will be decreasing. Indeed, the Bachelier model generates a
decreasing volatility smile.
If we observe a decreasing smile, the other models consistent with this
are

1. Displaced Diffusion (DD) with negative shift;
2. CEV with exponent smaller than 1.

However we know that CEV requires special functions and is less
tractable than DD and Bachelier. We also know that in a sense DD
approximates both Black Scholes and Bachelier. In this case we take
the Bachelier model as the problem requires.
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c) We price the BuCS by computing the difference between two call
prices with different strikes in the Bachelier model. Recall the forula for
a call option in the Bachelier model.

VBaM(0, s0,K ,T , σ) = (s0 − K )Φ

(
s0 − K
σ
√

T

)
+ σ

√
TpN

(
s0 − K
σ
√

T

)
.

To obtain the BuCS price, we need to make the difference of a call with
strike K2 minus a call with strike K1. We get

V BuCS
0 = (s0 − K2)Φ

(
s0 − K2

σ
√

T

)
+ σ

√
TpN

(
s0 − K2

σ
√

T

)

−(s0 − K1)Φ

(
s0 − K1

σ
√

T

)
− σ

√
TpN

(
s0 − K1

σ
√

T

)
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To prove that this price is larger than zero we need to prove that the
first price is larger than the second. This will be true if the two following
inequalities hold

(s0 − K2)Φ

(
s0 − K2

σ
√

T

)
> (s0 − K1)Φ

(
s0 − K1

σ
√

T

)
and

σ
√

TpN

(
s0 − K2

σ
√

T

)
≥ σ

√
TpN

(
s0 − K1

σ
√

T

)
.

The first inequality holds because we recall that s0 is the mid point
between K2 and K1 > K2. Thus s0 − K2 is positive and s0 − K1 is
negative. Given that Φ is always positive, we conclude that the first
inequality holds because the left hand side is positive and the right
hand side is negative.
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The second inequality simplifies to

pN

(
s0 − K2

σ
√

T

)
≥ pN

(
s0 − K1

σ
√

T

)
.

where we recall that pN = ϕ is the standard normal probability density
function, namely pN(y) = 1√

2π
exp(−y2/2). We note that

pN(−y) = pN(y). Given that s0 is the mid point between K2 and K1, we
have that s0 − K2 = −(s0 − K1). It follows that

pN

(
s0 − K2

σ
√

T

)
= pN

(
s0 − K1

σ
√

T

)
from pN(−y) = pN(y) and the second inequality holds as an equality.
Therefore we can conclude that V BuCS

0 > 0.
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d) We now compute the delta of the BuCS under the Bachelier model.
Given that we have the difference of two call options, it is convenient
first to compute the delta of a call option in the Bachelier model.
Thus, we compute

∂VBaM(0)
∂s0

=
∂
(
(s0 − K )Φ

(
s0−K
σ
√

T

))
∂s0

+ σ
√

T
∂ pN

(
s0−K
σ
√

T

)
∂s0

.

We compute the first partial derivative first.

∂
(
(s0 − K )Φ

(
s0−K
σ
√

T

))
∂s0

= Φ

(
s0 − K
σ
√

T

)
+

s0 − K
σ
√

T
pN

(
s0 − K
σ
√

T

)
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As for the second term,

∂ pN

(
s0−K
σ
√

T

)
∂s0

= −s0 − K
σ
√

T
1

σ
√

T
pN

(
s0 − K
σ
√

T

)
where we used p′

N(y) =
1√
2π

exp(−y2/2)(−y) = −ypN(y) as the first
derivative of the normal PDF. Putting together the pieces we get

∂VBaM(0)
∂s0

= Φ

(
s0 − K
σ
√

T

)
+

s0 − K
σ
√

T
pN

(
s0 − K
σ
√

T

)
−s0 − K

σ
√

T
pN

(
s0 − K
σ
√

T

)

= Φ

(
s0 − K
σ
√

T

)
.
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As already happened for Black Scholes, also for Bachelier the delta
can be computed by pretending the only s0 is the one in the box and
differentiating with respect to that, ignoring the other s0’s.

∂VBaM(0)
∂s0

=
∂
(
( s0 − K )Φ

(
s0−K
σ
√

T

))
∂s0

+ σ
√

T
∂ pN

(
s0−K
σ
√

T

)
∂s0

.

The reason is the same an in Black Scholes but it’s too subtle to be
explained here.

As the Delta of the BuCS is a Φ function, it is always positive. Hence in
the Bachelier model, the value of a BuCS grows with the underlying
stock s0 as the derivative is always positive. This is intuitive looking at
the payoff, as we observed in point 2 for Black Scholes, since as the
stock grows the payoff becomes more profitable.
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Consider a porfolio with a short zero-coupon bond with notional N and
maturity T , and a long position on an amount N of equity forward
contract on stock S with strike K and maturity T . In other terms, the
payoff at time T is

Y = −N 1 + N(ST − K ).

The stock is assumed to follow the Black Scholes model

dSt = µStdt + σStdWt , s0

under the measure P. We assume a constant positive risk free rate
r > 0.
a) Compute the portfolio VaRH,α

b) How sensitive is VaR to the stock volatility? Give a quantitative
measure of this sensitivity and comment on its sign and on what this
imply on how VaR behaves with respect to σ.
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Exam 6 Problem 4. Risk measures: Short Bond & long forward in B&S

Mock Exam 6 II

c) What is the limit VaR when (i) µ ↓ −∞ and (ii) µ ↑ +∞? Examine
how both limits depend on the confidence level α and discuss.
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Exam 6 Problem 4. Risk measures: Short Bond & long forward in B&S

Mock Exam 6 III

Solutions.
a) The loss distribution at H is the portfolio value at time 0 minus the
portfolio value at time H, namely

LH = −Ne−r(T−0)+N(S0−Ke−r(T−0))−[−Ne−r(T−H)+N(SH−Ke−r(T−H))]

= −N(K + 1)(e−rT − e−r(T−H)) + NS0 − NSH = A − NSH

where A = N(K + 1)(e−r(T−H) − e−rT ) + NS0 is deterministic. Note
that A > 0 as e−r(T−H) > e−rT . Here we used the fact that the price of
a unit-notional zero coupon bond with maturity T at time t < T is

P(t ,T ) = EQ
t [e−r(T−t)1] = e−r(T−t)

while the price of the forward contract with maturity T at time t < T is

EQ
t [e−r(T−t)(ST − K )] = St − Ke−r(T−t).
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Exam 6 Problem 4. Risk measures: Short Bond & long forward in B&S

Mock Exam 6 IV

VaRH,α is defined as the quantity q satisfying

α = P[LH < q] = P[A − NSH < q] = P[SH > (A − q)/N] =

= P[S0 exp((µ− σ2/2)H + σWH) > (A − q)/N] =

= P[exp((µ− σ2/2)H + σWH) > (A − q)/(NS0)] = . . .

where we have used the usual solution for the Black Scholes
geometric-Brownian-motion SDE. We know that A > 0. We temporarily
assume A − q > 0 so we can take logs on both sides in the last P
expression, and we will have to check that this condition is satisfied a
posteriori, once we have found q. We have

. . . = P
[
WH >

ln[(A − q)/(NS0)]− (µ− σ2/2)H
σ

]
=
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Exam 6 Problem 4. Risk measures: Short Bond & long forward in B&S

Mock Exam 6 V

= P
[√

HN >
ln[(A − q)/(NS0)]− (µ− σ2/2)H

σ

]

= P
[
N >

ln[(A − q)/(NS0)]− (µ− σ2/2)H
σ
√

H

]
Recalling that P[N > x ] = 1 − Φ(x) = Φ(−x), we have

α = Φ

(
− ln[(A − q)/(NS0)]− (µ− σ2/2)H

σ
√

H

)
.

Take Φ−1 on both sides:

Φ−1(α) = − ln[(A − q)/(NS0)]− (µ− σ2/2)H
σ
√

H
,
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Exam 6 Problem 4. Risk measures: Short Bond & long forward in B&S

Mock Exam 6 VI

and solve in q:

q = A − NS0 exp
(
−Φ−1(α)σ

√
H + (µ− σ2/2)H

)
This is our VaR. Recall we had assumed A − q > 0 to be positive. Let’s
check it is positive indeed. A − q, from the last expression, turns out to
be an exponential and as such it is always positive.

b) We see that VaR depends on the volatility through the first and
second terms inside Φ:

VaRH,α = A − NS0 exp
(
−Φ−1(α) σ

√
H + (µ− σ2 /2)H

)
To quantify the sensitivity of VaR to σ we compute

∂VaR
∂σ

= −NS0 exp

(
−Φ−1(α)σ

√
H + (µ− σ2

2
)H
)

∂

∂σ

(
−Φ−1(α)σ

√
H − σ2H

2

)
=
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Exam 6 Problem 4. Risk measures: Short Bond & long forward in B&S

Mock Exam 6 VII

= −NS0(−Φ−1(α)
√

H − σH) exp
(
−Φ−1(α)σ

√
H + (µ− σ2/2)H

)
=

= NS0(Φ
−1(α)

√
H + σH) exp

(
−Φ−1(α)σ

√
H + (µ− σ2/2)H

)
=

We investigate the sign of this sensitivity.
The sensitivity will be positive if we have

Φ−1(α)
√

H + σH > 0.

For all usual values of α like 90% = 0.9, 95% = 0.95, 99% = 0.99 we
have that Φ−1(α) > 0, so that, given that σ > 0 and H > 0, the above
condition is always satisfied. The VaR sensitivity to σ will therefore
always be positive, meaning that VaR will always increase with σ.
Recall the loss,

LH = A − NSH .
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Exam 6 Problem 4. Risk measures: Short Bond & long forward in B&S

Mock Exam 6 VIII

The only random part in the loss is SH and A does not depend on σ.
Therefore by increasing σ we make SH more volatile, hance more
prone to take larger values. As we are short SH , which comes with a
minus sign, larger values of SH triggered by larger volatilities σ will
correspond to potentially large losses, and hence larger VaR.

c) If we check our expression for VaR,

VaRH,α = A − NS0 exp
(
−Φ−1(α)σ

√
H + ( µ − σ2/2)H

)
we see it is continuous in µ. µ appears only as an argument of the
exponential function in the VaR expression. We can take the two limits
for µ and see what happens.
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Exam 6 Problem 4. Risk measures: Short Bond & long forward in B&S

Mock Exam 6 IX

(i) We can see what happens for µ ↓ −∞ by calculating the limit

VaRH,α|µ↓−∞ = lim
σ↑∞

[
A − NS0 exp

(
−Φ−1(α)σ

√
H + (µ− σ2/2)H

)]
= . . .

Consider
lim

µ↓−∞
(µ− σ2/2) = −∞

So the total limit is a limit of A minus an exponential whose argument
tends to minus infinity, so that

. . . = A

since the exponent in the exponential tends to −∞ and e−∞ tends to
zero. Hence the limit is A = N(K + 1)(e−r(T−H) − e−rT ) + NS0. This
limit does not depend on α. So when µ goes to minus infinity, meaning
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Exam 6 Problem 4. Risk measures: Short Bond & long forward in B&S

Mock Exam 6 X

that the trend of the risky asset S goes to minus infinity, VaRH,α does
not depend on α anymore.
Intuitively and not fully rigorously, this is because the infinite downward
trend makes all confidence levels the same, as the stock will always go
down to zero by infinitely negative trend in a Black-Scholes -
Geometric Brownian motion models. Indeed, recall that the loss is

LH = A − NSH

and that
SH = S0 exp

(
(µ− σ2/2)H + σWH

)
and when µ ↓ −∞ this SH goes to zero for any fixed finite realization of
the Brownian motion. So the loss goes

LH |µ↓−∞ = A − NSH |µ↓−∞ = A − 0 = A
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Exam 6 Problem 4. Risk measures: Short Bond & long forward in B&S

Mock Exam 6 XI

and basically the loss becomes a positive deterministic constant A. As
it is deterministic, the loss will be A no matter the confidence level, and
VaR will always be A.

(ii) When µ ↑ +∞ we get

VaRH,α|µ↑∞ = lim
µ↑∞

[
A − NS0 exp

(
−Φ−1(α)σ

√
H + (µ− σ2/2)H

)]
= . . .

Consider
lim
µ↑∞

(µ− σ2/2) = +∞

So the total limit is
. . . = −∞

since the exponent in the exponential tends to ∞ and e∞ tends to
infinity. Hence the VaR limit is −∞. This limit does not depend on α
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Exam 6 Problem 4. Risk measures: Short Bond & long forward in B&S

Mock Exam 6 XII

either. So when µ goes to plus infinity, meaning that the trend of the
risky asset S goes to infinity, VaRH,α does not depend on α anymore.
Again intuitively and not fully rigorously, this is because the infinite
trend makes the stock SH grow indefinitely,

SH = S0 exp
(
(µ− σ2/2)H + σWH

)
will tend to infinity for µ ↑ ∞ for any finite fixed realization of WH , and
that makes the loss

LH |µ↑∞ = A − NSH |µ↑∞ = A −∞ = −∞

infinitely negative. This corresponds to the intuition that we are long a
forward contract S − K , and if S goes to infinity due to the trend, this
gives us an infinite gain, and an infinite gain corresponds to a minus
infinite loss, that is always minus infinite and thus VaR does not
depend on the confidence level.
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Mastery Questions

Mastery Questions

Year 4 and MSc students will get a fifth question in the exam, a
mastery question. Here I give some examples. The mastery question
topic is specifiied in advance usually and the students know what to
expect. For all the mastery questions below, the answers are in the
theory above, in the lecture notes.

Other examples could be on the Feynman Kac theorem, on the
displaced diffusion model, on the Girsanov theorem, etc.
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Mastery Questions

Mastery Question 1: Black Scholes and No Arbitrage I

a) Write down the equations for the two assets in the Black and
Scholes economy, explain the assets nature, and list the assumptions
behind the Black and Scholes economy.
[Solution: see theory. Write the equation of B, explain it’s the risk free
asset, solve the equation, explain what r is, write the equation of S
under the measure P, explain it’s the risky asset, comment on the type
of SDE, etc. Write the assumptions, namely the Black and Scholes
ideal conditons]

b) Define a trading strategy in the Black Scholes economy. Define a
self-financing trading strategy and explain what it means intuitively.
Define an arbitrage and explain the idea behind it.
[Solution: see lecture notes. The intuitive idea of a self financing
strategy is that it funds itself with price movements of B and S and you
don’t need to inject funds to keep it going. An arbitrage is a self
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Mastery Questions

Mastery Question 1: Black Scholes and No Arbitrage II

financing strategy with zero initial value that has positive probability of
having strictly positive final value. Since the strategy has always
non-negative value, this means having positive money with positive
probability at final time, with zero initial investment. So an arbitrage is a
market where there can be “money from nothing” with positive
probability. Such market is rigged and we don’t want to engage in it, so
we will request that there is no arbitrage]
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Mastery Questions

Mastery Question 2: SDEs Ito and Stratonovich I

a) Explain how an SDE is defined in terms of integral equations.
Define Ito and Stratonovich SDEs, giving pros and cons of each.
[See lecture notes, as W ’s paths are not differentiable we cannot
interpret them as differentials. We then rewrite the SDE as an integral
equation. Explain the possible definitions of stochastic integral and
how they differ. Explain the difference between Ito and Stratonovich
SDEs based on the two different integrals. Ito integral has zero mean
and the Ito isometry property. It does not look into the future (give
details), and this is all good, but it violates the chain rule, which is
replaced by Ito’s formula (details). Stratonovich integral looks into the
future and does not have zero mean, but Stratonovich SDEs satisfy the
chain rule]

b) What conditions are sufficient on the coefficients of an SDE for
existence and uniqueness of a global solution?
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Mastery Questions

Mastery Question 2: SDEs Ito and Stratonovich II

[See lecture notes, global Lipschitz continuity and linear growth]
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Mastery Questions

Mastery Question 3: Smile modeling I

a) Explain the differences between the Black and Scholes model and
the Bachelier model, with pros and cons of each
[Black scholes has a stock price that is lognormal (details), whereas
Bachelier normal (details). As stock prices are positive, the Black
Scholes model is more realistic. However, working with normals is
easier than working with lognormals, so in terms of simplicity the
Bachelier model is superior. Also, when modeling financial quantities
like interest rates, that may go negative, the Bachelier model offers this
option whereas the Black Scholes model does not]

b) Explain the basic ideas behind the mixture dynamics.
[See lecture notes. The mixture dynamics idea is to have a SDE for the
stock that has a mixture of lognormal densities as density of the stock,
at all times. As pricing an option is taking an average of the payoff with
respect to this mixture, the price will be a linear combination of Black
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Mastery Questions

Mastery Question 3: Smile modeling II

Scholes prices. This allows to fit market volatility smiles with good
precision. Also, under the measure P the mixture dynamics has fat
tails and matches the returns of stocks in the market, improving on the
normal returns of the basic Black Scholes model. QQ-plots and
skewness/kurtosis calculations confirm this in numerical examples.]
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Mastery Questions

Mastery Question 4: Barings Collapse and Risk
measures I

a) Write a short summary of the story of the Barings collapse, why it
has happened, and what could have prevented it. [See lecture notes
and do some reading on your own online or in the library. Summarize
the story of Leeson’s trading and his final straddle. Talk about the
straddle payoff. Monitoriing a risk measure like Value at Risk or
Expected Shortfall on Leeson portfolio could have prevented him
trading like he did and taking too risky positions like the final straddle.]

b) Define value at risk (VaR) and give at least two drawbacks of this
risk measure. Define expected shortfall and give at least one
drawback.
[See lecture notes, give detailed definitions. Drawback of VaR is that it
doesn’t see the tail beyond the confidence level. Also, it is not
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Mastery Questions

Mastery Question 4: Barings Collapse and Risk
measures II

sub-additive. ES overcomes this, but has still the homogeneity
assumpion, which is unrealistic for liquidity risk. Give more details ]
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Mastery Question 2022-2023

Mastery Question 2022-2023

In the course we developed the theory of no arbitrage but we didn’t
discuss the theory in the problems, there is no problem in mock exams
on the theory of no arbitrage.

The mastery question will be a question on no-arbitrage in the Black
Scholes economy and related notions. To prepare for this, study the
lecture notes that introduce the Black and Scholes model, trading
strategies, arbitrage opportunities, martingale measures, delta
hedging, complete markets.

If you wish to go deeper you can look at Tomas Bjork book “Arbitrage
Theory in Continous time” but this won’t be necessary for the mastery
question. Lecture notes will suffice.

(c) 2012-24 Prof. D. Brigo SDEs in Financial Modelling Imperial College London 772 / 805



Mastery Question 2023-2024

Mastery Question 2023-2024

In the mock exam we didn’t delve into the derivation of the Black
Scholes theory. The mastery question for 2024 will be about the Black
Scholes model, the derivation of the PDE, the corresponding version
with an expected value and the related change of measure, plus the
related theorems (Feynman-Kac and Girsanov). Use the lecture notes
to review this material and feel free to search other sources too,
although the lecture notes material is sufficient to answer.
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Coursework 2022-2023

Coursework 2022-2023 I

This coursework is for the year 2022-2023. It will have to be carried out
by groups of students, each group consisting of 3 students.

Topic: Model selection for valuation of an option portfolio
You are given the task of selecting an option pricing model for options
on the S&P500 equity index. You wish to select a model that has good
properties based on historical data, hence under the measure P. Once
the type of model has been selected based on historical analysis, you
would calibrate it to the market volatility smile under the measure Q,
but this second part is not required in this coursework.
• Find a data source, and download at least five years of S&P 500

data and analyze their daily log-returns to see what properties the
stock price model should have under the measure P. Use at least
sample mean, sample standard deviation, skewness, excess
kurtosis and QQplots for the returns sample.
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Coursework 2022-2023

Coursework 2022-2023 II

• Analyze the data on several historical windows: past week, past
two weeks, past month, past three months, past six months, past
year, .... , whole sample.

• See if the properties depend on the specific window. Are the
returns fat-tailed on some windows but not on others?

• Explain, based on the previous points, whether the Black Scholes
model would be a good model for the stock. Explain whether the
data support the use of different models like the Bachelier model,
the displaced diffusion and the mixture dynamics. Be careful not
to confuse returns with levels. Explain whether you need positivity
of the price to make the log-return analysis, i.e. do you have to
rule out models with negative stock prices?
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Coursework 2022-2023

Coursework 2022-2023 III

• Based on the previous points and the previous detailed
discussion, make a model recommendation for calibrating the
smile and pricing options on S&P500. Collect your final
recommendations in a table similar to this.

Period mean annualized vol skew kurt suggested model
1 week
2 weeks
1 month
3 months
6 months

1 year -0.0004 13.5% 0.2 0.6 Black Scholes
3 years
5 years 0.0004 20.25% -1.1 22.5 Mixture dynamics
whole
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Coursework 2022-2023

Coursework 2022-2023 IV

Here we filled the 1 year and 5 years rows with the results from
the lectures dataset, giving some model suggestions as
examples, as in the lecture notes, but you will find different results
depending on the dataset you chose.

• Coursework submission is expected by December 1st.
• Coursework will contribute 10% of the final mark.
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Coursework 2023-2024

Coursework 2023-2024 I

Consider a bear (or short) risk reversal option payoff on a stock price
S, with maturity T , defined as

Y = −(ST − K1)
+ + (K2 − ST )

+

with K2 < S0 < K1. The payoff is illustrated in the picture below.
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Coursework 2023-2024

Coursework 2023-2024 II

Assume the stock follows a Black Scholes price model under the
measure P given by

dSt = µStdt + σStdW P
t , S0 = s0.

We have the following values:

s0 = 100;K2 = 95;K1 = 105;µ = 0.1;σ = 0.4; r = 0.05;T = 10y .

1 Explain what kind of investor would be interested in holding this
payoff and what they would expect from the market when
purchasing it.

2 Calculate the price of the bear risk reversal in the Black Scholes
model at time 0.
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Coursework 2023-2024

Coursework 2023-2024 III

3 We wish to calculate the VaR and ES of the bear risk reversal
position over a risk horizon H = 1y at 95% confidence level. Write
a Python or Matlab/Octave code that does this and present the
values of the VaR and expected shortfall you found. Run at least
10.000 scenarios.

4 Produce a histogram of the density of the loss distribution at 1
year and show the VaR and ES points in the loss graph.

5 Increase the volatility to the following values:

a) σ = 0.6; b)σ = 0.8; c)σ = 1.

For the three cases, show the VaR and ES figures.
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Coursework 2023-2024

Coursework 2023-2024 IV

6 More generally, can you deduce a pattern about how the risk of
loss with this contract evolves with the volatility over one year?
Are VaR and/or ES increasing, decreasing or neither increasing
nor decreasing in σ? You may run more cases if this helps you, or
try to reason analytically. If you find a pattern numerically,
increasing or decreasing, but you cannot prove it analytically, can
you give some intuition on why the pattern is the way it is?

• Coursework submission is expected by March 14, 2024.
• Coursework will contribute 10% of the final mark.
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APPENDIX: PYTHON CODES Simulation of Brownian motion

Simulation of Brownian motion: Python code I

” ” ”
Brownian motion W: s imu la t i on o f n paths
@author : Prof . Damiano Br igo
” ” ”
import numpy as np ;
import math ;
import s t a t i s t i c s ;
from sc ipy . s t a t s import norm ;
from sc ipy . s t a t s import skew ;
from sc ipy . s t a t s import k u r t o s i s ;
from math import exp ;
import m a t p l o t l i b . pyp lo t as p l t ;
# I n i t i a l value
W0 =0;
# F ina l t ime i n years
h=1;
# Number o f t ime steps and t ime step
nt = 3650; d t = h / n t ;
# Number o f scenar ios
n=10000;
” ” ” Generat ing the normal 0 ,1 i n n scenar ios f o r each t ime step ” ” ”
# dW are normals represen t ing W increments , W w i l l be the Brownian
dWt = np . zeros ( n ) ;
Wt = W0*np . ones ( ( nt , n ) ) ;
from random import seed
from random import gauss
#seed random number generator
seed ( 1 )
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APPENDIX: PYTHON CODES Simulation of Brownian motion

Simulation of Brownian motion: Python code II

# loop on scenar ios
for j in range ( n ) :

Wtpredj =0;
# loop on t ime

for i in range ( n t ) :
dWt [ j ] = gauss ( 0 , 1 ) * ( d t * * 0 . 5 ) ;
Wt [ i , j ] =Wtpredj+dWt [ j ] ;
Wtpredj = Wt [ i , j ] ;

# endfor
#endor
# mean and standard d ev i a t i on o f the s o l u t i o n
meansim = np . average (Wt [ nt −1 ,0 : ( n − 1 ) ] ) ;
pr in t ( ”mean s imu la t i on Euler : ” ,meansim ) ;
#
Stdsim = np . s td (Wt [ nt −1 ,0 : ( n − 1 ) ] ) ;
pr in t ( ” Std s imu la t i on Euler : ” , Stdsim ) ;
# Comparing skewness and k u r t o s i s
skewSteuler = skew (Wt [ nt −1 ,0 : ( n −1 ) ] , ax is = 0 , b ias = True ) ;
pr in t ( ”Skew Euler : ” , skewSteuler ) ;
#
k u r t S t e u l e r = k u r t o s i s (Wt [ nt −1 ,0 : ( n −1 ) ] , ax is = 0 , b ias = True ) ;
pr in t ( ” Ku r tos i s Euler : ” , k u r t S t e u l e r ) ;
t t = l i s t ( range (0 , nt , 1 ) ) ;
p l t . p l o t ( t t , Wt )
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APPENDIX: PYTHON CODES Short straddle

Value at Risk and ES: Short Straddle I

” ” ”
SHORT STRADDLE RISK MEASURES: VaR and ES
Created on Mon Feb 7 15:50:34 2022
@author : Damiano Br igo
======
This f i l e conta ins Python codes .
======
NB you need to run path\ to\anaconda\python . exe i n a cmd window f o r t h i s to see the packages numpy etc
” ” ”
import numpy as np ;
import math ;
import s t a t i s t i c s ;
from sc ipy . s t a t s import norm ;
import m a t p l o t l i b . pyp lo t as p l t ;
# Stock p r i ce parameters
S0 =100;
miu =0.05;
Sig =0 .5 ;
r =0.01;
# opt ion s t r i k e , number o f s imu la t ions , ma tu r i t y
k=100;
n=100000;
T=1;
# Confidence l e v e l and r i s k hor izon f o r VaR and ES
conf idence =0.99;
h=0.25;
# Option p r i ces a t t ime 0
d1c =(math . log (S0 / k )+ ( r +0.5* Sig * * 2 ) * T ) / ( Sig *T * * 0 . 5 ) ;
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APPENDIX: PYTHON CODES Short straddle

Value at Risk and ES: Short Straddle II

d1p=(math . log (S0 / k )+ ( r +0.5* Sig * * 2 ) * T ) / ( Sig *T * * 0 . 5 ) ;
c0=S0*norm . cdf ( d1c) −k * math . exp( − r *T ) * norm . cdf ( d1c−Sig *T * * 0 . 5 ) ;
p0=−S0*norm . cdf ( −d1p)+ k * math . exp( − r *T ) * norm . cdf ( −d1p+Sig *T * * 0 . 5 ) ;
v0=−c0−p0 ;
” ” ” computing the p r i ces a f t e r h years ” ” ”
T=T−h ;
Zt = np . zeros ( n ) ;
St = np . zeros ( n ) ;
from random import seed
from random import gauss
#seed random number generator
seed ( 1 )
# Simula t ing the stock up to t ime h i n n scenar ios
for j in range ( n ) :

Zt [ j ] = gauss (0 ,1 )
St [ j ]=S0* math . exp ( ( miu −0.5* Sig * * 2 ) * h ) * math . exp ( Zt [ j ] * Sig * ( h * * 0 . 5 ) )

# Ca l l and put p r i ces a t t ime h i n each scenar io
c t =np . zeros ( n ) ;
p t=np . zeros ( n ) ;
for i in range ( n ) :

d1cnew=(math . log ( St [ i ] / k )+ ( r +0.5* Sig * * 2 ) * T ) / ( Sig *T * * 0 . 5 ) ;
d1pnew=(math . log ( St [ i ] / k )+ ( r +0.5* Sig * * 2 ) * T ) / ( Sig *T * * 0 . 5 ) ;
c t [ i ]= St [ i ] * norm . cdf ( d1cnew) −k * math . exp( − r *T ) * norm . cdf ( d1cnew−Sig *T * * ( 0 . 5 ) ) ;
p t [ i ]= − St [ i ] * norm . cdf ( −d1pnew)+ k * math . exp( − r *T ) * norm . cdf ( −d1pnew+Sig *T * * ( 0 . 5 ) ) ;

# end f o r
# value o f s t r add le i n each scenar io
v t =−ct −p t ;
# Loss c a l c u l a t i o n vvar = loss
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Value at Risk and ES: Short Straddle III

vvar=v0− v t ;
vvar=np . s o r t ( vvar ) ;
# E x t r a c t i n g VaR at the r i g h t conf idence l e v e l from the loss
i v a r = round ( ( conf idence ) * n ) ;
var = vvar [ i v a r ] ;
# Ca l cu l a t i ng ES
ESv= s t a t i s t i c s . mean( vvar [ range ( math . f l o o r ( ( conf idence ) * n ) , n ) ] ) ;
pr in t ( ”VaR: ” , var ) ;
pr in t ( ”ES: ” ,ESv ) ;
#histogram of the loss
p l t . h i s t ( vvar , b ins = 100)
p l t . show ( )
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VaR and ES: Call & Put on correlated stocks I

” ” ”
CALL AND PUT OPTION PORTFOLIO ON CORRELATED STOCKS: VaR and ES
Created on Mon Feb 7 15:50:34 2022
@author : Prof . Damiano Br igo
======
This f i l e conta ins Python codes .
======
NB you need to run path\ to\anaconda\python . exe i n a cmd window f o r t h i s to see the packages numpy etc
” ” ”
import numpy as np ;
import math ;
import s t a t i s t i c s ;
from sc ipy . s t a t s import norm ;
import m a t p l o t l i b . pyp lo t as p l t ;
# Stocks data
S01 =120;
S02 =80;
miu1 =0.05;
miu2 =0.02;
Sig1 =0.5 ;
Sig2 =0.2 ;
rho = −0.8;
r =0.01;
# Options ma tu r i t y and s t r i k e s
T=2;
k1=116;
k2=86;
# number o f scenar ios , conf idence l e v e l and r i s k hor izon
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VaR and ES: Call & Put on correlated stocks II

n=40000;
conf idence =0.95;
h = 0 .25 ;
# Option p r i ces a t t ime zero
d1c =(math . log (S01 / k1 )+ ( r +0.5* Sig1 * * 2 ) * T ) / ( Sig1 *T * * 0 . 5 ) ;
d1p=(math . log (S02 / k2 )+ ( r +0.5* Sig2 * * 2 ) * T ) / ( Sig2 *T * * 0 . 5 ) ;
c0=S01*norm . cdf ( d1c) −k1 * math . exp ( −0.01*T ) * norm . cdf ( d1c−Sig1 *T * * 0 . 5 ) ;
p0=−S02*norm . cdf ( −d1p)+ k2 * math . exp ( −0.01*T ) * norm . cdf ( −d1p+Sig2 *T * * 0 . 5 ) ;
v0=c0+p0 ;
pr in t ( ” Ca l l S1 s t r i k e K1 : ” , c0 ) ;
pr in t ( ” Put S2 s t r i k e K2 : ” , p0 ) ;
” ” ” computing the op t ion p r i ces a f t e r h years ” ” ”
T=T−h ;
Zt1 = np . zeros ( n ) ;
Zt2 = np . zeros ( n ) ;
St1 = np . zeros ( n ) ;
St2 = np . zeros ( n ) ;
from random import seed
from random import gauss
#seed random number generator
seed ( 1 )
# generate Gaussian random values and c o r r e l a t e d Brownian motion scenar ios
for j in range ( n ) :

Zt1 [ j ] = gauss (0 ,1 )
Zt2 [ j ] = rho * Zt1 [ j ] + ((1 − rho * * 2 ) * * ( 0 . 5 ) ) * gauss (0 ,1 )

# Generat ing stock scenar ios
St1 [ j ]=S01* math . exp ( ( miu1 −0.5* Sig1 * * 2 ) * h ) * math . exp ( Zt1 [ j ] * Sig1 * ( h * * 0 . 5 ) )
St2 [ j ]=S02* math . exp ( ( miu2 −0.5* Sig2 * * 2 ) * h ) * math . exp ( Zt2 [ j ] * Sig2 * ( h * * 0 . 5 ) )
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VaR and ES: Call & Put on correlated stocks III

# end f o r
c1t=np . zeros ( n ) ;
p2t=np . zeros ( n ) ;
# Ca l cu l a t i ng op t ion p r i ces scenar ios i n h years
for i in range ( n ) :

d1c1new=(math . log ( St1 [ i ] / k1 )+ ( r +0.5* Sig1 * * 2 ) * T ) / ( Sig1 *T * * 0 . 5 ) ;
d1p2new=(math . log ( St2 [ i ] / k2 )+ ( r +0.5* Sig2 * * 2 ) * T ) / ( Sig2 *T * * 0 . 5 ) ;
c1 t [ i ]= St1 [ i ] * norm . cdf ( d1c1new) −k1 * math . exp ( −0.01*T ) * norm . cdf ( d1c1new−Sig1 *T * * ( 0 . 5 ) ) ;
p2t [ i ]= − St2 [ i ] * norm . cdf ( −d1p2new)+ k2 * math . exp ( −0.01*T ) * norm . cdf ( −d1p2new+Sig2 *T * * ( 0 . 5 ) ) ;

# end f o r
# c a l c u l a t i n g p o r t f o l i o value a t t ime h i n a l l scenar ios
v t =c1t+p2t ;
# c a l c u l a t i n g loss vvar i n a l l scenar ios
vvar=v0− v t ;
vvar=np . s o r t ( vvar ) ;
# e x t r a c t i n g VaR from loss a t the r i g h t conf idence l e v e l
i v a r = round ( ( conf idence ) * n ) ;
var = vvar [ i v a r ] ;
# Ca l cu l a t i ng ES
ESv= s t a t i s t i c s . mean( vvar [ range ( math . f l o o r ( ( conf idence ) * n ) , n ) ] ) ;
pr in t ( ”VaR: ” , var ) ;
pr in t ( ”ES: ” ,ESv ) ;
# P l o t t i n g histogram of the loss
p l t . h i s t ( vvar , b ins = 100)
p l t . show ( )
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VaR and ES: Bull Call Spread I

” ” ”
VaR and ES f o r BULL CALL SPREAD
Created on Mon Feb 7 15:50:34 2022
@author : Prof . Damiano Br igo
======
This f i l e conta ins Python codes .
======
NB you need to run path\ to\anaconda\python . exe i n a cmd window f o r t h i s to see the packages numpy etc
” ” ”
import numpy as np ;
import math ;
import s t a t i s t i c s ;
from sc ipy . s t a t s import norm ;
import m a t p l o t l i b . pyp lo t as p l t ;
# Stock data
S0 =100;
Sig =0 .4 ;
miu =0.05;
r =0.01;
# opt ion s t r i k e s and ma tu r i t y
k1=110;
k2=90;
T=5;
# Number o f scenar ios , conf idence leve l , r i s k hor izon
n=40000;
conf idence =0.95;
h=1;
# Value of the opt ions a t t ime 0
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VaR and ES: Bull Call Spread II

d1c1 =(math . log (S0 / k1 )+ ( r +0.5* Sig * * 2 ) * T ) / ( Sig *T * * 0 . 5 ) ;
d1c2 =(math . log (S0 / k2 )+ ( r +0.5* Sig * * 2 ) * T ) / ( Sig *T * * 0 . 5 ) ;
c20=S0*norm . cdf ( d1c2) −k2 * math . exp ( −0.01*T ) * norm . cdf ( d1c2−Sig *T * * 0 . 5 ) ;
c10=S0*norm . cdf ( d1c1) −k1 * math . exp ( −0.01*T ) * norm . cdf ( d1c1−Sig *T * * 0 . 5 ) ;
v0=c20−c10 ;
pr in t ( ” Ca l l s t r i k e K2 : ” , c20 ) ;
pr in t ( ” Ca l l s t r i k e K1 : ” , c10 ) ;
” ” ” computing the p r i ces a f t e r one year ” ” ”
T=T−h ;
Zt = np . zeros ( n ) ;
St = np . zeros ( n ) ;
from random import seed
from random import gauss
#seed random number generator
seed ( 1 )
# generate Gaussian random values and Brownian motion scenar ios
for j in range ( n ) :

Zt [ j ] = gauss (0 ,1 )
St [ j ]=S0* math . exp ( ( miu −0.5* Sig * * 2 ) * h ) * math . exp ( Zt [ j ] * Sig * ( h * * 0 . 5 ) )

# endfor
c1t=np . zeros ( n ) ;
c2 t=np . zeros ( n ) ;
# Ca l cu l a t i ng c a l l and put a t t ime h i n a l l scenar ios
for i in range ( n ) :

d1c1new=(math . log ( St [ i ] / k1 )+ ( r +0.5* Sig * * 2 ) * T ) / ( Sig *T * * 0 . 5 ) ;
d1c2new=(math . log ( St [ i ] / k2 )+ ( r +0.5* Sig * * 2 ) * T ) / ( Sig *T * * 0 . 5 ) ;
c1 t [ i ]= St [ i ] * norm . cdf ( d1c1new) −k1 * math . exp( − r *T ) * norm . cdf ( d1c1new−Sig *T * * ( 0 . 5 ) ) ;
c2 t [ i ]= St [ i ] * norm . cdf ( d1c2new) −k2 * math . exp( − r *T ) * norm . cdf ( d1c2new−Sig *T * * ( 0 . 5 ) ) ;
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VaR and ES: Bull Call Spread III

# endfor
# Value of p o r t f o l i o i n a l l scenar ios
v t =c2t −c1t ;
# Loss scenar ios vvar
vvar=v0− v t ;
vvar=np . s o r t ( vvar ) ;
# E x t r a c t i n g VaR from loss a t the r i g h t conf idence l e v e l
i v a r = round ( ( conf idence ) * n ) ;
var = vvar [ i v a r ] ;
# Ca l cu l a t i ng ES
ESv= s t a t i s t i c s . mean( vvar [ range ( math . f l o o r ( ( conf idence ) * n ) , n ) ] ) ;
pr in t ( ”VaR: ” , var ) ;
pr in t ( ”ES: ” ,ESv ) ;
# Histogram of loss
p l t . h i s t ( vvar , b ins = 100)
p l t . show ( )
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VaR and ES: Risk Reversal I

” ” ”
VaR and ES f o r RISK REVERSAL
Created on Mon Feb 7 15:50:34 2022
@author : Prof . Damiano Br igo
======
This f i l e conta ins Python codes .
======
NB you need to run path\ to\anaconda\python . exe i n a cmd window f o r t h i s to see the packages numpy etc
” ” ”
import numpy as np ;
import math ;
import s t a t i s t i c s ;
from sc ipy . s t a t s import norm ;
import m a t p l o t l i b . pyp lo t as p l t ;
# Stock data
S0 =100;
Sig =0 .2 ;
r =0.01;
miu =0.05;
# Options s t r i k e s and m a t u r i t i e s
k1=110;
k2=90;
T=5;
# Number o f scenar ios , conf idence leve l , r i s k hor izon
n=10000;
conf idence =0.95;
h=1;
# Option p r i ces a t t ime 0
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VaR and ES: Risk Reversal II

d1c =(math . log (S0 / k1 )+ ( r +0.5* Sig * * 2 ) * T ) / ( Sig *T * * 0 . 5 ) ;
d1p=(math . log (S0 / k2 )+ ( r +0.5* Sig * * 2 ) * T ) / ( Sig *T * * 0 . 5 ) ;
c0=S0*norm . cdf ( d1c) −k1 * math . exp( − r *T ) * norm . cdf ( d1c−Sig *T * * 0 . 5 ) ;
p0=−S0*norm . cdf ( −d1p)+ k2 * math . exp( − r *T ) * norm . cdf ( −d1p+Sig *T * * 0 . 5 ) ;
v0=c0−p0 ;
” ” ” computing the p r i ces a t t ime h ” ” ”
T=T−h ;
Zt = np . zeros ( n ) ;
St = np . zeros ( n ) ;
from random import seed
from random import gauss
#seed random number generator
seed ( 1 )
# generate some random Gaussian values and the stock scenar ios a t t ime h
for j in range ( n ) :

Zt [ j ] = gauss (0 ,1 )
St [ j ]=S0* math . exp ( ( miu −0.5* Sig * * 2 ) * h ) * math . exp ( Zt [ j ] * Sig * ( h * * 0 . 5 ) )

# endfor
c t =np . zeros ( n ) ;
p t=np . zeros ( n ) ;
# Generat ing c a l l and put scenar ios a t t ime h
for i in range ( n ) :

d1cnew=(math . log ( St [ i ] / k1 )+ ( r +0.5* Sig * * 2 ) * T ) / ( Sig * ( T * * 0 . 5 ) ) ;
d1pnew=(math . log ( St [ i ] / k2 )+ ( r +0.5* Sig * * 2 ) * T ) / ( Sig * ( T * * 0 . 5 ) ) ;
c t [ i ]= St [ i ] * norm . cdf ( d1cnew) −k1 * math . exp( − r *T ) * norm . cdf ( d1cnew−Sig *T * * ( 0 . 5 ) ) ;
p t [ i ]= − St [ i ] * norm . cdf ( −d1pnew)+ k2 * math . exp( − r *T ) * norm . cdf ( −d1pnew+Sig *T * * ( 0 . 5 ) ) ;

# endfor
# f i n a l p o r t o l i o value i n a l l scenar ios
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VaR and ES: Risk Reversal III

v t =ct −p t ;
# loss scenar ios
vvar=v0− v t ;
vvar=np . s o r t ( vvar ) ;
# e x t r a c t i n g VaR from the loss a t the r i g h t conf idence l e v e l
i v a r = round ( ( conf idence ) * n ) ;
var = vvar [ i v a r ] ;
# c a l c u l a t i n g ES
ESv= s t a t i s t i c s . mean( vvar [ range ( math . f l o o r ( ( conf idence ) * n ) , n ) ] ) ;
pr in t ( ”VaR: ” , var ) ;
pr in t ( ”ES: ” ,ESv ) ;
# p l o t t i n g loss histogram
p l t . h i s t ( vvar , b ins = 100)
p l t . show ( )
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Euler scheme for Geometric Brownian Motion I

# −*− coding : u t f −8 −*−
” ” ”
Euler scheme f o r Geometric Brownian Motion
Created on Mon Nov 28 15:50:34 2022
@author : Prof . Damiano Br igo
======
This f i l e conta ins Python codes .
======
NB you need to run path\ to\anaconda\python . exe i n a cmd window f o r t h i s to see the packages numpy etc
” ” ”
import numpy as np ;
import math ;
import s t a t i s t i c s ;
from sc ipy . s t a t s import norm ;
from sc ipy . s t a t s import skew ;
from sc ipy . s t a t s import k u r t o s i s ;
import m a t p l o t l i b . pyp lo t as p l t ;
# Stock data
S0 =100;
Sig =0 .2 ;
miu =0.05;
# F ina l t ime i n years
h=1;
# Number o f t ime steps and t ime step
nt = 200; d t = h / n t ;
# Number o f scenar ios
n=40000;
” ” ” Generat ing the normal 0 ,1 i n 10000 scenar ios f o r each t ime step ” ” ”
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Euler scheme for Geometric Brownian Motion II

# Z are normals , S w i l l be the stock
Zt = np . zeros ( n ) ;
St = S0*np . ones ( n ) ;
from random import seed
from random import gauss
#seed random number generator
seed ( 1 )
# loop on t ime
for i in range ( n t ) :
# loop on scenar ios

for j in range ( n ) :
Zt [ j ] = gauss (0 ,1 )
St [ j ]= St [ j ]+ miu * St [ j ] * d t+Sig * St [ j ] * Zt [ j ] * ( d t * * 0 . 5 )

# endfor
#endor
# One shot f i n a l s imu la t i on using the knonw GBM s o l u t i o n
Sth = S0*np . ones ( n ) ;
# loop on scenar ios
for j in range ( n ) :

Zt [ j ] = gauss (0 ,1 )
Sth [ j ]=S0* math . exp ( ( miu −0.5* Sig * * 2 ) * h ) * math . exp ( Zt [ j ] * Sig * ( h * * 0 . 5 ) )

# endfor
# p l o t t i n g f i n a l s tock histogram
#Blue i s St Euler , Orange i s St one shot
p l t . h i s t ( St , b ins = 100)
p l t . h i s t ( Sth , b ins = 100)
p l t . show ( )
# Orange i s St Euler , Blue i s St one shot
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Euler scheme for Geometric Brownian Motion III

p l t . h i s t ( Sth , b ins = 100)
p l t . h i s t ( St , b ins = 100)
p l t . show ( )
#
# p l o t t i n g histogram of the d i f f e r e n c e
Stsor ted = sorted ( St ) ;
Sthsor ted = sorted ( Sth ) ;
d i f f e = np . sub t rac t ( Stsor ted , Sthsor ted ) ;
p l t . h i s t ( d i f f e , b ins = 100)
p l t . show ( )
# comparing mean and standard d e v i a t i on o f log re tu rns
meanlogth = np . log (S0)+ ( miu −0.5* Sig * * 2 ) * h ;
meanlogsim = np . average ( np . log ( Stsor ted ) ) ;
meanlogsimh = np . average ( np . log ( Sthsor ted ) ) ;
pr in t ( ” log mean t h e o r e t i c a l : ” , meanlogth ) ;
pr in t ( ” log mean s imu la t i on Euler : ” , meanlogsim ) ;
pr in t ( ” log mean s imu la t i on one shot : ” , meanlogsimh ) ;
#
Stdth = Sig *h ;
Stdsim = np . s td ( np . log ( Stsor ted ) ) ;
Stdsimh = np . s td ( np . log ( Sthsor ted ) ) ;
pr in t ( ” Std t h e o r e t i c a l : ” , Stdth ) ;
pr in t ( ” Std s imu la t i on Euler : ” , Stdsim ) ;
pr in t ( ” Std s imu la t i on one shot : ” , Stdsimh ) ;
# Comparing skewness and k u r t o s i s
skewSteuler = skew ( np . log ( Stsor ted ) , ax is = 0 , b ias = True ) ;
skewSth = skew ( np . log ( Sthsor ted ) , ax is = 0 , b ias = True ) ;
pr in t ( ”Skew Euler : ” , skewSteuler ) ;
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Euler scheme for Geometric Brownian Motion IV

pr in t ( ”Skew one shot : ” , skewSth ) ;
#
k u r t S t e u l e r = k u r t o s i s ( np . log ( Stsor ted ) , ax is = 0 , b ias = True ) ;
ku r tS th = k u r t o s i s ( np . log ( Sthsor ted ) , ax is = 0 , b ias = True ) ;
pr in t ( ” Ku r tos i s Euler : ” , k u r t S t e u l e r ) ;
pr in t ( ” Kurtoses one shot : ” , ku r tS th ) ;
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Euler scheme for for dX = mdt + σXdW I

# −*− coding : u t f −8 −*−
” ” ”
Euler scheme f o r dX = m dt + sigma X dW
Created on Mon Nov 28 15:50:34 2022
@author : Prof . Damiano Br igo
======
This f i l e conta ins Python codes .
======
NB you need to run path\ to\anaconda\python . exe i n a cmd window f o r t h i s to see the packages numpy etc
” ” ”
import numpy as np ;
import math ;
import s t a t i s t i c s ;
from sc ipy . s t a t s import norm ;
from sc ipy . s t a t s import skew ;
from sc ipy . s t a t s import k u r t o s i s ;
import m a t p l o t l i b . pyp lo t as p l t ;
# Stock data
S0 =0;
Sig =0 .4 ;
miu =1;
# F ina l t ime i n years
h=2;
# Number o f t ime steps and t ime step
nt = 200; d t = h / n t ;
# Number o f scenar ios
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Euler scheme for for dX = mdt + σXdW II

n=40000;
” ” ” Generat ing the normal 0 ,1 i n 10000 scenar ios f o r each t ime step ” ” ”
# Z are normals , S w i l l be the stock
Zt = np . zeros ( n ) ;
St = S0*np . ones ( n ) ;
from random import seed
from random import gauss
#seed random number generator
seed ( 1 )
# loop on t ime
for i in range ( n t ) :
# loop on scenar ios

for j in range ( n ) :
Zt [ j ] = gauss (0 ,1 )
St [ j ]= St [ j ]+ miu * d t+Sig * St [ j ] * Zt [ j ] * ( d t * * 0 . 5 )

# endfor
#endor
# p l o t t i n g f i n a l s tock histogram
#Blue i s St Euler , Orange i s St one shot
p l t . h i s t ( St , b ins = 100)
p l t . show ( )
# comparing mean and standard d e v i a t i on o f the s o l u t i o n
meanth = S0+miu *h ;
meansim = np . average ( St ) ;
pr in t ( ”mean t h e o r e t i c a l : ” , meanth ) ;
pr in t ( ”mean s imu la t i on Euler : ” ,meansim ) ;
#
var th = 2* ( miu / ( Sig * * 4 ) ) * ( miu+S0* Sig * * 2 ) * ( math . exp ( h* Sig * *2 ) −1 ) ;
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Euler scheme for for dX = mdt + σXdW III

var th = var th − 2*h * ( miu / Sig ) * * 2 + math . exp ( h* Sig * * 2 ) * S0 * * 2 ;
va r th = var th − (S0+miu *h ) * * 2 ;
Stdth = math . s q r t ( va r th ) ;
Stdsim = np . s td ( St ) ;
pr in t ( ” Std t h e o r e t i c a l : ” , Stdth ) ;
pr in t ( ” Std s imu la t i on Euler : ” , Stdsim ) ;
# Comparing skewness and k u r t o s i s
skewSteuler = skew ( St , ax is = 0 , b ias = True ) ;
pr in t ( ”Skew Euler : ” , skewSteuler ) ;
#
k u r t S t e u l e r = k u r t o s i s ( St , ax is = 0 , b ias = True ) ;
pr in t ( ” Ku r tos i s Euler : ” , k u r t S t e u l e r ) ;
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I

# −*− coding : u t f −8 −*−
” ” ”
Euler scheme f o r d X = (−3 k X +3 Xˆ{1/3} \sigmaˆ{2} ) d t+ 3 \sigma Xˆ{2/3} dW t
@author : Prof . Damiano Br igo
======
This f i l e conta ins Python codes .
======
NB you need to run path\ to\anaconda\python . exe i n a cmd window f o r t h i s to see the packages numpy etc
” ” ”

import numpy as np ;
import math ;
import s t a t i s t i c s ;
from sc ipy . s t a t s import norm ;
from sc ipy . s t a t s import skew ;
from sc ipy . s t a t s import k u r t o s i s ;
from math import exp ;
import m a t p l o t l i b . pyp lo t as p l t ;
# Stock data
S0 =0.5 ;
Sig =0.05;
kk =1;
# F ina l t ime i n years
h=1;
# Number o f t ime steps and t ime step
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II

nt = 250; d t = h / n t ;
# Number o f scenar ios
n=40000;
” ” ” Generat ing the normal 0 ,1 i n 10000 scenar ios f o r each t ime step ” ” ”
# Z are normals , S w i l l be the stock
Zt = np . zeros ( n ) ;
St = S0*np . ones ( n ) ;
from random import seed
from random import gauss
#seed random number generator
seed ( 1 )
# loop on t ime
for i in range ( n t ) :
# loop on scenar ios

for j in range ( n ) :
Zt [ j ] = gauss (0 ,1 )
St [ j ]= St [ j ] −3* kk * St [ j ] * d t +3* ( ( St [ j ] ) * * ( 1 / 3 ) ) * ( Sig * * 2 ) * d t ;
St [ j ]= St [ j ]+3* Sig * ( ( St [ j ] ) * * ( 2 / 3 ) ) * Zt [ j ] * ( d t * * 0 . 5 ) ;
St [ j ]

# endfor
#endor
# mean and standard d ev i a t i o n o f the s o l u t i o n
meansim = np . average ( St ) ;
pr in t ( ”mean s imu la t i on Euler : ” ,meansim ) ;
#
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III

Stdsim = np . s td ( St ) ;
pr in t ( ” Std s imu la t i on Euler : ” , Stdsim ) ;
# Comparing skewness and k u r t o s i s
skewSteuler = skew ( St , ax is = 0 , b ias = True ) ;
pr in t ( ”Skew Euler : ” , skewSteuler ) ;
#
k u r t S t e u l e r = k u r t o s i s ( St , ax is = 0 , b ias = True ) ;
pr in t ( ” Ku r tos i s Euler : ” , k u r t S t e u l e r ) ;
# Simula t ion one shot
Zt1s = np . zeros ( n ) ;
St1s = S0*np . ones ( n ) ;
for j in range ( n ) :

Zt1s [ j ] = gauss (0 ,1 )
St1s [ j ] = ( S0 * * ( 1 / 3 ) * math . exp( −kk *1)+ Zt1s [ j ] * ( ( Sig * * 2 / ( 2 * kk ) ) * (1 − math . exp ( −2* kk ) ) ) * * ( 1 / 2 ) ) * * 3 ;

# endfor
# p l o t t i n g f i n a l s tock histogram
#Blue i s St Euler , Orange i s St one shot
p l t . h i s t ( St , b ins = 100)
p l t . h i s t ( St1s , b ins = 100)
p l t . show ( )

p l t . h i s t ( St1s , b ins = 100)
p l t . h i s t ( St , b ins = 100)
p l t . show ( )
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