Stochastic Simulation - Concise Notes

Arnav Singh

April 14, 2024

Contents

1	Intr	roduction	2
2	Exact Generation of Random Variates		
	2.1	Generating Uniform Random Variates	3
	2.2	Transformation Methods	3
		2.2.1 Inverse Transform Method	3
		2.2.2 Tranformation Method	3
		2.2.3 Box-Muller Method	4
	2.3	Rejection Sampling	4
		2.3.1 Rejection Samples	4
		2.3.2 Acceptance Rate	5
		2.3.3 Designing the Optimal Rejection Sampler	5
	2.4	Composition	6
		2.4.1 Sampling from Discrete Mixture Densities	6
	2.5	Sampling Multivariate Densities	6
		2.5.1 Sampling a Multivariate Gaussian	6
3	Pro	babilistic Modelling and Inference	7
	3.2	The Bayes Rule and it's Uses	$\overline{7}$
	3.3	Conditional Independence	7
4	Mo	nte Carlo Integration	8
	4.2	Error Metrics	8
	4.3	Importance Sampling	9
5	Markov Chain Monte Carlo		
	5.2	Continuous State Space Markov Chains	12
	5.3	Metropolis-Hastings Algorithm	12

1 Introduction

Definition 1.1 (Probability Mass Functions). For a discrete random variable we define

$$p(x) = \mathbb{P}(X = x)$$

where $x \in X$.

Definition 1.2 (Measure and density). Assume $X \subset \mathbb{R}$ and $X \in X$. Given random variable X we define measure of X as

$$\mathbb{P}(x_1 \le X \le x_2) = \mathbb{P}(X \in (x_1, x_2)) = \int_{x_1}^{x_2} f(x) \, dx$$

Definition 1.3 (Discrete Joint Probability Mass function). Let X, Y random variables, and \mathcal{X}, \mathcal{Y} the sets they live on, they are at most countable sets. The joint Probability Mass Function is

$$p(x,y) = \mathbb{P}(X = x, Y = y)$$

Definition 1.4 (Continuous Joint Probability Density Function). Let X, Y random variables and \mathcal{X}, \mathcal{Y} their ranges. The joint Probability Density Function is

$$\mathbb{P}(X \in A, Y \in B) = \int_A \int_B f(x, y) \, dx \, dy$$

Definition 1.5 (Discrete Conditional Probability Mass Function). Let X, Y be random variables and \mathcal{X}, \mathcal{Y} their ranges respectively. The conditional Probability Mass Function is

$$p(x|y) = \mathbb{P}(X = x|Y = y)$$

Definition 1.6 (Continuous Conditional Probability Density Function). Let X, Y be random variables and \mathcal{X}, \mathcal{Y} their ranges respectively. The conditional Probability Density Function is

$$p(y \mid x) = \frac{p(x, y)}{p(x)}$$

Here we have the conditional probability density function of Y given X

2 Exact Generation of Random Variates

Definition 2.1. A sequence of psuedo-random numbers u_1, u_2, \ldots is a deterministic sequence of numbers whose statistical properties match a sequence of random numbers from a desired distribution.

2.1 Generating Uniform Random Variates

Definition (Linear Congruential Generator (LCG)). This method generates random numbers using a linear recursion

$$x_{n+1} \equiv ax_n + b \mod m$$

where x_0 is the seed, *m* the **modulus** of recursion, *b* the **shift** and *a* the **multiplier**. If b = 0 then the generator is called a **multiplicative congruential generator**, and if $b \neq 0$ then it is called a **mixed congruential generator**.

We set m an integer and choose $a, b, x_0 \in \{0, \dots, m-1\}$ and so we have $x_n \in \{0, 1, \dots, m-1\}$. We then get the uniform numbers:

$$u_n = \frac{x_n}{m} \in [0,1) \quad \forall n$$

2.2 Transformation Methods

Given pseudo-uniform random numbers, we can generate random numbers from other distributions using the following methods:

2.2.1 Inverse Transform Method

Theorem 2.1. Consider random variable X with CDF F_X . Then the random variable $F_X^{-1}(U)$ where U is a uniform random variable on [0,1) has the same distribution as X.

Algorithm 1: Psuedocode for inverse transform sampling

- 1. Input: number of samples n
- 2. for i = 1, ..., n do
- 3. Generate $U_i \sim U(0, 1)$
- 4. Set $X_i = F_X^{-1}(U_i)$
- 5. end for

2.2.2 Tranformation Method

Algorithm 2: Psuedocode for transformation method

- 1. Input: number of samples n
- 2. for i = 1, ..., n do
- 3. Generate $U_i \sim U(0, 1)$

4. Set $X_i = g(U_i)$

5. end for

Here choosing g is the crucial point.

2.2.3 Box-Muller Method

Box-Muller transfrom is a related transform to above, but provides a way to sample Gaussians directly from uniforms. In this case we just provide the algorithm.

Let $U_1, U_2, \sim U(0, 1)$ be independent. Then the Box-Muller transform is

$$Z_1 = \sqrt{-2\log U_1}\cos(2\pi U_2)$$
$$Z_2 = \sqrt{-2\log U_1}\sin(2\pi U_2)$$

are independent standard normal random variables.

2.3 Rejection Sampling

Theorem 2.2 (Fundamental Theorem of Simulation). Drawing samples from one dimensional random variable X with density $\overline{p}(x) \propto p(x)$ is equivalent to sampling uniformly on the two dimensional region defined by

$$A = \{(x, y) \in \mathbb{R}^2 : 0 \le y \le \overline{p}(x)\}$$

i.e. if (x', y') uniformly distributed on A then x' a sample from p(x)

2.3.1 Rejection Samples

Algorithm 3: Psuedocode for rejection sampling

- 1. Input: number of iterations n, and scaling factor M
- 2. for i = 1, ..., n do
- 3. Generate $X' \sim q(x')$
- 4. Generate $U \sim U(0, 1)$

5. if
$$U \le \frac{p(X')}{Mq(X')}$$
 then

- 6. Accept X'
- 7. end if

- 8. end for
- 9. return accepted samples

Definition. Denote the unnormalised density associated to p(x) as $\overline{p}(x)$, we write

$$p(x) = \frac{\overline{p}(x)}{Z}, \quad Z = \int \overline{p}(x) \, dx$$

Algorithm 4: Psuedocode for rejection sampling without normalising constants

- 1. Input: number of iterations n, and scaling factor M
- 2. for i = 1, ..., n do
- 3. Generate $X' \sim q(x')$
- 4. Generate $U \sim U(0, 1)$

5. if
$$U \leq \frac{\overline{p}(X')}{Mq(X')}$$
 then

- 6. Accept X'
- 7. end if
- 8. end for
- 9. return accepted samples

2.3.2 Acceptance Rate

Proposition 2.1. When the target density p(x) is normalised and M is prechosen, the acceptance ratio is given by

$$\hat{a} = \frac{1}{M}$$

where M > 1 in order to satisfy the requirement that q covers p. For an unnormalised target density $\overline{p}(x)$ with the normalising constant $Z = \int \overline{p}(x) dx$ the acceptance rate is given as

$$\hat{a} = \frac{Z}{M}$$

2.3.3 Designing the Optimal Rejection Sampler

Choosing M We see that we should choose M such that $Mq(x) \ge p(x) \forall x$. To choose smallest such M we should find M^* such that

$$M^* = \sup_x \frac{p(x)}{q(x)}$$

Optimising the proposal We optimise for the parameter θ of the proposal distribution q_{θ} .

$$\theta^* = \arg\min_{\theta} \log M_{\theta}$$

Use the log space as we obtain more tractable quantities

2.4 Composition

2.4.1 Sampling from Discrete Mixture Densities

Algorithm 5: Sampling Discrete Mixtures

- 1. The number of samples n
- 2. for i = 1, ..., n do
- 3. Generate $k \sim p(k)$
- 4. Generate $X_i \sim q_k(x)$
- 5. end for

Where we have

$$p(x) = \sum_{k=1}^{W} w_k q_k(x), \quad p(k) = w_k, \sum_{k=1}^{K} p(k) = 1$$

2.5 Sampling Multivariate Densities

2.5.1 Sampling a Multivariate Gaussian

Define $x \in \mathbb{R}^d$ a multivariate Gaussian

$$p(x) = (2\pi)^{-d/2} \det(\Sigma)^{-1/2} \exp\left(-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\right)$$

where $\mu \in \mathbb{R}^d$ is the mean and $\Sigma \in \mathbb{R}^{d \times d}$ is a $d \times d$ symmetric positive definite matrix. In univariate case, $Y = \mu + \sigma X$ gave us samples from $\mathcal{N}(\mu, \sigma^2)$, we now generalise this to the multivariate case.

$$Y = \Sigma^{1/2} X + \mu$$

Computing $\Sigma^{\frac{1}{2}}$ using Cholesky decomposition.

Algorithm 6: Sampling Multivariate Gaussian

- 1. Input: number of samples n,
- 2. for i = 1, ..., n do
- 3. Compute L such that $\Sigma = LL^T$ (Cholesky decomposition)
- 4. Draw d univariate independent normals $\nu_k \sim \mathcal{N}(0, 1)$ to form vector $\nu = (\nu_1, \dots, \nu_d)$
- 5. Generate $x_i = \mu + L\nu$
- 6. end for

3 Probabilistic Modelling and Inference

3.2 The Bayes Rule and it's Uses

Definition 3.1 (Bayes Theorem). Let X, Y be random variables, with associated densities p(x), p(y) respectively. Bayes rulse is given by

$$p(x \mid y) = \frac{p(y \mid x)p(x)}{p(y)}$$

3.3 Conditional Independence

Definition 3.2. Let X, Y and Z be random variables. Say that X and Y are conditionally independent given Z if

$$p(x, y \mid z) = p(x \mid z)p(y \mid z)$$

Corollary 3.1. If X, Y are conditionally independent given Z then

$$p(x \mid y, z) = p(x \mid z)$$
 and $p(y \mid x, z) = p(y \mid z)$

Proposition 3.1. Let X, Y and Z be random variables. If X and Y are conditionally independent given Z then

$$p(x, y, z) = p(x \mid z)p(y \mid z)p(z)$$

Proposition 3.2. Given X, Y, Z without any conditional independence assumptions, the conditional Bayes rules is

$$p(x \mid y, z) = \frac{p(y \mid x, z)p(x \mid z)}{p(y \mid z)}$$

Definition (Marginal Likelihood). The marginal likelihood is given by

$$p(y) = \int p(y \mid x) p(x) \, dx$$

4 Monte Carlo Integration

Given a probability density function p(x) we are interested in computing expectations of the form

$$\overline{\varphi} = \mathbb{E}_p[\varphi(x)] = \int \varphi(x) p(x) \, dx$$

where φ called a **test function**.

Definition (Dirac Delta Measure). We define it as

$$f(y) = \int f(x)\delta_y(x) \, dx, \quad \delta_y(x) = \begin{cases} 1 & x = y \\ 0 & x \neq y \end{cases}$$

We can think of the dirac as a point mass at y

Proposition 4.1. Let X_1, \ldots, X_n be *i.i.d* samples. Then the Monte Carlo estimator

$$\hat{\varphi}^N = \frac{1}{N} \sum_{i=1}^N \varphi(X_i)$$

is unbiased, i.e.

$$\mathbb{E}[\hat{\varphi}^N] = \overline{\varphi}$$

Proposition 4.2. Let X_1, \ldots, X_n be iid samples from p. Then the Monte Carlo estimator

$$\hat{\varphi}^N = \frac{1}{N} \sum_{i=1}^N \varphi(X_i)$$

has variance

$$Var[\hat{\varphi}^N] = \frac{1}{N} \left(var_p[\varphi(X)] \right)$$

where

$$var_p[\varphi(X)] = \int (\varphi(x) - \overline{\varphi})^2 p(x) \, dx$$

4.2 Error Metrics

Definition (Bias). The bias of an estimator is defined as

$$\operatorname{Bias}[\hat{\varphi}^N] = \mathbb{E}[\hat{\varphi}^N] - \underbrace{\overline{\varphi}}_{\operatorname{True value}}$$

Definition (Mean Squared Error). The mean squared error of an estimator is defined as

$$\mathrm{MSE}[\hat{\varphi}^N] = \mathbb{E}[(\hat{\varphi}^N - \overline{\varphi})^2]$$

we have that

$$MSE[\hat{\varphi}^N] = Var[\hat{\varphi}^N] + Bias[\hat{\varphi}^N]^2$$

and also the Root Mean Squared Error is

$$\text{RMSE}[\hat{\varphi}^N] = \sqrt{\text{MSE}[\hat{\varphi}^N]}$$

Definition (Relative Absolute Error). The relative absolute error is defined as

$$\operatorname{RAE}[\hat{\varphi}^N] = \frac{|\hat{\varphi}^N - \overline{\varphi}|}{|\overline{\varphi}|}$$

4.3 Importance Sampling

Algorithm 7: Basic Importance Sampling

- 1. Input: number of samples N
- 2. for i = 1, ..., N do
- 3. Generate $X_i \sim q(x)$
- 4. Compute importance weights $w_i = \frac{p(X_i)}{q(X_i)}$
- 5. end for
- 6. Compute the estimate

$$\hat{\varphi}^N = \frac{1}{N} \sum_{i=1}^N w_i \varphi(X_i)$$

Proposition 4.3. The estimator $\hat{\varphi}_{IS}^{N}$ is unbiased, i.e.

$$\mathbb{E}[\hat{\varphi}_{IS}^N] = \overline{\varphi}$$

Proposition 4.4. Variance of estimator $\hat{\varphi}_{IS}^N$ is given by

$$Var[\hat{\varphi}_{IS}^{N}] = \frac{1}{N} \left(\mathbb{E}_{q}[w^{2}(X)\varphi^{2}(X)] - \overline{\varphi}^{2} \right)$$

Psuedocode for self-normalised importance sampling

- 1. Input: number of samples N
- 2. for i = 1, ..., N do
- 3. Generate $X_i \sim q(x)$
- 4. Compute importance weights $W_i = \frac{\overline{p}_i(X_i)}{q(X_i)}$
- 5. Normalise:

$$\bar{w}_i = \frac{W_i}{\sum_{i=1}^N W_i}$$

6. end for

7. Compute the estimate

$$\hat{\varphi}_{SNIS}^N = \sum_{i=1}^N \bar{w}_i \varphi(X_i)$$

Common numerical trick is to use the log-sum-exp trick to avoid numerical instability.

$$\log W_i = \log \overline{p}(X_i) - \log q(X_i)$$
$$\log \widetilde{W}_i = \log \overline{p}(X_i) - \log q(X_i) - \max \log W_i$$
$$\overline{w}_i = \frac{\exp(\log \widetilde{W}_i)}{\sum_{i=1}^N \exp(\log \widetilde{W}_i)}$$

Proposition 4.5. The marginal likelihood estimator given by

$$p^N(y) = \frac{1}{N} \sum_{i=1}^N W_i$$

is an unbiased estimator of the marginal likelihood p(y)

Definition 4.1 (Effective Sample Size). To measure the sample efficiency, one measure that is used in the literature is the effective sample size (ESS) which is given by

$$ESS_N = \frac{1}{\sum_{i=1}^N \overline{w}_i^2}$$

for the SNIS estimator.

5 Markov Chain Monte Carlo

Definition 5.1 (Markov Chain). A discrete Markov Chain is a sequence of random variables X_1, X_2, \ldots such that

$$\mathbb{P}(X_{n+1} = x_{n+1} \mid X_n = x_n, \dots, X_1 = x_1) = \mathbb{P}(X_{n+1} = x_{n+1} \mid X_n = x_n)$$

Definition 5.2 (Transition Matrix). The transition matrix of a Markov Chain is a matrix M such that

$$M_{ij} = \mathbb{P}(X_{n+1} = j \mid X_n = i)$$

Definition (Chapman-Kolmogorov Equation). The Chapman-Kolmogorov equation is given by

$$\mathbb{P}(X_{n+1} = j \mid X_1 = i) = \sum_k \mathbb{P}(X_{n+1} = j \mid X_n = k) \mathbb{P}(X_n = k \mid X_1 = i)$$
$$M^{m+n} = M^m M^n$$

Definition (Reccurrent and Transient States). A state $i \in X$ is recurrent if for

$$\tau_i = \inf\{n \ge 1 : X_n = i\} \quad \text{(the return time)}$$

we have

$$\mathbb{P}(\tau_i < \infty \mid X_0 = i) = 1$$

A state is **transient** if it is not recurrent.

We say i positively recurrent if

$$\mathbb{E}[\tau_i \mid X_0 = i] < \infty$$

If a chain recurrent but not positive recurrent, it is null recurrent.

Definition (Stationary Distribution). A distribution π is stationary for a Markov Chain if

 $\pi=\pi M$

Also called the invariant distribution.

Theorem 5.1. If M is irreducible, then M has a unique invariant distribution if and only if it is positive recurrent.

Definition (Periodicity). A state i is aperiodic if

$$\{n > 0 : \mathbb{P}(X_{n+1} = i \mid X_1 i) > 0\}$$

has greatest common divisor 1.

A Markov Chain is aperiodic if all states are aperiodic.

Definition (Ergodicity). A Markov Chain is ergodic if it is irreducible, aperiodic and positive recurrent.

If a chain $(X_n)_{n\in\mathbb{N}}$ is ergodic with initial distribution p_0 and invariant distribution p^* then

$$\lim_{n \to \infty} \mathbb{P}(X_n = i) = p^*(i)$$

Moreover, for $i, j \in X$

$$\lim_{n \to \infty} \mathbb{P}(X_n = i \mid X_1 = j) = p^{\star}(i)$$

5.2 Continuous State Space Markov Chains

Definition. A continuous state space Markov Chain is a sequence of random variables X_1, X_2, \ldots such that

$$\mathbb{P}(X_{n+1} \in A \mid X_n = x_n, \dots, X_1 = x_1) = \mathbb{P}(X_{n+1} \in A \mid X_n = x_n)$$

where X an uncountable set, and denote by $K(x \mid x')$ the transition kernel.

Definition 5.3 (K-Variance). Probability measure p_{\star} is called K-invariant if

$$p_{\star}(x) = \int_X K(x \mid x') p_{\star}(x') \, dx'$$

Definition 5.4 (Detailed Balance). A transition kernel K satisfies detailed balance with respect to a probability measure p_{\star} if

$$K(x' \mid x)p_{\star}(x) = K(x \mid x')p_{\star}(x')$$

Proposition 5.1 (Detailed balance implies stationarity). If K satisfies detailed balance, then p_{\star} is the invariant distribution

5.3 Metropolis-Hastings Algorithm

Algorithm 9: Metropolis-Hastings Algorithm

- 1. Input: number of samples N
- 2. for i = 1, ..., N do
- 3. Propose sample $X' \sim q(x' \mid X_{i-1})$
- 4. Accept sample X' with probability

$$\alpha(X_{n-1}, X') = \min\left(1, \frac{p(X')q(X_{n-1} \mid X')}{p(X_{n-1})q(X' \mid X_{i-1})}\right)$$

- 5. Otherwise reject sample and set $X_n = X_{n-1}$
- 6. end for
- 7. Discard first burn-in samples and return the rest

Definition. Define the acceptance ratio as

$$r(x, x') = \frac{p(x')q(x \mid x')}{p(x)q(x' \mid x)}$$

Proposition 5.2 (Metropolis-Hastings satisfies detailed balance). The Metropolis-Hastings algorithm satisfies detailed balance with respect to the target distribution p_{\star} i.e.

$$p_{\star}(x)K(x \mid x') = p_{\star}(x')K(x' \mid x)$$

where K is the kernel defined by the Metropolis-Hastings algorithm.

Algorithm 10: Metropolis-Hastings method for Bayesian Inference

- 1. Input: number of samples N, and starting point X_0
- 2. for i = 1, ..., N do
- 3. Propose sample $X' \sim q(x' \mid X_{i-1})$
- 4. Accept sample X' with probability

$$\alpha(X_{n-1}, X') = \min\left(1, \frac{\overline{p}_{\star}(x')q(x_{n-1} \mid x')}{\overline{p}_{\star}(x_{n-1})q(x' \mid x_{n-1})}\right)$$

- 5. Otherwise reject sample and set $X_n = X_{n-1}$
- 6. end for
- 7. Discard first burn-in samples and return the rest

Algorithm 11: Gibbs Sampler

- 1. Input: number of samples N, and starting point X_0
- 2. for $i = 1, \ldots, N$ do

3. Sample

$$X_{n,1} \sim p_{1,\star}(X_{n,1} \mid X_{n-1,,2}, \dots, X_{n-1,d})$$

$$X_{n,2} \sim p_{2,\star}(X_{n,2} \mid X_{n,1}, X_{n-1,3}, \dots, X_{n-1,d})$$

$$\vdots$$

$$X_{n,d} \sim p_{d,\star}(X_{n,d} \mid X_{n,1}, \dots, X_{n,d-1})$$

4. end for

5. Discard first burn-in samples and return the rest

Proposition 5.3. The Gibbs kernel K leaves the target distribution p_{\star} invariant.

Algorithm 12: Random Scan Gibbs Sampler

- 1. Input: number of samples N, and starting point X_0
- 2. for i = 1, ..., N do
- 3. Sample $j \sim \{1, \ldots, d\}$

$$X_{n,j} \sim p_{j,\star}(X_{n,j} \mid X_{n,1}, \dots, X_{n,j-1}, X_{n,j+1}, \dots, X_{n,d})s$$

- 4. end for
- 5. Discard first burn-in samples and return the rest