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1 Introduction

Definition 1.1 (Probability Mass Functions). For a discrete random variable we define

p(x) = P(X = x)

where x ∈ X.

Definition 1.2 (Measure and density). Assume X ⊂ R and X ∈ X. Given random
variable X we define measure of X as

P(x1 ≤ X ≤ x2) = P(X ∈ (x1, x2)) =

∫ x2

x1

f(x) dx

Definition 1.3 (Discrete Joint Probability Mass function). Let X,Y random variables,
and X ,Y the sets they live on, they are at most countable sets. The joint Probability Mass
Function is

p(x, y) = P(X = x, Y = y)

Definition 1.4 (Continuous Joint Probability Density Function). Let X,Y random vari-
ables and X ,Y their ranges. The joint Probability Density Function is

P(X ∈ A, Y ∈ B) =

∫
A

∫
B
f(x, y) dx dy

Definition 1.5 (Discrete Conditional Probability Mass Function). Let X,Y be random
variables and X ,Y their ranges respectively. The conditional Probability Mass Function is

p(x|y) = P(X = x|Y = y)

Definition 1.6 (Continuous Conditional Probability Density Function). Let X,Y be ran-
dom variables and X ,Y their ranges respectively. The conditional Probability Density
Function is

p(y | x) = p(x, y)

p(x)

Here we have the conditional probability density function of Y given X

2 Exact Generation of Random Variates

Definition 2.1. A sequence of psuedo-random numbers u1, u2, . . . is a deterministic se-
quence of numbers whose statistical properties match a sequence of random numbers from
a desired distribution.
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2.1 Generating Uniform Random Variates

Definition (Linear Congruential Generator (LCG)). This method generates random num-
bers using a linear recursion

xn+1 ≡ axn + b mod m

where x0 is the seed, m the modulus of recursion, b the shift and a the multiplier.
If b = 0 then the generator is called a multiplicative congruential generator, and if
b ̸= 0 then it is called a mixed congruential generator.
We setm an integer and choose a, b, x0 ∈ {0, . . . ,m−1} and so we have xn ∈ {0, 1, . . .m−1}.
We then get the uniform numbers:

un =
xn
m

∈ [0, 1) ∀n

2.2 Transformation Methods

Given pseudo-uniform random numbers, we can generate random numbers from other
distributions using the following methods:

2.2.1 Inverse Transform Method

Theorem 2.1. Consider random variable X with CDF FX . Then the random variable
F−1
X (U) where U is a uniform random variable on [0, 1) has the same distribution as X.

Algorithm 1: Psuedocode for inverse transform sampling

1. Input: number of samples n

2. for i = 1, . . . , n do

3. Generate Ui ∼ U(0, 1)

4. Set Xi = F−1
X (Ui)

5. end for

2.2.2 Tranformation Method

Algorithm 2: Psuedocode for transformation method

1. Input: number of samples n

2. for i = 1, . . . , n do

3. Generate Ui ∼ U(0, 1)
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4. Set Xi = g(Ui)

5. end for

Here choosing g is the crucial point.

2.2.3 Box-Muller Method

Box-Muller transfrom is a related transform to above, but provides a way to sample Gaus-
sians directly from uniforms. In this case we just provide the algorithm.

Let U1, U2,∼ U(0, 1) be independent. Then the Box-Muller transform is

Z1 =
√

−2 logU1 cos(2πU2)

Z2 =
√
−2 logU1 sin(2πU2)

are independent standard normal random variables.

2.3 Rejection Sampling

Theorem 2.2 (Fundamental Theorem of Simulation). Drawing samples from one dimen-
sional random variable X with density p(x) ∝ p(x) is equivalent to sampling uniformly on
the two dimensional region defined by

A = {(x, y) ∈ R2 : 0 ≤ y ≤ p(x)}

i.e. if (x′, y′) uniformly distributed on A then x′ a sample from p(x)

2.3.1 Rejection Samples

Algorithm 3: Psuedocode for rejection sampling

1. Input: number of iterations n, and scaling factor M

2. for i = 1, . . . , n do

3. Generate X ′ ∼ q(x′)

4. Generate U ∼ U(0, 1)

5. if U ≤ p(X′)
Mq(X′) then

6. Accept X ′

7. end if
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8. end for

9. return accepted samples

Definition. Denote the unnormalised density associated to p(x) as p(x), we write

p(x) =
p(x)

Z
, Z =

∫
p(x) dx

Algorithm 4: Psuedocode for rejection sampling without normalising constants

1. Input: number of iterations n, and scaling factor M

2. for i = 1, . . . , n do

3. Generate X ′ ∼ q(x′)

4. Generate U ∼ U(0, 1)

5. if U ≤ p(X′)
Mq(X′) then

6. Accept X ′

7. end if

8. end for

9. return accepted samples

2.3.2 Acceptance Rate

Proposition 2.1. When the target density p(x) is normalised and M is prechosen, the
acceptance ratio is given by

â =
1

M

where M > 1 in order to satisfy the requirement that q covers p. For an unnormalised target
density p(x) with the normalising constant Z =

∫
p(x)dx the acceptance rate is given as

â =
Z

M

2.3.3 Desigining the Optimal Rejection Sampler

Choosing M We see that we should choose M such that Mq(x) ≥ p(x)∀x. To choose
smallest such M we should find M∗ such that

M∗ = sup
x

p(x)

q(x)
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Optimising the proposal We optimise for the parameter θ of the proposal distribution
qθ.

θ∗ = argmin
θ

logMθ

Use the log space as we obtain more tractable quantities

2.4 Composition

2.4.1 Sampling from Discrete Mixture Densities

Algorithm 5: Sampling Discrete Mixtures

1. The number of samples n

2. for i = 1, . . . , n do

3. Generate k ∼ p(k)

4. Generate Xi ∼ qk(x)

5. end for

Where we have

p(x) =

W∑
k=1

wkqk(x), p(k) = wk,

K∑
k=1

p(k) = 1

2.5 Sampling Multivariate Densities

2.5.1 Sampling a Multivariate Gaussian

Define x ∈ Rd a multivariate Gaussian

p(x) = (2π)−d/2 det(Σ)−1/2 exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
where µ ∈ Rd is the mean and Σ ∈ Rd×d is a d× d symmetric positive definite matrix.
In univariate case, Y = µ+ σX gave us samples from N (µ, σ2), we now generalise this to
the multivariate case.

Y = Σ1/2X + µ

Computing Σ
1
2 using Cholesky decomposition.

6



Algorithm 6: Sampling Multivariate Gaussian

1. Input: number of samples n,

2. for i = 1, . . . , n do

3. Compute L such that Σ = LLT (Cholesky decomposition)

4. Draw d univariate independent normals νk ∼ N (0, 1) to form vector ν = (ν1, . . . , νd)

5. Generate xi = µ+ Lν

6. end for

3 Probabilistic Modelling and Inference

3.2 The Bayes Rule and it’s Uses

Definition 3.1 (Bayes Theorem). Let X,Y be random variables, with associated densities
p(x), p(y) respectively. Bayes rulse is given by

p(x | y) = p(y | x)p(x)
p(y)

3.3 Conditional Independence

Definition 3.2. Let X,Y and Z be random variables. Say that X and Y are conditionally
independent given Z if

p(x, y | z) = p(x | z)p(y | z)

Corollary 3.1. If X,Y are conditionally independent given Z then

p(x | y, z) = p(x | z) and p(y | x, z) = p(y | z)

Proposition 3.1. Let X,Y and Z be random variables. If X and Y are conditionally
independent given Z then

p(x, y, z) = p(x | z)p(y | z)p(z)

Proposition 3.2. Given X,Y, Z without any conditional independence assumptions, the
conditional Bayes rules is

p(x | y, z) = p(y | x, z)p(x | z)
p(y | z)

Definition (Marginal Likelihood). The marginal likelihood is given by

p(y) =

∫
p(y | x)p(x) dx
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4 Monte Carlo Integration

Given a probability density function p(x) we are interested in computing expectations of
the form

φ = Ep[φ(x)] =

∫
φ(x)p(x) dx

where φ called a test function.

Definition (Dirac Delta Measure). We define it as

f(y) =

∫
f(x)δy(x) dx, δy(x) =

{
1 x = y

0 x ̸= y

We can think of the dirac as a point mass at y

Proposition 4.1. Let X1, . . . , Xn be i.i.d samples. Then the Monte Carlo estimator

φ̂N =
1

N

N∑
i=1

φ(Xi)

is unbiased, i.e.
E[φ̂N ] = φ

Proposition 4.2. Let X1, . . . , Xn be iid samples from p. Then the Monte Carlo estimator

φ̂N =
1

N

N∑
i=1

φ(Xi)

has variance

Var[φ̂N ] =
1

N
(varp[φ(X)])

where

varp[φ(X)] =

∫
(φ(x)− φ)2p(x) dx

4.2 Error Metrics

Definition (Bias). The bias of an estimator is defined as

Bias[φ̂N ] = E[φ̂N ]− φ︸︷︷︸
True value
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Definition (Mean Squared Error). The mean squared error of an estimator is defined as

MSE[φ̂N ] = E[(φ̂N − φ)2]

we have that
MSE[φ̂N ] = Var[φ̂N ] + Bias[φ̂N ]2

and also the Root Mean Squared Error is

RMSE[φ̂N ] =
√

MSE[φ̂N ]

Definition (Relative Absolute Error). The relative absolute error is defined as

RAE[φ̂N ] =
|φ̂N − φ|

|φ|

4.3 Importance Sampling

Algorithm 7: Basic Importance Sampling

1. Input: number of samples N

2. for i = 1, . . . , N do

3. Generate Xi ∼ q(x)

4. Compute importance weights wi =
p(Xi)
q(Xi)

5. end for

6. Compute the estimate

φ̂N =
1

N

N∑
i=1

wiφ(Xi)

Proposition 4.3. The estimator φ̂N
IS is unbiased, i.e.

E[φ̂N
IS ] = φ

Proposition 4.4. Variance of estimator φ̂N
IS is given by

Var[φ̂N
IS ] =

1

N

(
Eq[w

2(X)φ2(X)]− φ2
)
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Psuedocode for self-normalised importance sampling

1. Input: number of samples N

2. for i = 1, . . . , N do

3. Generate Xi ∼ q(x)

4. Compute importance weights Wi =
p(Xi)

q(Xi)

5. Normalise:

w̄i =
Wi∑N
i=1Wi

6. end for

7. Compute the estimate

φ̂N
SNIS =

N∑
i=1

w̄iφ(Xi)

Common numerical trick is to use the log-sum-exp trick to avoid numerical instability.

logWi = log p(Xi)− log q(Xi)

log W̃i = log p(Xi)− log q(Xi)−max logWi

w̄i =
exp(log W̃i)∑N
i=1 exp(log W̃i)

Proposition 4.5. The marginal likelihood estimator given by

pN (y) =
1

N

N∑
i=1

Wi

is an unbiased estimator of the marginal likelihood p(y)

Definition 4.1 (Effective Sample Size). To measure the sample efficiency, one measure
that is used in the literature is the effective sample size (ESS) which is given by

ESSN =
1∑N

i=1w
2
i

for the SNIS estimator.
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5 Markov Chain Monte Carlo

Definition 5.1 (Markov Chain). A discrete Markov Chain is a sequence of random vari-
ables X1, X2, . . . such that

P(Xn+1 = xn+1 | Xn = xn, . . . , X1 = x1) = P(Xn+1 = xn+1 | Xn = xn)

Definition 5.2 (Transition Matrix). The transition matrix of a Markov Chain is a matrix
M such that

Mij = P(Xn+1 = j | Xn = i)

Definition (Chapman-Kolmogorov Equation). The Chapman-Kolmogorov equation is given
by

P(Xn+1 = j | X1 = i) =
∑
k

P(Xn+1 = j | Xn = k)P(Xn = k | X1 = i)

Mm+n = MmMn

Definition (Reccurent and Transient States). A state i ∈ X is recurrent if for

τi = inf{n ≥ 1 : Xn = i} (the return time)

we have
P(τi < ∞ | X0 = i) = 1

A state is transient if it is not recurrent.
We say i positively recurrent if

E[τi | X0 = i] < ∞

If a chain recurrent but not positive recurrent, it is null recurrent.

Definition (Stationary Distribution). A distribution π is stationary for a Markov Chain
if

π = πM

Also called the invariant distribution.

Theorem 5.1. If M is irreducible, then M has a unique invariant distribution if and only
if it is positive recurrent.

Definition (Periodicity). A state i is aperiodic if

{n > 0 : P(Xn+1 = i | X1i) > 0}

has greatest common divisor 1.
A Markov Chain is aperiodic if all states are aperiodic.
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Definition (Ergodicity). A Markov Chain is ergodic if it is irreducible, aperiodic and
positive recurrent.
If a chain (Xn)n∈N is ergodic with initial distribution p0 and invariant distribution p⋆ then

lim
n→∞

P(Xn = i) = p⋆(i)

Moreover, for i, j ∈ X
lim
n→∞

P(Xn = i | X1 = j) = p⋆(i)

5.2 Continuous State Space Markov Chains

Definition. A continuous state space Markov Chain is a sequence of random variables
X1, X2, . . . such that

P(Xn+1 ∈ A | Xn = xn, . . . , X1 = x1) = P(Xn+1 ∈ A | Xn = xn)

where X an uncountable set, and denote by K(x | x′) the transition kernel.

Definition 5.3 (K-Variance). Probability measure p⋆ is called K-invariant if

p⋆(x) =

∫
X
K(x | x′)p⋆(x′) dx′

Definition 5.4 (Detailed Balance). A transition kernel K satisfies detailed balance with
respect to a probability measure p⋆ if

K(x′ | x)p⋆(x) = K(x | x′)p⋆(x′)

Proposition 5.1 (Detailed balance implies stationarity). If K satisfies detailed balance,
then p⋆ is the invariant distribution

5.3 Metropolis-Hastings Algorithm

Algorithm 9: Metropolis-Hastings Algorithm

1. Input: number of samples N

2. for i = 1, . . . , N do

3. Propose sample X ′ ∼ q(x′ | Xi−1)

4. Accept sample X ′ with probability

α(Xn−1, X
′) = min

(
1,

p(X ′)q(Xn−1 | X ′)

p(Xn−1)q(X ′ | Xi−1)

)
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5. Otherwise reject sample and set Xn = Xn−1

6. end for

7. Discard first burn-in samples and return the rest

Definition. Define the acceptance ratio as

r(x, x′) =
p(x′)q(x | x′)
p(x)q(x′ | x)

Proposition 5.2 (Metropolis-Hastings satisfies detailed balance). The Metropolis-Hastings
algorithm satisfies detailed balance with respect to the target distribution p⋆ i.e.

p⋆(x)K(x | x′) = p⋆(x
′)K(x′ | x)

where K is the kernel defined by the Metropolis-Hastings algorithm.

Algorithm 10: Metropolis-Hastings method for Bayesian Inference

1. Input: number of samples N , and starting point X0

2. for i = 1, . . . , N do

3. Propose sample X ′ ∼ q(x′ | Xi−1)

4. Accept sample X ′ with probability

α(Xn−1, X
′) = min

(
1,

p⋆(x
′)q(xn−1 | x′)

p⋆(xn−1)q(x′ | xn−1)

)
5. Otherwise reject sample and set Xn = Xn−1

6. end for

7. Discard first burn-in samples and return the rest

Algorithm 11: Gibbs Sampler

1. Input: number of samples N , and starting point X0

2. for i = 1, . . . , N do
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3. Sample

Xn,1 ∼ p1,⋆(Xn,1 | Xn−1,,2, . . . , Xn−1,d)

Xn,2 ∼ p2,⋆(Xn,2 | Xn,1, Xn−1,3, . . . , Xn−1,d)

...

Xn,d ∼ pd,⋆(Xn,d | Xn,1, . . . , Xn,d−1)

4. end for

5. Discard first burn-in samples and return the rest

Proposition 5.3. The Gibbs kernel K leaves the target distribution p⋆ invariant.

Algorithm 12: Random Scan Gibbs Sampler

1. Input: number of samples N , and starting point X0

2. for i = 1, . . . , N do

3. Sample j ∼ {1, . . . , d}

Xn,j ∼ pj,⋆(Xn,j | Xn,1, . . . , Xn,j−1, Xn,j+1, . . . , Xn,d)s

4. end for

5. Discard first burn-in samples and return the rest
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