
solutions week 2
Solution 2.1. X ∼ Exp(x; 1) and Y = g(X) = αX1/β . We can compute g−1 using

g−1(y) =
(

y

α

)β

.

Then using the transformation of random variables formula for 1D

pY (y) = pX(g−1(y))
∣∣∣∣∣dg−1(y)

dy

∣∣∣∣∣ ,
= exp

(
−
(

y

α

)β
)

β
(

y

α

)β−1 1
α

,

which gives us the result. Algorithm for Weibull:

1. Generate U ∼ U(0, 1).

2. Set X = − log(1 − U) (so X exponential).

3. Set Y = αX
1
β (so Y is Weibull).

The code is provided below:
1 import numpy as np
2 import matplotlib.pyplot as plt
3
4 n = 20000
5
6 # sample from weibull
7 def weibull_density(w, a, b):
8 return b * a**(-b) * w**(b-1) * np.exp(- (w / a)**b)
9
10 a = 1
11 b = 2
12
13 samples = np.array([]) # list to store samples
14
15 for i in range(n):
16 u = np.random.uniform(0, 1)
17 x = - np.log(1 - u)
18 w = a * x**(1/b)
19 samples = np.append(samples, w)
20
21 xx = np.linspace(0, 4, 1000)
22 yy = weibull_density(xx, a, b)
23 plt.plot(xx, yy, 'k-')
24 plt.hist(samples, bins=100, density=True, rwidth=0.8, color='r', alpha

=0.5)
25 plt.title("Weibull density and histogram")
26 plt.xlabel("x")
27 plt.xlim([0, 4])
28 plt.show()

Solution 2.2. Similar to the course examples, we can compute the density of X1, X2 as

px1,x2(x1, x2) = pr,θ(g−1(x1, x2)) |det Jg−1| ,

where g−1 is the inverse transformation. Let us construct the inverse transform:

r =
√

x2
1 + x2

2

by just observing that cos2 θ + sin2 θ = 1. We can also write that

θ = arctan(x2/x1).

Therefore, we can write the inverse transformation as

g−1(x1, x2) =
(√

x2
1 + x2

2, arctan(x2/x1)
)

.

We next need to compute the Jacobian matrix as:

Jg−1 =
∂g−1

1
∂x1

∂g−1
1

∂x2
∂g−1

2
∂x1

∂g−1
2

∂x2

 =
 x1√

x2
1+x2

2

x2√
x2

1+x2
2

1
1+(x2/x1)2

−x2
x2

1

1
1+(x2/x1)2

1
x1

 .

Therefore, the determinant is

det Jg−1 = 1√
x2

1 + x2
2

.

Therefore, the density of X1, X2 is

px1,x2(x1, x2) = Unif(
√

x2
1 + x2

2; 0, 1)Unif(arctan(x2/x1); −π, π) 1√
x2

1 + x2
2

= 1
2π
√

x2
1 + x2

2

for x2
1 + x2

2 ≤ 1.

Solution 2.3. We would like to compute

M = sup
x

p(x)
q(x) ,

wbere p(x) is the Beta density

p(x) = Beta(x; α, β) = Γ(α + β)
Γ(α)Γ(β)xα−1(1 − x)β−1.

and note that Γ(n) = (n − 1)! for n ∈ N. We compute the derivative

d log p(x)/q(x)
dx

= α − 1
x

+ 1 − β

1 − x

The maximum is

x? = α − 1
α + β − 2 .

Finding x?, we compute the supremum by plugging x? into the ratio p/q which is given as

M = p(x?)
q(x?) .

This leads to

M = (α − 1)α−1(β − 1)β−1

(α + β − 2)α+β−2
Γ(α + β)
Γ(α)Γ(β) .

For the box example, we can find our optimal M = 1.5 by plugging α = 2 and β = 2. The
procedure is then given by

• Sample X ′ ∼ q(x) = Unif(0, 1)

• Sample U ∼ Unif(0, 1)

• If U ≤ p(X ′)/Mq(X ′),

– Accept X ′

Solution 2.4. In order to achieve this, we need to rely on transformation of randomvariables
formula. However, since Y is a function of both X1 and X2, we need a transformation
in two dimensions to be able to use transformation of random variables. In general, one
chooses another auxiliary variable that makes computations easier (again, please practice
transformation of random variables, that must have been the part of previous courses).

In our case, let Y = X1
X1+X2

and define an auxiliary Z = X1 + X2. We aim at finding
the density of py,z(y, z) and this is given by

py,z(y, z) = px1,x2(g−1(y, z))| det Jg−1|. (1)

The inverse g−1 can be constructed in both arguments from the fact that

X1 = Y Z, This is why we chose Z = X1 + X2,

and

X2 = Z − X1 = Z − Y Z = Z(1 − Y).

Therefore, we obtain g−1(y, z) = (yz, z(1 − y)), therefore g−1
1 = yz and g−1

2 = z(1 − y).
Now we compute the Jacobian:

Jg−1 =
∂g−1

1
∂y

∂g−1
1

∂z
∂g−1

2
∂y

∂g−1
2

∂z

=
[

z y
−z (1 − y).

]

Therefore det Jg−1 = z − zy − (−zy) = z. Therefore, the formula (1) becomes

py,z(y, z) = Gamma(yz; α, 1)Gamma(z(1 − y); β, 1)z,

= 1
Γ(α)(yz)α−1e−yz 1

Γ(β)(z(1 − y))β−1e−z(1−y)z

We are interested ultimately in py(y), therefore, we integrate this

py(y) =
∫

py,z(y, z)dz

= 1
Γ(α)Γ(β)yα−1(1 − y)β−1

∫
e−zzα+β−1dz,

= Γ(α + β)
Γ(α)Γ(β)yα−1(1 − y)β−1.

which is the Beta distribution as intended. The last line follows from the definition of the
Gamma function:

Γ(a) =
∫

za−1e−zdz.

Solution 2.5. (a) We first write the ratio

R(x) = p(x)
qα(x) = 1/

√
2π exp(−x2/2)

(α/2) exp(−α|x|) .

This is not differentiable at 0, but we can do a piecewise computation to verify themaximum.
First note that

R(0) = α−1

√
2
π

Since below computation excludes the case x = 0, we keep this in mind to determine
maximum later.

For x > 0, we have the ratio

R(x) = p(x)
qα(x) = 1/

√
2π exp(−x2/2)

(α/2) exp(−αx) ,

Taking derivative of log and setting it to 0, we obtain

d log R(x)
dx

= −x + α = 0,

hence x? = α (since the second derivative is negative). Similarly for x < 0, the computation
shows

x? = −α.

Note however that R(α) = R(−α) (due to the use of square and absolute value), we obtain
that

R(α) = α−1

√
2
π

exp(α2/2).

To verify that this is the value at maximum, we also verify R(α) > R(0) as exp(α2/2) > 1.
Hence, we can conclude that

R(α) = Mα = sup
x

p(x)
qα(x) .

Next, we would like to optimise

Mα = α−1

√
2
π

exp(α2/2).

Computing the derivative of Mα and setting it to zero,

d log Mα

dα
= − 1

α
+ α = 0,

which implies α2 = 1. Since we assumed α > 0, we conclude α? = 1.

(b) In the lectures (Lecture 4), we have seen that

â = 1
M

.

Our optimal M here is

M := Mα? =
√

2
π

e1/2.

Therefore,

â = 1
M

=
√

π/2e.

(c) The code is given below:
1 import numpy as np
2 import matplotlib.pyplot as plt
3 import scipy.stats as stats
4
5 rng = np.random.default_rng(6)
6
7 N = 100000
8
9 # Gaussian density
10 def p(x):
11 return 1/np.sqrt(2*np.pi)*np.exp(-x**2/2)
12
13 # Proposal density (Laplace)
14 def q(x):
15 return (alpha/2) * np.exp(-alpha*np.abs(x))
16
17 alpha = 1 # as computed in part (a)
18 M_a = np.sqrt(2/np.pi) * np.exp(1/2) # as computed in part (b)
19
20
21 # implement rejection sampling
22
23 acc = 0 # count for accepted samples
24 x_samples = np.array([])
25
26 for i in range(N):
27 # sample from proposal
28 x_prime = rng.laplace(scale=1/alpha)
29 u = rng.uniform(0,1)
30 # accept/reject
31 if u < p(x_prime)/(M_a*q(x_prime)):
32 acc += 1
33 x_samples = np.append(x_samples , x_prime)
34
35 print("Acceptance rate: ", acc/N)

