
solutions to exercises 5
Solution 5.1. Monte Carlo sampler is just sampling N (0, 1) and keeping samples X > 4
as we explained several times – the IS estimator is also provided in lecture notes. Below is
one solution. Here the proposal is

q(x) = N (x; 6, 1).

1 import numpy as np
2 import matplotlib.pyplot as plt
3
4 xx = np.linspace(4, 20, 100000)
5
6 def p(x):
7 return np.exp(-x**2/2)/np.sqrt(2*np.pi)
8
9 def q(x, mu, sigma):
10 return np.exp(-(x-mu)**2/(2*sigma**2))/(np.sqrt(2*np.pi)*sigma)
11
12 def w(x, mu, sigma):
13 return p(x)/q(x, mu, sigma)
14
15 I = np.trapz(p(xx), xx) # Numerical computation of the integral
16
17 print('Integral of p(x) from 4 to infinity: ', I)
18
19 N = 10000
20
21 x = np.random.normal(0, 1, N) # iid samples from p(x)
22
23 I_est_MC = (1/N) * np.sum(x > 4)
24 print('Monte Carlo estimate: ', I_est_MC)
25
26 mu = 6
27 sigma = 1
28
29 x_s = np.zeros(N)
30 weights = np.zeros(N)
31
32 for i in range(N):
33 x_s[i] = np.random.normal(mu, sigma, 1)
34 weights[i] = w(x_s[i], mu, sigma)
35
36 I_est_IS = (1/N) * np.sum(weights * (x_s > 4))
37 print('Importance sampling estimate: ', I_est_IS)

Solution 5.2. This solution allows us to find the minimum variance (optimal) proposal due
to its (tautological) structure. But it is good for practice. If you notice that test function also
looks like an exponential density, the problem here is to just find the resulting exponential
parameter from the multiplication p(x)ϕ(x) - which is trivial. But we will treat the problem
as if we did not notice this!

Recall from lecture notes (Remark 4.5) that we have the variance expression

varq(ϕ̂N
IS) = 1

N

(
Eqµ

[
w2(X)ϕ2(X)

]
− ϕ̄2

)
.

OF course in this expression, note that w(x) also depends on µ as it is the ratio. Now we
would like to minimise this expression w.r.t. µ – which means that we will only deal with
the first term (as ϕ̄ is a constant). Specifically, we can also ignore 1/N as it won’t change
the result. Next, we write the integral

Eqµ

[
w2(X)ϕ2(X)

]
=
∫ p2(x)

q2
µ(x)ϕ2(x)qµ(x)dx,

=
∫ p2(x)

qµ(x)ϕ2(x)dx,

=
∫ e−2x

µe−µx
e−Kxdx,

= 1
µ

∫
e(µ−2−K)xdx,

= 1
µ(K + 2 − µ)

∫
(K + 2 − µ)e(µ−2−K)xdx,

= 1
µ(K + 2 − µ) ,

where the last integral is just one as it is the integral of the exponential density. Note that,
for this integral to be finite, we impose a condition2

µ − 2 − K < 0 =⇒ µ < K + 2.

The minimum variance proposal then can be found using

µ? = arg min
µ

Eqµ

[
w2(X)ϕ2(X)

]
= arg min

µ

1
µ(K + 2 − µ) .

We take the derivative of the log of this expression and setting it to zero (check and let me
know if there is a mistake)

1
µ

= 1
K + 2 − µ

,

which implies that

µ = K

2 + 1.

So what is variance? Plug this back in the expression:

1
µ(K + 2 − µ)

∣∣∣∣
µ= K

2 +1
= 1(

K
2 + 1

)2 .

Note that this is the first part of the variance expression with µ? plugged it in, we also need
the second part to observe the variance reduction:

varq(ϕ̂N
IS) = 1

N

(
Eqµ

[
w2(X)ϕ2(X)

]
− ϕ̄2

)
.

2You should look at the exponents of exponentials appearing in these integrals and impose conditions so
they don’t grow to infinity with x.

So what is ϕ̄? It is just the integral∫
e− K

2 xe−xdx =
∫

e−
(

K
2 +1

)
xdx

= 1
K
2 + 1

which we can find by matching the expression inside the integral with an exponential
density with rate K

2 + 1. So

ϕ̄2 = 1(
K
2 + 1

)2 ,

then,

varq(ϕ̂N
IS) = 1

N

(
Eqµ?

[
w2

µ?
(X)ϕ2(X)

]
− ϕ̄2

)
= 0!

What happened, howdidwe end upwith a zero variance proposal? As I said in the beginning,
we did something trivial: Note that ϕ(x)p(x) is just another exponential density. You just
found corresponding parameter that matches qµ to ϕ(x)p(x) via a painful procedure.
However, (i) it is good practice, (ii) it told you that it is a good idea to choose proposals
similar to ϕ(x)p(x).

Solution 5.3. This exercisewill show something rather remarkable: By choosing aminimum
variance proposal, you can obtain Gaussian samples with lower variance than i.i.d sample.
In other words, sampling directly from N (0, 1) to estimate the mean of the density is not
optimal from variance minimisation perspective. Note that this trivially generalises to
N (µ, σ2), we avoid this to not clutter the notation.

As stated in the exercise, we first show that the variance of the standard MC estimator
is 1/N . We write as given in the lecture notes

varp(ϕ̂N
MC) = 1

N
varp(ϕ).

The second term here is exactly the variance of N (0, 1) which is 1, hence the result.
Now we will do a similar thing to the last exercise to choose a minimum variance

proposal. Note that in the last exercise, we showed that, we have to solve the problem

λ? = arg min
λ

Eqλ

[
w2

λ(X)ϕ2(X)
]

,

again w(x) depends λ as it involves qλ. Note that ϕ(x) = x since we try to estimate the
mean. We write the expectation explicitly

Eqλ

[
w2

λ(X)ϕ2(X)
]

=
∫ p2(x)

qλ(x)ϕ2(x)dx

=
∫ 1

2π
e−x2

1√
2π(1/λ)

e− λx2
2

x2dx

=
√

2πλ−1

2π

∫
x2e−(1− λ

2)x2dx.

Empirical variances match theoretical variance

The last exponential in the integral can be seen as a zero mean Gaussian with appropriate
variance. To see this, we rewrite it

Eqλ

[
w2

λ(X)ϕ2(X)
]

=
√

2πλ−1

2π

√
2πσ2

∫
x2 1√

2πσ2
e− x2

2σ2 dx.

where it can be seen that
1

2σ2 = 1 − λ

2
which implies that

σ2 = (2 − λ)−1.

Therefore, we finally obtain (by seeing that the last integral is now just σ2):

Eqλ

[
w2

λ(X)ϕ2(X)
]

= λ−1/2(2 − λ)−3/2.

Optimising this value (check this) gives us

λ? = 1/2.

Note that ϕ̄ = 0, so computing this value at the variance expression gives us (again, fill this
gap)

varq(ϕ̂N
IS) = 1

N

{
λ−1/2(2 − λ)−3/2

} ∣∣∣∣
λ=1/2

= 0.7698
N

.

So we’ve got an estimator which has lower variance than the i.i.d estimator! Note that this
is not a theoretical exercise as you can also numerically show this. Let us plot for N = 10,
empirical variance estimates of two estimators – see the plot above. The code is attached.

1 import numpy as np
2 import matplotlib.pyplot as plt
3

4 def p(x):
5 return 1/np.sqrt(2*np.pi) * np.exp(-x**2/2)
6
7 def q(x, lam):
8 return 1/np.sqrt(2*np.pi * 1/lam) * np.exp(-x**2/(2/lam))
9
10 lam = 1/2
11
12 N = 10
13
14 I_MC = np.array([])
15 I_IS = np.array([])
16 var_MC = np.array([])
17 var_IS = np.array([])
18
19 var_th = (1/N) * (2 - lam)**(-3/2) * lam**(-1/2)
20
21 MC = 5000
22
23 fig, ax = plt.subplots(1, 1, figsize=(10, 5))
24
25 for i in range(MC):
26 x = np.random.normal(0, 1, N)
27 I_MC = np.append(I_MC, np.mean(x))
28
29 x_s = np.sqrt(1/lam) * np.random.normal(0, 1, N)
30 weights = p(x_s) / q(x_s, lam)
31
32 I_IS = np.append(I_IS, (1/N) * np.sum(weights * x_s))
33
34 var_MC = np.append(var_MC, np.var(I_MC))
35 var_IS = np.append(var_IS, np.var(I_IS))
36 if (i+1) % 100 == 0:
37 print('MC variance: ', var_MC[-1])
38 print('IS variance: ', var_IS[-1])
39 print('Theoretical variance: ', var_th)
40 print('MC mean: ', np.mean(I_MC))
41 print('IS mean: ', np.mean(I_IS))
42 ax.cla()
43 ax.plot(var_MC, label='MC', color='k')
44 ax.plot(var_IS, label='IS', color=[0.8, 0, 0])
45 ax.plot([0, MC], [var_th, var_th], '--', label='Theoretical (

IS)', color=[0.8, 0, 0])
46 ax.plot([0, MC], [1/N, 1/N], 'k--', label='Theoretical (MC)')
47 ax.set_xlim([0, MC])
48 ax.set_xlabel('MC run')
49 ax.set_ylabel('Variance')
50 ax.legend()
51 plt.show(block=False)
52 plt.pause(0.01)
53
54
55 print('MC variance: ', var_MC[-1])
56 print('IS variance: ', var_IS[-1])
57 print('Theoretical variance: ', var_th)
58 print('MC mean: ', np.mean(I_MC))
59 print('IS mean: ', np.mean(I_IS))
60 ax.cla()
61 ax.plot(var_MC, label='MC', color='k')

62 ax.plot(var_IS, label='IS', color=[0.8, 0, 0])
63 ax.plot([0, MC], [var_th, var_th], '--', label='Theoretical (IS)',

color=[0.8, 0, 0])
64 ax.plot([0, MC], [1/N, 1/N], 'k--', label='Theoretical (MC)')
65 ax.set_xlim([0, MC])
66 ax.set_xlabel('MC run')
67 ax.set_ylabel('Variance')
68 ax.legend()
69 plt.show()

Solution 5.4. We have a model

p(x) = N (x; 0, 1)
p(y|x) = N (y; x, 1),

and given the integral expression p(y) =
∫

p(y|x)p(x)dx.

1. The integral is analytically computable and provided in, e.g., Example 3.11. The
density is given as

p(y) = N (y; 0, 2).

On my computer, I have

p(y) ≈ 4.52 × 10−10.

2. The standard estimator is given as follows. In the integral described in the question,
we can identify that we have a test function

ϕ(x) = p(y = 9|x),

that depends on x (since y = 9 is fixed). The classical estimator is given as

ϕN
MC = 1

N

N∑
i=1

p(y = 9|Xi),

where Xi ∼ p(x) for i = 1, . . . , N . I will plot the graph below (both graphs together)

3. In order to minimise the variance of the estimator, we want to find

µ? = arg min
µ

Eqµ [p2(y0|X)w2
µ(X)].

This minimisation problem should be clearly stated in the answer. We next derive
this expectation

Eqµ [p2(y0|X)w2
µ(X)] =

∫
p2(y0|x)p2(x)

qµ(x)dx =
∫ 1

2π
exp (−(y0 − x)2) 1

2π
exp(−x2)

1√
π

exp (−(x − µ)2) dx,

=
√

π

4π2

∫
exp(−y2

0 + 2y0x − x2 − x2 + x2 − 2xµ + µ2)dx

=
√

π

4π2

∫
exp(−y2

0 + 2(y0 − µ)x − x2 + µ2)dx.

101 102 103 104 105 106

10 14

10 12

10 10

10 8

10 6

10 4

10 2

100

MC vs IS, Relative error

MC
IS

One can see that IS is much more efficient than MC in terms of RAE.

Let g(µ) = Eqµ [p2(y0|X)w2
µ(X)] for a shorthand notation. We complete the square

here to obtain a Gaussian density:

g(µ) =
√

π

4π2

∫
exp

(
−(y0 − µ)2

)
exp (2(y0 − µ)x) exp(−x2) exp(2µ2) exp(−2y0µ)dx,

= π

4π2 exp (−2y0µ) exp
(
2µ2

) ∫
N (x; y0 − µ, 1/2)dx,

= 1
4π

exp (−2y0µ) exp(2µ2).

We can easily maximise this by taking the log

log g(µ) = − log 1
4π

− 2y0µ + 2µ2,

taking its derivative w.r.t. µ and setting it to zero gives

−2y0 + 4µ = 0,

which implies µ? = y0/2 as asked. This sampler puts mass of the proposal close to
the observation point. If y0 has very small probability under original model, the
MC estimator could fail (as mentioned in part(a)), but the optimal IS estimator will
sample close to the observation and will provide an accurate estimate.

4. The plot roughly looks like in the Figure. The MC error is expected to be much higher
than the IS error.

We can provide the Python code as follows.
1 import numpy as np
2 import matplotlib.pyplot as plt
3
4 rng = np.random.default_rng(41)

5
6 def p(x):
7 return 1/np.sqrt(2*np.pi) * np.exp(-x**2/2)
8
9 def q(x, mu, sigma):
10 return 1/np.sqrt(2*np.pi * sigma**2) * np.exp(-(x-mu)**2/(2*sigma

**2))
11
12 def likelihood(y, x):
13 return p(y-x)
14
15 def marginal_likelihood(y):
16 sigma = np.sqrt(2)
17 return 1/np.sqrt(2*np.pi * sigma**2) * np.exp(-(y)**2/(2*sigma**2)

)
18
19
20 y = 9
21 I = marginal_likelihood(y)
22 print(marginal_likelihood(y))
23
24 mu = y/2 # derived in the exercise
25
26 N_range = [10, 100, 1000, 10000, 100000, 1000000, 10000000]
27
28 fig = plt.figure()
29
30 var_IS_run = np.array([])
31 var_MC_run = np.array([])
32
33
34 I_MC = np.array([])
35 I_IS = np.array([])
36 var_IS = np.array([])
37 var_MC = np.array([])
38 K = np.array([])
39
40 for N in N_range:
41 weights = np.array([])
42 x = rng.normal(0, 1, N)
43 I_MC = np.append(I_MC, np.mean(likelihood(y, x)))
44
45 x_s = rng.normal(mu, np.sqrt(1/2), N)
46 weights = p(x_s)/q(x_s, mu, np.sqrt(1/2))
47 I_IS = np.append(I_IS, np.mean(weights * likelihood(y, x_s)))
48 K = np.append(K, N)
49
50 print('True value: ', I)
51 print('IS value: ', I_IS)
52 print('MC value: ', I_MC)
53
54
55 plt.clf()
56 plt.loglog(K, np.abs((I_MC - I))/I, 'k-', label='MC')
57 plt.loglog(K, np.abs((I - I_IS))/I, 'r-', label='IS')
58 plt.legend()
59 plt.title('MC vs IS, Relative error')
60 plt.show()

Solution 5.5. The implementation of the log-trick is given below. The prints provide the
output, the first one is NaN, while the second one is stable.

1 import numpy as np
2 import matplotlib.pyplot as plt
3
4 logw = [1000, 1001, 999, 1002, 950]
5
6 w = np.exp(logw)/np.sum(np.exp(logw))
7 w2 = np.exp(logw - np.max(logw))/np.sum(np.exp(logw - np.max(logw)))
8
9 print(w)
10 print(w2)

