
solutions 6
Solution 6.1. We know from Example 3.6 that

p(x|y1:n) = N (x; µp, σ2
p), (1)

with

µp = σ2
0
∑n

i=1 yi + σ2µ0

σ2
0n + σ2 , (2)

σ2
p = σ2

0σ2

σ2
0n + σ2 . (3)

Below, we will zset µ0 = 0, σ2
0 = 1 and σ2 = 1 which simplifies example, i.e., we have the

true mean

µp =
∑n

i=1 yi

M + 1 , (4)

which we will use for checking our code. In this exercise, I will give different parts of the
solution separately to improve clarity.

1. In this part, we need to simulate our data.
1 # simulate M data points
2 M = 100
3 rng = np.random.default_rng(25)
4 x = rng.normal(0, 1)
5 y = rng.normal(x, 1, M)

2. Secondly, we need to compute our true mean estimate as derived in (4):
1 # analytic posterior mean
2 mean_true = np.sum(y)/(M+1)
3 print("Analytic posterior mean: ", mean_true)

3. (This is for parts 3-4 together) We will then implement SNIS with µq = 0 and σ2
q = 1.

For this, we directly define log densities.
1 # define log prior
2 def logp(x):
3 return -x**2/2 - np.log(np.sqrt(2*np.pi))
4
5 # define log likelihood
6 def loglik(x, y):
7 return -(x-y)**2/2 - np.log(np.sqrt(2*np.pi))
8
9 # define log proposal
10 def logq(x):
11 return -x**2/2 - np.log(np.sqrt(2*np.pi))
12
13 def ESS(w):
14 return 1/np.sum(w**2)
15
16 N = 10000
17
18 x = rng.normal(0, 1, N) # sample from q(x)

19
20 logW = np.zeros(N)
21 for i in range(N):
22 logW[i] = np.sum(loglik(x[i], y)) + logp(x[i]) - logq(x[i])
23
24 log_hat_W = logW - np.max(logW)
25
26 w = np.exp(log_hat_W)/np.sum(np.exp(log_hat_W)) # weights with

log-trick
27 w2 = np.exp(logW)/np.sum(np.exp(logW)) # weights without log-

trick
28
29 # mean estimate
30 mean = np.sum(w*x)
31 mean2 = np.sum(w2*x)
32
33 print("Mean estimate (stable): ", mean)
34 print("ESS: ", ESS(w))
35 print("Mean estimate (unstable): ", mean2)
36 print("ESS: ", ESS(w2))

Solution 6.2. This is discussed in the lecture, so hopefully you will have more intuition
about it. The first part of this exercise implements the SNIS.

1 import numpy as np
2 import matplotlib.pyplot as plt
3
4 def bar_p(x): # implementing the density just for visualisation!
5 return np.exp(-x[0]**2/10 - x[1]**2/10 - 2 * (x[1] - x[0]**2)**2)
6
7 def q(x):
8 return np.exp(- x[0]**2/2 - x[1]**2/2) / (2 * np.pi)
9
10 def logbar_p(x):
11 return - x[0]**2/10 - x[1]**2/10 - 2 * (x[1] - x[0]**2)**2
12
13 def loglik(y, x, sig):
14 H = [1, 0]
15 return -(y - H @ x)**2/(2 * sig**2) - np.log(sig * np.sqrt(2 * np.

pi))
16
17 def logq(x):
18 return - x[0]**2/2 - x[1]**2/2 - np.log(2 * np.pi)
19
20 def ESS(w):
21 return 1/np.sum(w**2)
22
23 y = 1
24 sig = 0.05
25
26 N = 10000
27 rng = np.random.default_rng(25)
28 # sample from q
29 x = rng.normal(0, 1, (2, N)) # 2 x N matrix (2 dimensional , N samples)
30
31 # compute logW
32 logW = np.zeros(N)
33 for i in range(N):

34 logW[i] = (loglik(y, x[:, i], sig)) + logbar_p(x[:, i]) - logq(x[:
, i])

35
36 # compute log_hat_W
37 log_hat_W = logW - np.max(logW)
38 w = np.exp(log_hat_W)/np.sum(np.exp(log_hat_W))
39
40 # compute mean estimate
41 mean = np.sum(w*x, axis=1)
42
43 # compute ESS
44 print("ESS: ", ESS(w))

Having obtained the weights w and the samples x, we can now resample. We will use the
following code for resampling and plot the result.

1 # resample N samples
2 x_resampled = np.zeros((2, N))
3 for i in range(N):
4 x_resampled[:, i] = x[:, rng.choice(N, p=w)]
5 # rng.choice chooses an index from 0 to N-1 with probability w
6
7 # plot resampled samples
8 x_bb = np.linspace(-4, 4, 100)
9 y_bb = np.linspace(-2, 6, 100)
10 X_bb, Y_bb = np.meshgrid(x_bb, y_bb)
11 Z_bb = np.zeros((100, 100))
12 for i in range(100):
13 for j in range(100):
14 Z_bb[i, j] = bar_p([X_bb[i, j], Y_bb[i, j]])
15 plt.contourf(X_bb, Y_bb, Z_bb, 100, cmap='RdBu')
16 plt.scatter(x_resampled[0, :], x_resampled[1, :], s=10, c='white')
17 plt.show()

Note that, as explained in the lecture, the result makes sense. We had a 2D banana prior
but only observed x1 dimension with some noise as y = Hx + σW where W ∼ N (0, 1)
and since H = [1, 0], this equals to y = x1 + σW with small σ. It means that we can only
know that the object in 2D will reside parallel to x1 axis, according to our prior. Hence the
samples from the posterior taking a vertical shape along this axis (would get even more
vertical with smaller σ – watch the discussion in the lecture).

