
exercises 6
Exercise 6.1 (Bayesian Inference with SNIS). In this exercise, we will use our toy Gaussian
model to perform Bayesian inference. We will use the same model Example 3.6. Recall that
this model is given as

p(x) = N (x; µ0, σ2
0),

p(yi|x) = N (yi; x, σ2),

where i = 1, . . . , M , i.e., yi are conditionally independent given x. In the first implementa-
tion of this exercise, you can set µ0 = 0, σ2 = 1 and σ2

0 = 1, but you should also explore
other parameters to gain intuition.

1. First simulate M = 1000 data points from this model. In particular, you should
perform X ∼ p(x) and fixing the sample X = x, and then yi ∼ p(yi|x) for
i = 1, . . . , M .

2. For these particular datapoints, compute the true posterior mean estimate using the
expression µp in Example 3.6. This is the true posterior mean estimate for this model.

3. Now we will use SNIS to estimate the posterior mean. For this, we will use the
following proposal

q(x) = N (x; µq, σ2
q ),

In the first implementation, you can set µq = 0 and σ2
q = 1, but you should also

explore other parameters to gain intuition. Implement the SNIS estimator for this
model. Note that your unnormalized posterior is

p̄(x|y1:n) = p(y1:n|x)p(x) =
M∏

i=1
p(yi|x)p(x),

as given in Exercise 3.6. You should compute the weights in the log-domain. Compare
the posterior mean estimate when you compute the weights without the log-trick
and with the log-trick. You should observe that the log-trick is necessary for this
model.

4. Finally compute effective sample size (ESS) and vary your N to see how it affects the
ESS. Plot the ESS w.r.t. N .

Exercise 6.2. In this example, we will work on R2. Let us assume the following “banana”
prior

p(x) ∝ exp(−x2
1/10 − x2

2/10 − 2(x2 − x2
1)2),

where x ∈ R2. We would like to then use the following likelihood:

p(y|x) = N (y; Hx, σ2I),

where H = [1, 0] and y ∈ R. Now assume that we are given y = 1 and σ = 0.05 (note that
this is standard deviation). Our goal is to sample from p(x|y).

1. First visualise the prior p(x) using the following code:



1 import numpy as np
2 import matplotlib.pyplot as plt
3
4 def bar_p(x):
5 return np.exp(-x[0]**2/10 - x[1]**2/10 - 2 * (x[1] - x[0]**2)

**2)
6
7 x_bb = np.linspace(-4, 4, 100)
8 y_bb = np.linspace(-2, 6, 100)
9 X_bb, Y_bb = np.meshgrid(x_bb, y_bb)
10 # evaluate barp on this grid
11 Z_bb = np.zeros((100, 100))
12 for i in range(100):
13 for j in range(100):
14 Z_bb[i, j] = bar_p([X_bb[i, j], Y_bb[i, j]])
15 # plot barp
16 plt.contourf(X_bb, Y_bb, Z_bb, 100, cmap='RdBu')
17 plt.show()

You will see that this gives you a 2D (unnormalised) density. Now try to interpret
our task. We assume that y = 1 with σ = 0.05. By just looking at the prior and the
likelihood, try to guess how the posterior should look like (before proceeding).

2. Now we will use SNIS to estimate the posterior mean. For this, we will use the
following proposal

q(x) = N (x; µq, σ2
qI),

Note that this is also defined onR2 and you can set µq = [0, 0] and σ2
q = 1. Compute

the posterior mean using SNIS (do not forget using log-prior and log-likelihood
and performing the log-trick) and compute the ESS (choose varying N . Start with
N = 1000).

3. Now using the idea of importance sampling resampling (Section 4.6.2) in lecture
notes, resample N samples from this weighted sample. Recall that SNIS will result in
a set of weights and samples {w̄i, xi}N

i=1. You should resample from this set to obtain
a new set of resampled samples {x̄i}N

i=1. Then scatter these samples to plot against
the prior using the following code:

1 # plot resampled samples
2 # x_res are the resampled samples (note that samples are 2D)
3 x_bb = np.linspace(-4, 4, 100)
4 y_bb = np.linspace(-2, 6, 100)
5 X_bb, Y_bb = np.meshgrid(x_bb, y_bb)
6 Z_bb = np.zeros((100, 100))
7 for i in range(100):
8 for j in range(100):
9 Z_bb[i, j] = bar_p([X_bb[i, j], Y_bb[i, j]])
10 plt.contourf(X_bb, Y_bb, Z_bb, 100, cmap='RdBu')
11 plt.scatter(x_res[0, :], x_resampled[1, :], s=10, c='white')
12 plt.show()

Now interpret the result and compare it to your educated guess you have done in
Part 1.
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